1 //===- GNULDBackend.cpp ---------------------------------------------------===// 2 // 3 // The MCLinker Project 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 #include <mcld/Target/GNULDBackend.h> 10 11 #include <string> 12 #include <cstring> 13 #include <cassert> 14 #include <vector> 15 #include <algorithm> 16 #include <map> 17 18 #include <mcld/Module.h> 19 #include <mcld/LinkerConfig.h> 20 #include <mcld/IRBuilder.h> 21 #include <mcld/InputTree.h> 22 #include <mcld/Config/Config.h> 23 #include <mcld/ADT/SizeTraits.h> 24 #include <mcld/LD/LDSymbol.h> 25 #include <mcld/LD/LDContext.h> 26 #include <mcld/Fragment/FillFragment.h> 27 #include <mcld/LD/EhFrame.h> 28 #include <mcld/LD/EhFrameHdr.h> 29 #include <mcld/LD/RelocData.h> 30 #include <mcld/LD/RelocationFactory.h> 31 #include <mcld/MC/Attribute.h> 32 #include <mcld/Support/MemoryArea.h> 33 #include <mcld/Support/MemoryRegion.h> 34 #include <mcld/Support/MsgHandling.h> 35 #include <mcld/Support/MemoryAreaFactory.h> 36 #include <mcld/LD/BranchIslandFactory.h> 37 #include <mcld/LD/StubFactory.h> 38 #include <mcld/Object/ObjectBuilder.h> 39 40 namespace { 41 42 //===--------------------------------------------------------------------===// 43 // non-member functions 44 //===----------------------------------------------------------------------===// 45 static const std::string simple_c_identifier_allowed_chars = 46 "0123456789" 47 "ABCDEFGHIJKLMNOPWRSTUVWXYZ" 48 "abcdefghijklmnopqrstuvwxyz" 49 "_"; 50 51 /// isCIdentifier - return if the pName is a valid C identifier 52 static bool isCIdentifier(const std::string& pName) 53 { 54 return (pName.find_first_not_of(simple_c_identifier_allowed_chars) 55 == std::string::npos); 56 } 57 58 } // anonymous namespace 59 60 using namespace mcld; 61 62 //===----------------------------------------------------------------------===// 63 // GNULDBackend 64 //===----------------------------------------------------------------------===// 65 GNULDBackend::GNULDBackend(const LinkerConfig& pConfig, GNUInfo* pInfo) 66 : TargetLDBackend(pConfig), 67 m_pObjectReader(NULL), 68 m_pDynObjFileFormat(NULL), 69 m_pExecFileFormat(NULL), 70 m_pObjectFileFormat(NULL), 71 m_pInfo(pInfo), 72 m_ELFSegmentTable(9), // magic number 73 m_pBRIslandFactory(NULL), 74 m_pStubFactory(NULL), 75 m_pEhFrameHdr(NULL), 76 m_bHasTextRel(false), 77 m_bHasStaticTLS(false), 78 f_pPreInitArrayStart(NULL), 79 f_pPreInitArrayEnd(NULL), 80 f_pInitArrayStart(NULL), 81 f_pInitArrayEnd(NULL), 82 f_pFiniArrayStart(NULL), 83 f_pFiniArrayEnd(NULL), 84 f_pStack(NULL), 85 f_pDynamic(NULL), 86 f_pTDATA(NULL), 87 f_pTBSS(NULL), 88 f_pExecutableStart(NULL), 89 f_pEText(NULL), 90 f_p_EText(NULL), 91 f_p__EText(NULL), 92 f_pEData(NULL), 93 f_p_EData(NULL), 94 f_pBSSStart(NULL), 95 f_pEnd(NULL), 96 f_p_End(NULL) { 97 m_pSymIndexMap = new HashTableType(1024); 98 } 99 100 GNULDBackend::~GNULDBackend() 101 { 102 delete m_pInfo; 103 delete m_pDynObjFileFormat; 104 delete m_pExecFileFormat; 105 delete m_pObjectFileFormat; 106 delete m_pSymIndexMap; 107 delete m_pEhFrameHdr; 108 delete m_pBRIslandFactory; 109 delete m_pStubFactory; 110 } 111 112 size_t GNULDBackend::sectionStartOffset() const 113 { 114 if (LinkerConfig::Binary == config().codeGenType()) 115 return 0x0; 116 117 switch (config().targets().bitclass()) { 118 case 32u: 119 return sizeof(llvm::ELF::Elf32_Ehdr) + 120 numOfSegments() * sizeof(llvm::ELF::Elf32_Phdr); 121 case 64u: 122 return sizeof(llvm::ELF::Elf64_Ehdr) + 123 numOfSegments() * sizeof(llvm::ELF::Elf64_Phdr); 124 default: 125 fatal(diag::unsupported_bitclass) << config().targets().triple().str() 126 << config().targets().bitclass(); 127 return 0; 128 } 129 } 130 131 uint64_t GNULDBackend::getSegmentStartAddr(const LinkerScript& pScript) const 132 { 133 LinkerScript::AddressMap::const_iterator mapping = 134 pScript.addressMap().find(".text"); 135 if (pScript.addressMap().end() != mapping) 136 return mapping.getEntry()->value(); 137 else if (config().isCodeIndep()) 138 return 0x0; 139 else 140 return m_pInfo->defaultTextSegmentAddr(); 141 } 142 143 GNUArchiveReader* 144 GNULDBackend::createArchiveReader(Module& pModule) 145 { 146 assert(NULL != m_pObjectReader); 147 return new GNUArchiveReader(pModule, *m_pObjectReader); 148 } 149 150 ELFObjectReader* GNULDBackend::createObjectReader(IRBuilder& pBuilder) 151 { 152 m_pObjectReader = new ELFObjectReader(*this, pBuilder, config()); 153 return m_pObjectReader; 154 } 155 156 ELFDynObjReader* GNULDBackend::createDynObjReader(IRBuilder& pBuilder) 157 { 158 return new ELFDynObjReader(*this, pBuilder, config()); 159 } 160 161 ELFBinaryReader* GNULDBackend::createBinaryReader(IRBuilder& pBuilder) 162 { 163 return new ELFBinaryReader(*this, pBuilder, config()); 164 } 165 166 ELFObjectWriter* GNULDBackend::createWriter() 167 { 168 return new ELFObjectWriter(*this, config()); 169 } 170 171 bool GNULDBackend::initStdSections(ObjectBuilder& pBuilder) 172 { 173 switch (config().codeGenType()) { 174 case LinkerConfig::DynObj: { 175 if (NULL == m_pDynObjFileFormat) 176 m_pDynObjFileFormat = new ELFDynObjFileFormat(); 177 m_pDynObjFileFormat->initStdSections(pBuilder, 178 config().targets().bitclass()); 179 return true; 180 } 181 case LinkerConfig::Exec: 182 case LinkerConfig::Binary: { 183 if (NULL == m_pExecFileFormat) 184 m_pExecFileFormat = new ELFExecFileFormat(); 185 m_pExecFileFormat->initStdSections(pBuilder, 186 config().targets().bitclass()); 187 return true; 188 } 189 case LinkerConfig::Object: { 190 if (NULL == m_pObjectFileFormat) 191 m_pObjectFileFormat = new ELFObjectFileFormat(); 192 m_pObjectFileFormat->initStdSections(pBuilder, 193 config().targets().bitclass()); 194 return true; 195 } 196 default: 197 fatal(diag::unrecognized_output_file) << config().codeGenType(); 198 return false; 199 } 200 } 201 202 /// initStandardSymbols - define and initialize standard symbols. 203 /// This function is called after section merging but before read relocations. 204 bool GNULDBackend::initStandardSymbols(IRBuilder& pBuilder, 205 Module& pModule) 206 { 207 if (LinkerConfig::Object == config().codeGenType()) 208 return true; 209 210 // GNU extension: define __start and __stop symbols for the sections whose 211 // name can be presented as C symbol 212 // ref: GNU gold, Layout::define_section_symbols 213 Module::iterator iter, iterEnd = pModule.end(); 214 for (iter = pModule.begin(); iter != iterEnd; ++iter) { 215 LDSection* section = *iter; 216 217 switch (section->kind()) { 218 case LDFileFormat::Relocation: 219 continue; 220 case LDFileFormat::EhFrame: 221 if (!section->hasEhFrame()) 222 continue; 223 break; 224 default: 225 if (!section->hasSectionData()) 226 continue; 227 break; 228 } // end of switch 229 230 if (isCIdentifier(section->name())) { 231 std::string start_name = "__start_" + section->name(); 232 FragmentRef* start_fragref = FragmentRef::Create( 233 section->getSectionData()->front(), 0x0); 234 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 235 start_name, 236 ResolveInfo::NoType, 237 ResolveInfo::Define, 238 ResolveInfo::Global, 239 0x0, // size 240 0x0, // value 241 start_fragref, // FragRef 242 ResolveInfo::Default); 243 244 std::string stop_name = "__stop_" + section->name(); 245 FragmentRef* stop_fragref = FragmentRef::Create( 246 section->getSectionData()->front(), section->size()); 247 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 248 stop_name, 249 ResolveInfo::NoType, 250 ResolveInfo::Define, 251 ResolveInfo::Global, 252 0x0, // size 253 0x0, // value 254 stop_fragref, // FragRef 255 ResolveInfo::Default); 256 } 257 } 258 259 ELFFileFormat* file_format = getOutputFormat(); 260 261 // ----- section symbols ----- // 262 // .preinit_array 263 FragmentRef* preinit_array = NULL; 264 if (file_format->hasPreInitArray()) { 265 preinit_array = FragmentRef::Create( 266 file_format->getPreInitArray().getSectionData()->front(), 267 0x0); 268 } 269 else { 270 preinit_array = FragmentRef::Null(); 271 } 272 f_pPreInitArrayStart = 273 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 274 "__preinit_array_start", 275 ResolveInfo::NoType, 276 ResolveInfo::Define, 277 ResolveInfo::Global, 278 0x0, // size 279 0x0, // value 280 preinit_array, // FragRef 281 ResolveInfo::Hidden); 282 f_pPreInitArrayEnd = 283 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 284 "__preinit_array_end", 285 ResolveInfo::NoType, 286 ResolveInfo::Define, 287 ResolveInfo::Global, 288 0x0, // size 289 0x0, // value 290 FragmentRef::Null(), // FragRef 291 ResolveInfo::Hidden); 292 293 // .init_array 294 FragmentRef* init_array = NULL; 295 if (file_format->hasInitArray()) { 296 init_array = FragmentRef::Create( 297 file_format->getInitArray().getSectionData()->front(), 298 0x0); 299 } 300 else { 301 init_array = FragmentRef::Null(); 302 } 303 304 f_pInitArrayStart = 305 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 306 "__init_array_start", 307 ResolveInfo::NoType, 308 ResolveInfo::Define, 309 ResolveInfo::Global, 310 0x0, // size 311 0x0, // value 312 init_array, // FragRef 313 ResolveInfo::Hidden); 314 f_pInitArrayEnd = 315 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 316 "__init_array_end", 317 ResolveInfo::NoType, 318 ResolveInfo::Define, 319 ResolveInfo::Global, 320 0x0, // size 321 0x0, // value 322 init_array, // FragRef 323 ResolveInfo::Hidden); 324 325 // .fini_array 326 FragmentRef* fini_array = NULL; 327 if (file_format->hasFiniArray()) { 328 fini_array = FragmentRef::Create( 329 file_format->getFiniArray().getSectionData()->front(), 330 0x0); 331 } 332 else { 333 fini_array = FragmentRef::Null(); 334 } 335 336 f_pFiniArrayStart = 337 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 338 "__fini_array_start", 339 ResolveInfo::NoType, 340 ResolveInfo::Define, 341 ResolveInfo::Global, 342 0x0, // size 343 0x0, // value 344 fini_array, // FragRef 345 ResolveInfo::Hidden); 346 f_pFiniArrayEnd = 347 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 348 "__fini_array_end", 349 ResolveInfo::NoType, 350 ResolveInfo::Define, 351 ResolveInfo::Global, 352 0x0, // size 353 0x0, // value 354 fini_array, // FragRef 355 ResolveInfo::Hidden); 356 357 // .stack 358 FragmentRef* stack = NULL; 359 if (file_format->hasStack()) { 360 stack = FragmentRef::Create( 361 file_format->getStack().getSectionData()->front(), 362 0x0); 363 } 364 else { 365 stack = FragmentRef::Null(); 366 } 367 368 f_pStack = 369 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 370 "__stack", 371 ResolveInfo::NoType, 372 ResolveInfo::Define, 373 ResolveInfo::Global, 374 0x0, // size 375 0x0, // value 376 stack, // FragRef 377 ResolveInfo::Hidden); 378 379 // _DYNAMIC 380 // TODO: add SectionData for .dynamic section, and then we can get the correct 381 // symbol section index for _DYNAMIC. Now it will be ABS. 382 f_pDynamic = 383 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 384 "_DYNAMIC", 385 ResolveInfo::Object, 386 ResolveInfo::Define, 387 ResolveInfo::Local, 388 0x0, // size 389 0x0, // value 390 FragmentRef::Null(), // FragRef 391 ResolveInfo::Hidden); 392 393 // ----- segment symbols ----- // 394 f_pExecutableStart = 395 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 396 "__executable_start", 397 ResolveInfo::NoType, 398 ResolveInfo::Define, 399 ResolveInfo::Absolute, 400 0x0, // size 401 0x0, // value 402 FragmentRef::Null(), // FragRef 403 ResolveInfo::Default); 404 f_pEText = 405 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 406 "etext", 407 ResolveInfo::NoType, 408 ResolveInfo::Define, 409 ResolveInfo::Absolute, 410 0x0, // size 411 0x0, // value 412 FragmentRef::Null(), // FragRef 413 ResolveInfo::Default); 414 f_p_EText = 415 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 416 "_etext", 417 ResolveInfo::NoType, 418 ResolveInfo::Define, 419 ResolveInfo::Absolute, 420 0x0, // size 421 0x0, // value 422 FragmentRef::Null(), // FragRef 423 ResolveInfo::Default); 424 f_p__EText = 425 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 426 "__etext", 427 ResolveInfo::NoType, 428 ResolveInfo::Define, 429 ResolveInfo::Absolute, 430 0x0, // size 431 0x0, // value 432 FragmentRef::Null(), // FragRef 433 ResolveInfo::Default); 434 f_pEData = 435 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 436 "edata", 437 ResolveInfo::NoType, 438 ResolveInfo::Define, 439 ResolveInfo::Absolute, 440 0x0, // size 441 0x0, // value 442 FragmentRef::Null(), // FragRef 443 ResolveInfo::Default); 444 445 f_pEnd = 446 pBuilder.AddSymbol<IRBuilder::AsReferred, IRBuilder::Resolve>( 447 "end", 448 ResolveInfo::NoType, 449 ResolveInfo::Define, 450 ResolveInfo::Absolute, 451 0x0, // size 452 0x0, // value 453 FragmentRef::Null(), // FragRef 454 ResolveInfo::Default); 455 456 // _edata is defined forcefully. 457 // @ref Google gold linker: defstd.cc: 186 458 f_p_EData = 459 pBuilder.AddSymbol<IRBuilder::Force, IRBuilder::Resolve>( 460 "_edata", 461 ResolveInfo::NoType, 462 ResolveInfo::Define, 463 ResolveInfo::Absolute, 464 0x0, // size 465 0x0, // value 466 FragmentRef::Null(), // FragRef 467 ResolveInfo::Default); 468 469 // __bss_start is defined forcefully. 470 // @ref Google gold linker: defstd.cc: 214 471 f_pBSSStart = 472 pBuilder.AddSymbol<IRBuilder::Force, IRBuilder::Resolve>( 473 "__bss_start", 474 ResolveInfo::NoType, 475 ResolveInfo::Define, 476 ResolveInfo::Absolute, 477 0x0, // size 478 0x0, // value 479 FragmentRef::Null(), // FragRef 480 ResolveInfo::Default); 481 482 // _end is defined forcefully. 483 // @ref Google gold linker: defstd.cc: 228 484 f_p_End = 485 pBuilder.AddSymbol<IRBuilder::Force, IRBuilder::Resolve>( 486 "_end", 487 ResolveInfo::NoType, 488 ResolveInfo::Define, 489 ResolveInfo::Absolute, 490 0x0, // size 491 0x0, // value 492 FragmentRef::Null(), // FragRef 493 ResolveInfo::Default); 494 495 return true; 496 } 497 498 bool GNULDBackend::finalizeStandardSymbols() 499 { 500 if (LinkerConfig::Object == config().codeGenType()) 501 return true; 502 503 ELFFileFormat* file_format = getOutputFormat(); 504 505 // ----- section symbols ----- // 506 if (NULL != f_pPreInitArrayStart) { 507 if (!f_pPreInitArrayStart->hasFragRef()) { 508 f_pPreInitArrayStart->resolveInfo()->setBinding(ResolveInfo::Absolute); 509 f_pPreInitArrayStart->setValue(0x0); 510 } 511 } 512 513 if (NULL != f_pPreInitArrayEnd) { 514 if (f_pPreInitArrayEnd->hasFragRef()) { 515 f_pPreInitArrayEnd->setValue(f_pPreInitArrayEnd->value() + 516 file_format->getPreInitArray().size()); 517 } 518 else { 519 f_pPreInitArrayEnd->resolveInfo()->setBinding(ResolveInfo::Absolute); 520 f_pPreInitArrayEnd->setValue(0x0); 521 } 522 } 523 524 if (NULL != f_pInitArrayStart) { 525 if (!f_pInitArrayStart->hasFragRef()) { 526 f_pInitArrayStart->resolveInfo()->setBinding(ResolveInfo::Absolute); 527 f_pInitArrayStart->setValue(0x0); 528 } 529 } 530 531 if (NULL != f_pInitArrayEnd) { 532 if (f_pInitArrayEnd->hasFragRef()) { 533 f_pInitArrayEnd->setValue(f_pInitArrayEnd->value() + 534 file_format->getInitArray().size()); 535 } 536 else { 537 f_pInitArrayEnd->resolveInfo()->setBinding(ResolveInfo::Absolute); 538 f_pInitArrayEnd->setValue(0x0); 539 } 540 } 541 542 if (NULL != f_pFiniArrayStart) { 543 if (!f_pFiniArrayStart->hasFragRef()) { 544 f_pFiniArrayStart->resolveInfo()->setBinding(ResolveInfo::Absolute); 545 f_pFiniArrayStart->setValue(0x0); 546 } 547 } 548 549 if (NULL != f_pFiniArrayEnd) { 550 if (f_pFiniArrayEnd->hasFragRef()) { 551 f_pFiniArrayEnd->setValue(f_pFiniArrayEnd->value() + 552 file_format->getFiniArray().size()); 553 } 554 else { 555 f_pFiniArrayEnd->resolveInfo()->setBinding(ResolveInfo::Absolute); 556 f_pFiniArrayEnd->setValue(0x0); 557 } 558 } 559 560 if (NULL != f_pStack) { 561 if (!f_pStack->hasFragRef()) { 562 f_pStack->resolveInfo()->setBinding(ResolveInfo::Absolute); 563 f_pStack->setValue(0x0); 564 } 565 } 566 567 if (NULL != f_pDynamic) { 568 f_pDynamic->resolveInfo()->setBinding(ResolveInfo::Local); 569 f_pDynamic->setValue(file_format->getDynamic().addr()); 570 f_pDynamic->setSize(file_format->getDynamic().size()); 571 } 572 573 // ----- segment symbols ----- // 574 if (NULL != f_pExecutableStart) { 575 ELFSegment* exec_start = m_ELFSegmentTable.find(llvm::ELF::PT_LOAD, 0x0, 0x0); 576 if (NULL != exec_start) { 577 if (ResolveInfo::ThreadLocal != f_pExecutableStart->type()) { 578 f_pExecutableStart->setValue(f_pExecutableStart->value() + 579 exec_start->vaddr()); 580 } 581 } 582 else 583 f_pExecutableStart->setValue(0x0); 584 } 585 586 if (NULL != f_pEText || NULL != f_p_EText || NULL !=f_p__EText) { 587 ELFSegment* etext = m_ELFSegmentTable.find(llvm::ELF::PT_LOAD, 588 llvm::ELF::PF_X, 589 llvm::ELF::PF_W); 590 if (NULL != etext) { 591 if (NULL != f_pEText && ResolveInfo::ThreadLocal != f_pEText->type()) { 592 f_pEText->setValue(f_pEText->value() + 593 etext->vaddr() + 594 etext->memsz()); 595 } 596 if (NULL != f_p_EText && ResolveInfo::ThreadLocal != f_p_EText->type()) { 597 f_p_EText->setValue(f_p_EText->value() + 598 etext->vaddr() + 599 etext->memsz()); 600 } 601 if (NULL != f_p__EText && ResolveInfo::ThreadLocal != f_p__EText->type()) { 602 f_p__EText->setValue(f_p__EText->value() + 603 etext->vaddr() + 604 etext->memsz()); 605 } 606 } 607 else { 608 if (NULL != f_pEText) 609 f_pEText->setValue(0x0); 610 if (NULL != f_p_EText) 611 f_p_EText->setValue(0x0); 612 if (NULL != f_p__EText) 613 f_p__EText->setValue(0x0); 614 } 615 } 616 617 if (NULL != f_pEData || NULL != f_p_EData || NULL != f_pBSSStart || 618 NULL != f_pEnd || NULL != f_p_End) { 619 ELFSegment* edata = m_ELFSegmentTable.find(llvm::ELF::PT_LOAD, 620 llvm::ELF::PF_W, 621 0x0); 622 if (NULL != edata) { 623 if (NULL != f_pEData && ResolveInfo::ThreadLocal != f_pEData->type()) { 624 f_pEData->setValue(f_pEData->value() + 625 edata->vaddr() + 626 edata->filesz()); 627 } 628 if (NULL != f_p_EData && ResolveInfo::ThreadLocal != f_p_EData->type()) { 629 f_p_EData->setValue(f_p_EData->value() + 630 edata->vaddr() + 631 edata->filesz()); 632 } 633 if (NULL != f_pBSSStart && ResolveInfo::ThreadLocal != f_pBSSStart->type()) { 634 f_pBSSStart->setValue(f_pBSSStart->value() + 635 edata->vaddr() + 636 edata->filesz()); 637 } 638 639 if (NULL != f_pEnd && ResolveInfo::ThreadLocal != f_pEnd->type()) { 640 f_pEnd->setValue(f_pEnd->value() + 641 edata->vaddr() + 642 edata->memsz()); 643 } 644 if (NULL != f_p_End && ResolveInfo::ThreadLocal != f_p_End->type()) { 645 f_p_End->setValue(f_p_End->value() + 646 edata->vaddr() + 647 edata->memsz()); 648 } 649 } 650 else { 651 if (NULL != f_pEData) 652 f_pEData->setValue(0x0); 653 if (NULL != f_p_EData) 654 f_p_EData->setValue(0x0); 655 if (NULL != f_pBSSStart) 656 f_pBSSStart->setValue(0x0); 657 658 if (NULL != f_pEnd) 659 f_pEnd->setValue(0x0); 660 if (NULL != f_p_End) 661 f_p_End->setValue(0x0); 662 } 663 } 664 665 return true; 666 } 667 668 bool GNULDBackend::finalizeTLSSymbol(LDSymbol& pSymbol) 669 { 670 // ignore if symbol has no fragRef 671 if (!pSymbol.hasFragRef()) 672 return true; 673 674 // the value of a TLS symbol is the offset to the TLS segment 675 ELFSegment* tls_seg = m_ELFSegmentTable.find(llvm::ELF::PT_TLS, 676 llvm::ELF::PF_R, 0x0); 677 uint64_t value = pSymbol.fragRef()->getOutputOffset(); 678 uint64_t addr = pSymbol.fragRef()->frag()->getParent()->getSection().addr(); 679 pSymbol.setValue(value + addr - tls_seg->vaddr()); 680 return true; 681 } 682 683 ELFFileFormat* GNULDBackend::getOutputFormat() 684 { 685 switch (config().codeGenType()) { 686 case LinkerConfig::DynObj: 687 assert(NULL != m_pDynObjFileFormat); 688 return m_pDynObjFileFormat; 689 case LinkerConfig::Exec: 690 case LinkerConfig::Binary: 691 assert(NULL != m_pExecFileFormat); 692 return m_pExecFileFormat; 693 case LinkerConfig::Object: 694 assert(NULL != m_pObjectFileFormat); 695 return m_pObjectFileFormat; 696 default: 697 fatal(diag::unrecognized_output_file) << config().codeGenType(); 698 return NULL; 699 } 700 } 701 702 const ELFFileFormat* GNULDBackend::getOutputFormat() const 703 { 704 switch (config().codeGenType()) { 705 case LinkerConfig::DynObj: 706 assert(NULL != m_pDynObjFileFormat); 707 return m_pDynObjFileFormat; 708 case LinkerConfig::Exec: 709 case LinkerConfig::Binary: 710 assert(NULL != m_pExecFileFormat); 711 return m_pExecFileFormat; 712 case LinkerConfig::Object: 713 assert(NULL != m_pObjectFileFormat); 714 return m_pObjectFileFormat; 715 default: 716 fatal(diag::unrecognized_output_file) << config().codeGenType(); 717 return NULL; 718 } 719 } 720 721 /// sizeNamePools - compute the size of regular name pools 722 /// In ELF executable files, regular name pools are .symtab, .strtab, 723 /// .dynsym, .dynstr, .hash and .shstrtab. 724 void GNULDBackend::sizeNamePools(Module& pModule) 725 { 726 assert(LinkerConfig::Unset != config().codePosition()); 727 728 // number of entries in symbol tables starts from 1 to hold the special entry 729 // at index 0 (STN_UNDEF). See ELF Spec Book I, p1-21. 730 size_t symtab = 1; 731 size_t dynsym = config().isCodeStatic()? 0 : 1; 732 733 // size of string tables starts from 1 to hold the null character in their 734 // first byte 735 size_t strtab = 1; 736 size_t dynstr = config().isCodeStatic()? 0 : 1; 737 size_t shstrtab = 1; 738 size_t hash = 0; 739 size_t gnuhash = 0; 740 741 // number of local symbol in the .symtab and .dynsym 742 size_t symtab_local_cnt = 0; 743 size_t dynsym_local_cnt = 0; 744 745 Module::SymbolTable& symbols = pModule.getSymbolTable(); 746 Module::const_sym_iterator symbol, symEnd; 747 /// Compute the size of .symtab, .strtab, and symtab_local_cnt 748 /// @{ 749 symEnd = symbols.end(); 750 for (symbol = symbols.begin(); symbol != symEnd; ++symbol) { 751 ++symtab; 752 if (hasEntryInStrTab(**symbol)) 753 strtab += (*symbol)->nameSize() + 1; 754 } 755 symtab_local_cnt = 1 + symbols.numOfFiles() + symbols.numOfLocals() + 756 symbols.numOfLocalDyns(); 757 758 ELFFileFormat* file_format = getOutputFormat(); 759 760 switch(config().codeGenType()) { 761 case LinkerConfig::DynObj: { 762 // soname 763 dynstr += pModule.name().size() + 1; 764 } 765 /** fall through **/ 766 case LinkerConfig::Exec: 767 case LinkerConfig::Binary: { 768 if (!config().isCodeStatic()) { 769 /// Compute the size of .dynsym, .dynstr, and dynsym_local_cnt 770 symEnd = symbols.dynamicEnd(); 771 for (symbol = symbols.localDynBegin(); symbol != symEnd; ++symbol) { 772 ++dynsym; 773 if (hasEntryInStrTab(**symbol)) 774 dynstr += (*symbol)->nameSize() + 1; 775 } 776 dynsym_local_cnt = 1 + symbols.numOfLocalDyns(); 777 778 // compute .gnu.hash 779 if (GeneralOptions::GNU == config().options().getHashStyle() || 780 GeneralOptions::Both == config().options().getHashStyle()) { 781 // count the number of dynsym to hash 782 size_t hashed_sym_cnt = 0; 783 symEnd = symbols.dynamicEnd(); 784 for (symbol = symbols.dynamicBegin(); symbol != symEnd; ++symbol) { 785 if (DynsymCompare().needGNUHash(**symbol)) 786 ++hashed_sym_cnt; 787 } 788 // Special case for empty .dynsym 789 if (hashed_sym_cnt == 0) 790 gnuhash = 5 * 4 + config().targets().bitclass() / 8; 791 else { 792 size_t nbucket = getHashBucketCount(hashed_sym_cnt, true); 793 gnuhash = (4 + nbucket + hashed_sym_cnt) * 4; 794 gnuhash += (1U << getGNUHashMaskbitslog2(hashed_sym_cnt)) / 8; 795 } 796 } 797 798 // compute .hash 799 if (GeneralOptions::SystemV == config().options().getHashStyle() || 800 GeneralOptions::Both == config().options().getHashStyle()) { 801 // Both Elf32_Word and Elf64_Word are 4 bytes 802 hash = (2 + getHashBucketCount(dynsym, false) + dynsym) * 803 sizeof(llvm::ELF::Elf32_Word); 804 } 805 806 // add DT_NEEDED 807 Module::const_lib_iterator lib, libEnd = pModule.lib_end(); 808 for (lib = pModule.lib_begin(); lib != libEnd; ++lib) { 809 if (!(*lib)->attribute()->isAsNeeded() || (*lib)->isNeeded()) { 810 dynstr += (*lib)->name().size() + 1; 811 dynamic().reserveNeedEntry(); 812 } 813 } 814 815 // add DT_RPATH 816 if (!config().options().getRpathList().empty()) { 817 dynamic().reserveNeedEntry(); 818 GeneralOptions::const_rpath_iterator rpath, 819 rpathEnd = config().options().rpath_end(); 820 for (rpath = config().options().rpath_begin(); 821 rpath != rpathEnd; ++rpath) 822 dynstr += (*rpath).size() + 1; 823 } 824 825 // set size 826 if (config().targets().is32Bits()) { 827 file_format->getDynSymTab().setSize(dynsym * 828 sizeof(llvm::ELF::Elf32_Sym)); 829 } else { 830 file_format->getDynSymTab().setSize(dynsym * 831 sizeof(llvm::ELF::Elf64_Sym)); 832 } 833 file_format->getDynStrTab().setSize(dynstr); 834 file_format->getHashTab().setSize(hash); 835 file_format->getGNUHashTab().setSize(gnuhash); 836 837 // set .dynsym sh_info to one greater than the symbol table 838 // index of the last local symbol 839 file_format->getDynSymTab().setInfo(dynsym_local_cnt); 840 841 // Because some entries in .dynamic section need information of .dynsym, 842 // .dynstr, .symtab, .strtab and .hash, we can not reserve non-DT_NEEDED 843 // entries until we get the size of the sections mentioned above 844 dynamic().reserveEntries(*file_format); 845 file_format->getDynamic().setSize(dynamic().numOfBytes()); 846 } 847 } 848 /* fall through */ 849 case LinkerConfig::Object: { 850 if (config().targets().is32Bits()) 851 file_format->getSymTab().setSize(symtab*sizeof(llvm::ELF::Elf32_Sym)); 852 else 853 file_format->getSymTab().setSize(symtab*sizeof(llvm::ELF::Elf64_Sym)); 854 file_format->getStrTab().setSize(strtab); 855 856 // set .symtab sh_info to one greater than the symbol table 857 // index of the last local symbol 858 file_format->getSymTab().setInfo(symtab_local_cnt); 859 860 // compute the size of .shstrtab section. 861 Module::const_iterator sect, sectEnd = pModule.end(); 862 for (sect = pModule.begin(); sect != sectEnd; ++sect) { 863 switch ((*sect)->kind()) { 864 case LDFileFormat::Null: 865 break; 866 // take StackNote directly 867 case LDFileFormat::StackNote: 868 shstrtab += ((*sect)->name().size() + 1); 869 break; 870 case LDFileFormat::EhFrame: 871 if (((*sect)->size() != 0) || 872 ((*sect)->hasEhFrame() && 873 config().codeGenType() == LinkerConfig::Object)) 874 shstrtab += ((*sect)->name().size() + 1); 875 break; 876 case LDFileFormat::Relocation: 877 if (((*sect)->size() != 0) || 878 ((*sect)->hasRelocData() && 879 config().codeGenType() == LinkerConfig::Object)) 880 shstrtab += ((*sect)->name().size() + 1); 881 break; 882 default: 883 if (((*sect)->size() != 0) || 884 ((*sect)->hasSectionData() && 885 config().codeGenType() == LinkerConfig::Object)) 886 shstrtab += ((*sect)->name().size() + 1); 887 break; 888 } // end of switch 889 } // end of for 890 shstrtab += (strlen(".shstrtab") + 1); 891 file_format->getShStrTab().setSize(shstrtab); 892 break; 893 } 894 default: 895 fatal(diag::fatal_illegal_codegen_type) << pModule.name(); 896 break; 897 } // end of switch 898 } 899 900 /// emitSymbol32 - emit an ELF32 symbol 901 void GNULDBackend::emitSymbol32(llvm::ELF::Elf32_Sym& pSym, 902 LDSymbol& pSymbol, 903 char* pStrtab, 904 size_t pStrtabsize, 905 size_t pSymtabIdx) 906 { 907 // FIXME: check the endian between host and target 908 // write out symbol 909 if (hasEntryInStrTab(pSymbol)) { 910 pSym.st_name = pStrtabsize; 911 strcpy((pStrtab + pStrtabsize), pSymbol.name()); 912 } 913 else { 914 pSym.st_name = 0; 915 } 916 pSym.st_value = pSymbol.value(); 917 pSym.st_size = getSymbolSize(pSymbol); 918 pSym.st_info = getSymbolInfo(pSymbol); 919 pSym.st_other = pSymbol.visibility(); 920 pSym.st_shndx = getSymbolShndx(pSymbol); 921 } 922 923 /// emitSymbol64 - emit an ELF64 symbol 924 void GNULDBackend::emitSymbol64(llvm::ELF::Elf64_Sym& pSym, 925 LDSymbol& pSymbol, 926 char* pStrtab, 927 size_t pStrtabsize, 928 size_t pSymtabIdx) 929 { 930 // FIXME: check the endian between host and target 931 // write out symbol 932 if (hasEntryInStrTab(pSymbol)) { 933 pSym.st_name = pStrtabsize; 934 strcpy((pStrtab + pStrtabsize), pSymbol.name()); 935 } 936 else { 937 pSym.st_name = 0; 938 } 939 pSym.st_value = pSymbol.value(); 940 pSym.st_size = getSymbolSize(pSymbol); 941 pSym.st_info = getSymbolInfo(pSymbol); 942 pSym.st_other = pSymbol.visibility(); 943 pSym.st_shndx = getSymbolShndx(pSymbol); 944 } 945 946 /// emitRegNamePools - emit regular name pools - .symtab, .strtab 947 /// 948 /// the size of these tables should be computed before layout 949 /// layout should computes the start offset of these tables 950 void GNULDBackend::emitRegNamePools(const Module& pModule, 951 MemoryArea& pOutput) 952 { 953 ELFFileFormat* file_format = getOutputFormat(); 954 955 LDSection& symtab_sect = file_format->getSymTab(); 956 LDSection& strtab_sect = file_format->getStrTab(); 957 958 MemoryRegion* symtab_region = pOutput.request(symtab_sect.offset(), 959 symtab_sect.size()); 960 MemoryRegion* strtab_region = pOutput.request(strtab_sect.offset(), 961 strtab_sect.size()); 962 963 // set up symtab_region 964 llvm::ELF::Elf32_Sym* symtab32 = NULL; 965 llvm::ELF::Elf64_Sym* symtab64 = NULL; 966 if (config().targets().is32Bits()) 967 symtab32 = (llvm::ELF::Elf32_Sym*)symtab_region->start(); 968 else if (config().targets().is64Bits()) 969 symtab64 = (llvm::ELF::Elf64_Sym*)symtab_region->start(); 970 else { 971 fatal(diag::unsupported_bitclass) << config().targets().triple().str() 972 << config().targets().bitclass(); 973 } 974 975 // set up strtab_region 976 char* strtab = (char*)strtab_region->start(); 977 978 // emit the first ELF symbol 979 if (config().targets().is32Bits()) 980 emitSymbol32(symtab32[0], *LDSymbol::Null(), strtab, 0, 0); 981 else 982 emitSymbol64(symtab64[0], *LDSymbol::Null(), strtab, 0, 0); 983 984 bool sym_exist = false; 985 HashTableType::entry_type* entry = NULL; 986 if (LinkerConfig::Object == config().codeGenType()) { 987 entry = m_pSymIndexMap->insert(LDSymbol::Null(), sym_exist); 988 entry->setValue(0); 989 } 990 991 size_t symIdx = 1; 992 size_t strtabsize = 1; 993 994 const Module::SymbolTable& symbols = pModule.getSymbolTable(); 995 Module::const_sym_iterator symbol, symEnd; 996 997 symEnd = symbols.end(); 998 for (symbol = symbols.begin(); symbol != symEnd; ++symbol) { 999 if (LinkerConfig::Object == config().codeGenType()) { 1000 entry = m_pSymIndexMap->insert(*symbol, sym_exist); 1001 entry->setValue(symIdx); 1002 } 1003 if (config().targets().is32Bits()) 1004 emitSymbol32(symtab32[symIdx], **symbol, strtab, strtabsize, symIdx); 1005 else 1006 emitSymbol64(symtab64[symIdx], **symbol, strtab, strtabsize, symIdx); 1007 ++symIdx; 1008 if (hasEntryInStrTab(**symbol)) 1009 strtabsize += (*symbol)->nameSize() + 1; 1010 } 1011 } 1012 1013 /// emitDynNamePools - emit dynamic name pools - .dyntab, .dynstr, .hash 1014 /// 1015 /// the size of these tables should be computed before layout 1016 /// layout should computes the start offset of these tables 1017 void GNULDBackend::emitDynNamePools(Module& pModule, MemoryArea& pOutput) 1018 { 1019 ELFFileFormat* file_format = getOutputFormat(); 1020 if (!file_format->hasDynSymTab() || 1021 !file_format->hasDynStrTab() || 1022 !file_format->hasDynamic()) 1023 return; 1024 1025 bool sym_exist = false; 1026 HashTableType::entry_type* entry = 0; 1027 1028 LDSection& symtab_sect = file_format->getDynSymTab(); 1029 LDSection& strtab_sect = file_format->getDynStrTab(); 1030 LDSection& dyn_sect = file_format->getDynamic(); 1031 1032 MemoryRegion* symtab_region = pOutput.request(symtab_sect.offset(), 1033 symtab_sect.size()); 1034 MemoryRegion* strtab_region = pOutput.request(strtab_sect.offset(), 1035 strtab_sect.size()); 1036 MemoryRegion* dyn_region = pOutput.request(dyn_sect.offset(), 1037 dyn_sect.size()); 1038 // set up symtab_region 1039 llvm::ELF::Elf32_Sym* symtab32 = NULL; 1040 llvm::ELF::Elf64_Sym* symtab64 = NULL; 1041 if (config().targets().is32Bits()) 1042 symtab32 = (llvm::ELF::Elf32_Sym*)symtab_region->start(); 1043 else if (config().targets().is64Bits()) 1044 symtab64 = (llvm::ELF::Elf64_Sym*)symtab_region->start(); 1045 else { 1046 fatal(diag::unsupported_bitclass) << config().targets().triple().str() 1047 << config().targets().bitclass(); 1048 } 1049 1050 // set up strtab_region 1051 char* strtab = (char*)strtab_region->start(); 1052 1053 // emit the first ELF symbol 1054 if (config().targets().is32Bits()) 1055 emitSymbol32(symtab32[0], *LDSymbol::Null(), strtab, 0, 0); 1056 else 1057 emitSymbol64(symtab64[0], *LDSymbol::Null(), strtab, 0, 0); 1058 1059 size_t symIdx = 1; 1060 size_t strtabsize = 1; 1061 1062 Module::SymbolTable& symbols = pModule.getSymbolTable(); 1063 // emit .gnu.hash 1064 if (GeneralOptions::GNU == config().options().getHashStyle() || 1065 GeneralOptions::Both == config().options().getHashStyle()) 1066 emitGNUHashTab(symbols, pOutput); 1067 1068 // emit .hash 1069 if (GeneralOptions::SystemV == config().options().getHashStyle() || 1070 GeneralOptions::Both == config().options().getHashStyle()) 1071 emitELFHashTab(symbols, pOutput); 1072 1073 // emit .dynsym, and .dynstr (emit LocalDyn and Dynamic category) 1074 Module::const_sym_iterator symbol, symEnd = symbols.dynamicEnd(); 1075 for (symbol = symbols.localDynBegin(); symbol != symEnd; ++symbol) { 1076 if (config().targets().is32Bits()) 1077 emitSymbol32(symtab32[symIdx], **symbol, strtab, strtabsize, symIdx); 1078 else 1079 emitSymbol64(symtab64[symIdx], **symbol, strtab, strtabsize, symIdx); 1080 // maintain output's symbol and index map 1081 entry = m_pSymIndexMap->insert(*symbol, sym_exist); 1082 entry->setValue(symIdx); 1083 // sum up counters 1084 ++symIdx; 1085 if (hasEntryInStrTab(**symbol)) 1086 strtabsize += (*symbol)->nameSize() + 1; 1087 } 1088 1089 // emit DT_NEED 1090 // add DT_NEED strings into .dynstr 1091 ELFDynamic::iterator dt_need = dynamic().needBegin(); 1092 Module::const_lib_iterator lib, libEnd = pModule.lib_end(); 1093 for (lib = pModule.lib_begin(); lib != libEnd; ++lib) { 1094 if (!(*lib)->attribute()->isAsNeeded() || (*lib)->isNeeded()) { 1095 strcpy((strtab + strtabsize), (*lib)->name().c_str()); 1096 (*dt_need)->setValue(llvm::ELF::DT_NEEDED, strtabsize); 1097 strtabsize += (*lib)->name().size() + 1; 1098 ++dt_need; 1099 } 1100 } 1101 1102 if (!config().options().getRpathList().empty()) { 1103 if (!config().options().hasNewDTags()) 1104 (*dt_need)->setValue(llvm::ELF::DT_RPATH, strtabsize); 1105 else 1106 (*dt_need)->setValue(llvm::ELF::DT_RUNPATH, strtabsize); 1107 ++dt_need; 1108 1109 GeneralOptions::const_rpath_iterator rpath, 1110 rpathEnd = config().options().rpath_end(); 1111 for (rpath = config().options().rpath_begin(); rpath != rpathEnd; ++rpath) { 1112 memcpy((strtab + strtabsize), (*rpath).data(), (*rpath).size()); 1113 strtabsize += (*rpath).size(); 1114 strtab[strtabsize++] = (rpath + 1 == rpathEnd ? '\0' : ':'); 1115 } 1116 } 1117 1118 // initialize value of ELF .dynamic section 1119 if (LinkerConfig::DynObj == config().codeGenType()) { 1120 // set pointer to SONAME entry in dynamic string table. 1121 dynamic().applySoname(strtabsize); 1122 } 1123 dynamic().applyEntries(*file_format); 1124 dynamic().emit(dyn_sect, *dyn_region); 1125 1126 // emit soname 1127 if (LinkerConfig::DynObj == config().codeGenType()) { 1128 strcpy((strtab + strtabsize), pModule.name().c_str()); 1129 strtabsize += pModule.name().size() + 1; 1130 } 1131 } 1132 1133 /// emitELFHashTab - emit .hash 1134 void GNULDBackend::emitELFHashTab(const Module::SymbolTable& pSymtab, 1135 MemoryArea& pOutput) 1136 { 1137 ELFFileFormat* file_format = getOutputFormat(); 1138 if (!file_format->hasHashTab()) 1139 return; 1140 LDSection& hash_sect = file_format->getHashTab(); 1141 MemoryRegion* hash_region = pOutput.request(hash_sect.offset(), 1142 hash_sect.size()); 1143 // both 32 and 64 bits hash table use 32-bit entry 1144 // set up hash_region 1145 uint32_t* word_array = (uint32_t*)hash_region->start(); 1146 uint32_t& nbucket = word_array[0]; 1147 uint32_t& nchain = word_array[1]; 1148 1149 size_t dynsymSize = 1 + pSymtab.numOfLocalDyns() + pSymtab.numOfDynamics(); 1150 nbucket = getHashBucketCount(dynsymSize, false); 1151 nchain = dynsymSize; 1152 1153 uint32_t* bucket = (word_array + 2); 1154 uint32_t* chain = (bucket + nbucket); 1155 1156 // initialize bucket 1157 memset((void*)bucket, 0, nbucket); 1158 1159 hash::StringHash<hash::ELF> hash_func; 1160 1161 size_t idx = 1; 1162 Module::const_sym_iterator symbol, symEnd = pSymtab.dynamicEnd(); 1163 for (symbol = pSymtab.localDynBegin(); symbol != symEnd; ++symbol) { 1164 llvm::StringRef name((*symbol)->name()); 1165 size_t bucket_pos = hash_func(name) % nbucket; 1166 chain[idx] = bucket[bucket_pos]; 1167 bucket[bucket_pos] = idx; 1168 ++idx; 1169 } 1170 } 1171 1172 /// emitGNUHashTab - emit .gnu.hash 1173 void GNULDBackend::emitGNUHashTab(Module::SymbolTable& pSymtab, 1174 MemoryArea& pOutput) 1175 { 1176 ELFFileFormat* file_format = getOutputFormat(); 1177 if (!file_format->hasGNUHashTab()) 1178 return; 1179 1180 MemoryRegion* gnuhash_region = 1181 pOutput.request(file_format->getGNUHashTab().offset(), 1182 file_format->getGNUHashTab().size()); 1183 1184 uint32_t* word_array = (uint32_t*)gnuhash_region->start(); 1185 // fixed-length fields 1186 uint32_t& nbucket = word_array[0]; 1187 uint32_t& symidx = word_array[1]; 1188 uint32_t& maskwords = word_array[2]; 1189 uint32_t& shift2 = word_array[3]; 1190 // variable-length fields 1191 uint8_t* bitmask = (uint8_t*)(word_array + 4); 1192 uint32_t* bucket = NULL; 1193 uint32_t* chain = NULL; 1194 1195 // count the number of dynsym to hash 1196 size_t unhashed_sym_cnt = pSymtab.numOfLocalDyns(); 1197 size_t hashed_sym_cnt = pSymtab.numOfDynamics(); 1198 Module::const_sym_iterator symbol, symEnd = pSymtab.dynamicEnd(); 1199 for (symbol = pSymtab.dynamicBegin(); symbol != symEnd; ++symbol) { 1200 if (DynsymCompare().needGNUHash(**symbol)) 1201 break; 1202 ++unhashed_sym_cnt; 1203 --hashed_sym_cnt; 1204 } 1205 1206 // special case for the empty hash table 1207 if (hashed_sym_cnt == 0) { 1208 nbucket = 1; // one empty bucket 1209 symidx = 1 + unhashed_sym_cnt; // symidx above unhashed symbols 1210 maskwords = 1; // bitmask length 1211 shift2 = 0; // bloom filter 1212 1213 if (config().targets().is32Bits()) { 1214 uint32_t* maskval = (uint32_t*)bitmask; 1215 *maskval = 0; // no valid hashes 1216 } else { 1217 // must be 64 1218 uint64_t* maskval = (uint64_t*)bitmask; 1219 *maskval = 0; // no valid hashes 1220 } 1221 bucket = (uint32_t*)(bitmask + config().targets().bitclass() / 8); 1222 *bucket = 0; // no hash in the only bucket 1223 return; 1224 } 1225 1226 uint32_t maskbitslog2 = getGNUHashMaskbitslog2(hashed_sym_cnt); 1227 uint32_t maskbits = 1u << maskbitslog2; 1228 uint32_t shift1 = config().targets().is32Bits() ? 5 : 6; 1229 uint32_t mask = (1u << shift1) - 1; 1230 1231 nbucket = getHashBucketCount(hashed_sym_cnt, true); 1232 symidx = 1 + unhashed_sym_cnt; 1233 maskwords = 1 << (maskbitslog2 - shift1); 1234 shift2 = maskbitslog2; 1235 1236 // setup bucket and chain 1237 bucket = (uint32_t*)(bitmask + maskbits / 8); 1238 chain = (bucket + nbucket); 1239 1240 // build the gnu style hash table 1241 typedef std::multimap<uint32_t, 1242 std::pair<LDSymbol*, uint32_t> > SymMapType; 1243 SymMapType symmap; 1244 symEnd = pSymtab.dynamicEnd(); 1245 for (symbol = pSymtab.localDynBegin() + symidx - 1; symbol != symEnd; 1246 ++symbol) { 1247 hash::StringHash<hash::DJB> hasher; 1248 uint32_t djbhash = hasher((*symbol)->name()); 1249 uint32_t hash = djbhash % nbucket; 1250 symmap.insert(std::make_pair(hash, std::make_pair(*symbol, djbhash))); 1251 } 1252 1253 // compute bucket, chain, and bitmask 1254 std::vector<uint64_t> bitmasks(maskwords); 1255 size_t hashedidx = symidx; 1256 for (size_t idx = 0; idx < nbucket; ++idx) { 1257 size_t count = 0; 1258 std::pair<SymMapType::iterator, SymMapType::iterator> ret; 1259 ret = symmap.equal_range(idx); 1260 for (SymMapType::iterator it = ret.first; it != ret.second; ) { 1261 // rearrange the hashed symbol ordering 1262 *(pSymtab.localDynBegin() + hashedidx - 1) = it->second.first; 1263 uint32_t djbhash = it->second.second; 1264 uint32_t val = ((djbhash >> shift1) & ((maskbits >> shift1) - 1)); 1265 bitmasks[val] |= 1u << (djbhash & mask); 1266 bitmasks[val] |= 1u << ((djbhash >> shift2) & mask); 1267 val = djbhash & ~1u; 1268 // advance the iterator and check if we're dealing w/ the last elment 1269 if (++it == ret.second) { 1270 // last element terminates the chain 1271 val |= 1; 1272 } 1273 chain[hashedidx - symidx] = val; 1274 1275 ++hashedidx; 1276 ++count; 1277 } 1278 1279 if (count == 0) 1280 bucket[idx] = 0; 1281 else 1282 bucket[idx] = hashedidx - count; 1283 } 1284 1285 // write the bitmasks 1286 if (config().targets().is32Bits()) { 1287 uint32_t* maskval = (uint32_t*)bitmask; 1288 for (size_t i = 0; i < maskwords; ++i) 1289 std::memcpy(maskval + i, &bitmasks[i], 4); 1290 } else { 1291 // must be 64 1292 uint64_t* maskval = (uint64_t*)bitmask; 1293 for (size_t i = 0; i < maskwords; ++i) 1294 std::memcpy(maskval + i, &bitmasks[i], 8); 1295 } 1296 } 1297 1298 /// sizeInterp - compute the size of the .interp section 1299 void GNULDBackend::sizeInterp() 1300 { 1301 const char* dyld_name; 1302 if (config().options().hasDyld()) 1303 dyld_name = config().options().dyld().c_str(); 1304 else 1305 dyld_name = m_pInfo->dyld(); 1306 1307 LDSection& interp = getOutputFormat()->getInterp(); 1308 interp.setSize(std::strlen(dyld_name) + 1); 1309 } 1310 1311 /// emitInterp - emit the .interp 1312 void GNULDBackend::emitInterp(MemoryArea& pOutput) 1313 { 1314 if (getOutputFormat()->hasInterp()) { 1315 const LDSection& interp = getOutputFormat()->getInterp(); 1316 MemoryRegion *region = pOutput.request(interp.offset(), interp.size()); 1317 const char* dyld_name; 1318 if (config().options().hasDyld()) 1319 dyld_name = config().options().dyld().c_str(); 1320 else 1321 dyld_name = m_pInfo->dyld(); 1322 1323 std::memcpy(region->start(), dyld_name, interp.size()); 1324 } 1325 } 1326 1327 bool GNULDBackend::hasEntryInStrTab(const LDSymbol& pSym) const 1328 { 1329 return ResolveInfo::Section != pSym.type(); 1330 } 1331 1332 void GNULDBackend::orderSymbolTable(Module& pModule) 1333 { 1334 Module::SymbolTable& symbols = pModule.getSymbolTable(); 1335 1336 if (GeneralOptions::GNU == config().options().getHashStyle() || 1337 GeneralOptions::Both == config().options().getHashStyle()) 1338 // Currently we may add output symbols after sizeNamePools(), and a 1339 // non-stable sort is used in SymbolCategory::arrange(), so we just 1340 // sort .dynsym right before emitting .gnu.hash 1341 std::stable_sort(symbols.dynamicBegin(), symbols.dynamicEnd(), 1342 DynsymCompare()); 1343 } 1344 1345 /// getSectionOrder 1346 unsigned int GNULDBackend::getSectionOrder(const LDSection& pSectHdr) const 1347 { 1348 const ELFFileFormat* file_format = getOutputFormat(); 1349 1350 // NULL section should be the "1st" section 1351 if (LDFileFormat::Null == pSectHdr.kind()) 1352 return 0; 1353 1354 if (&pSectHdr == &file_format->getStrTab()) 1355 return SHO_STRTAB; 1356 1357 // if the section is not ALLOC, lay it out until the last possible moment 1358 if (0 == (pSectHdr.flag() & llvm::ELF::SHF_ALLOC)) 1359 return SHO_UNDEFINED; 1360 1361 bool is_write = (pSectHdr.flag() & llvm::ELF::SHF_WRITE) != 0; 1362 bool is_exec = (pSectHdr.flag() & llvm::ELF::SHF_EXECINSTR) != 0; 1363 // TODO: need to take care other possible output sections 1364 switch (pSectHdr.kind()) { 1365 case LDFileFormat::Regular: 1366 if (is_exec) { 1367 if (&pSectHdr == &file_format->getInit()) 1368 return SHO_INIT; 1369 if (&pSectHdr == &file_format->getFini()) 1370 return SHO_FINI; 1371 return SHO_TEXT; 1372 } else if (!is_write) { 1373 return SHO_RO; 1374 } else { 1375 if (config().options().hasRelro()) { 1376 if (&pSectHdr == &file_format->getPreInitArray() || 1377 &pSectHdr == &file_format->getInitArray() || 1378 &pSectHdr == &file_format->getFiniArray() || 1379 &pSectHdr == &file_format->getCtors() || 1380 &pSectHdr == &file_format->getDtors() || 1381 &pSectHdr == &file_format->getJCR() || 1382 &pSectHdr == &file_format->getDataRelRo()) 1383 return SHO_RELRO; 1384 if (&pSectHdr == &file_format->getDataRelRoLocal()) 1385 return SHO_RELRO_LOCAL; 1386 } 1387 if ((pSectHdr.flag() & llvm::ELF::SHF_TLS) != 0x0) { 1388 return SHO_TLS_DATA; 1389 } 1390 return SHO_DATA; 1391 } 1392 1393 case LDFileFormat::BSS: 1394 if ((pSectHdr.flag() & llvm::ELF::SHF_TLS) != 0x0) 1395 return SHO_TLS_BSS; 1396 return SHO_BSS; 1397 1398 case LDFileFormat::NamePool: { 1399 if (&pSectHdr == &file_format->getDynamic()) 1400 return SHO_RELRO; 1401 return SHO_NAMEPOOL; 1402 } 1403 case LDFileFormat::Relocation: 1404 if (&pSectHdr == &file_format->getRelPlt() || 1405 &pSectHdr == &file_format->getRelaPlt()) 1406 return SHO_REL_PLT; 1407 return SHO_RELOCATION; 1408 1409 // get the order from target for target specific sections 1410 case LDFileFormat::Target: 1411 return getTargetSectionOrder(pSectHdr); 1412 1413 // handle .interp and .note.* sections 1414 case LDFileFormat::Note: 1415 if (file_format->hasInterp() && (&pSectHdr == &file_format->getInterp())) 1416 return SHO_INTERP; 1417 else if (is_write) 1418 return SHO_RW_NOTE; 1419 else 1420 return SHO_RO_NOTE; 1421 1422 case LDFileFormat::EhFrame: 1423 // set writable .eh_frame as relro 1424 if (is_write) 1425 return SHO_RELRO; 1426 case LDFileFormat::EhFrameHdr: 1427 case LDFileFormat::GCCExceptTable: 1428 return SHO_EXCEPTION; 1429 1430 case LDFileFormat::MetaData: 1431 case LDFileFormat::Debug: 1432 default: 1433 return SHO_UNDEFINED; 1434 } 1435 } 1436 1437 /// getSymbolSize 1438 uint64_t GNULDBackend::getSymbolSize(const LDSymbol& pSymbol) const 1439 { 1440 // @ref Google gold linker: symtab.cc: 2780 1441 // undefined and dynamic symbols should have zero size. 1442 if (pSymbol.isDyn() || pSymbol.desc() == ResolveInfo::Undefined) 1443 return 0x0; 1444 return pSymbol.resolveInfo()->size(); 1445 } 1446 1447 /// getSymbolInfo 1448 uint64_t GNULDBackend::getSymbolInfo(const LDSymbol& pSymbol) const 1449 { 1450 // set binding 1451 uint8_t bind = 0x0; 1452 if (pSymbol.resolveInfo()->isLocal()) 1453 bind = llvm::ELF::STB_LOCAL; 1454 else if (pSymbol.resolveInfo()->isGlobal()) 1455 bind = llvm::ELF::STB_GLOBAL; 1456 else if (pSymbol.resolveInfo()->isWeak()) 1457 bind = llvm::ELF::STB_WEAK; 1458 else if (pSymbol.resolveInfo()->isAbsolute()) { 1459 // (Luba) Is a absolute but not global (weak or local) symbol meaningful? 1460 bind = llvm::ELF::STB_GLOBAL; 1461 } 1462 1463 if (config().codeGenType() != LinkerConfig::Object && 1464 (pSymbol.visibility() == llvm::ELF::STV_INTERNAL || 1465 pSymbol.visibility() == llvm::ELF::STV_HIDDEN)) 1466 bind = llvm::ELF::STB_LOCAL; 1467 1468 uint32_t type = pSymbol.resolveInfo()->type(); 1469 // if the IndirectFunc symbol (i.e., STT_GNU_IFUNC) is from dynobj, change 1470 // its type to Function 1471 if (type == ResolveInfo::IndirectFunc && pSymbol.isDyn()) 1472 type = ResolveInfo::Function; 1473 return (type | (bind << 4)); 1474 } 1475 1476 /// getSymbolValue - this function is called after layout() 1477 uint64_t GNULDBackend::getSymbolValue(const LDSymbol& pSymbol) const 1478 { 1479 if (pSymbol.isDyn()) 1480 return 0x0; 1481 1482 return pSymbol.value(); 1483 } 1484 1485 /// getSymbolShndx - this function is called after layout() 1486 uint64_t 1487 GNULDBackend::getSymbolShndx(const LDSymbol& pSymbol) const 1488 { 1489 if (pSymbol.resolveInfo()->isAbsolute()) 1490 return llvm::ELF::SHN_ABS; 1491 if (pSymbol.resolveInfo()->isCommon()) 1492 return llvm::ELF::SHN_COMMON; 1493 if (pSymbol.resolveInfo()->isUndef() || pSymbol.isDyn()) 1494 return llvm::ELF::SHN_UNDEF; 1495 1496 if (pSymbol.resolveInfo()->isLocal() && 1497 LinkerConfig::Object != config().codeGenType()) { 1498 switch (pSymbol.type()) { 1499 case ResolveInfo::NoType: 1500 case ResolveInfo::File: 1501 return llvm::ELF::SHN_ABS; 1502 } 1503 } 1504 1505 if (pSymbol.resolveInfo()->isDefine() && !pSymbol.hasFragRef()) 1506 return llvm::ELF::SHN_ABS; 1507 1508 assert(pSymbol.hasFragRef() && "symbols must have fragment reference to get its index"); 1509 return pSymbol.fragRef()->frag()->getParent()->getSection().index(); 1510 } 1511 1512 /// getSymbolIdx - called by emitRelocation to get the ouput symbol table index 1513 size_t GNULDBackend::getSymbolIdx(const LDSymbol* pSymbol) const 1514 { 1515 HashTableType::iterator entry = m_pSymIndexMap->find(const_cast<LDSymbol *>(pSymbol)); 1516 assert(entry != m_pSymIndexMap->end() && "symbol not found in the symbol table"); 1517 return entry.getEntry()->value(); 1518 } 1519 1520 /// isTemporary - Whether pSymbol is a local label. 1521 bool GNULDBackend::isTemporary(const LDSymbol& pSymbol) const 1522 { 1523 if (ResolveInfo::Local != pSymbol.binding()) 1524 return false; 1525 1526 if (pSymbol.nameSize() < 2) 1527 return false; 1528 1529 const char* name = pSymbol.name(); 1530 if ('.' == name[0] && 'L' == name[1]) 1531 return true; 1532 1533 // UnixWare 2.1 cc generate DWARF debugging symbols with `..' prefix. 1534 // @ref Google gold linker, target.cc:39 @@ Target::do_is_local_label_name() 1535 if (name[0] == '.' && name[1] == '.') 1536 return true; 1537 1538 // Work arround for gcc's bug 1539 // gcc sometimes generate symbols with '_.L_' prefix. 1540 // @ref Google gold linker, target.cc:39 @@ Target::do_is_local_label_name() 1541 if (pSymbol.nameSize() < 4) 1542 return false; 1543 1544 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_') 1545 return true; 1546 1547 return false; 1548 } 1549 1550 /// allocateCommonSymbols - allocate common symbols in the corresponding 1551 /// sections. This is executed at pre-layout stage. 1552 /// @refer Google gold linker: common.cc: 214 1553 bool 1554 GNULDBackend::allocateCommonSymbols(Module& pModule) 1555 { 1556 SymbolCategory& symbol_list = pModule.getSymbolTable(); 1557 1558 if (symbol_list.emptyCommons() && symbol_list.emptyFiles() && 1559 symbol_list.emptyLocals() && symbol_list.emptyLocalDyns()) 1560 return true; 1561 1562 SymbolCategory::iterator com_sym, com_end; 1563 1564 // FIXME: If the order of common symbols is defined, then sort common symbols 1565 // std::sort(com_sym, com_end, some kind of order); 1566 1567 // get corresponding BSS LDSection 1568 ELFFileFormat* file_format = getOutputFormat(); 1569 LDSection& bss_sect = file_format->getBSS(); 1570 LDSection& tbss_sect = file_format->getTBSS(); 1571 1572 // get or create corresponding BSS SectionData 1573 SectionData* bss_sect_data = NULL; 1574 if (bss_sect.hasSectionData()) 1575 bss_sect_data = bss_sect.getSectionData(); 1576 else 1577 bss_sect_data = IRBuilder::CreateSectionData(bss_sect); 1578 1579 SectionData* tbss_sect_data = NULL; 1580 if (tbss_sect.hasSectionData()) 1581 tbss_sect_data = tbss_sect.getSectionData(); 1582 else 1583 tbss_sect_data = IRBuilder::CreateSectionData(tbss_sect); 1584 1585 // remember original BSS size 1586 uint64_t bss_offset = bss_sect.size(); 1587 uint64_t tbss_offset = tbss_sect.size(); 1588 1589 // allocate all local common symbols 1590 com_end = symbol_list.localEnd(); 1591 1592 for (com_sym = symbol_list.localBegin(); com_sym != com_end; ++com_sym) { 1593 if (ResolveInfo::Common == (*com_sym)->desc()) { 1594 // We have to reset the description of the symbol here. When doing 1595 // incremental linking, the output relocatable object may have common 1596 // symbols. Therefore, we can not treat common symbols as normal symbols 1597 // when emitting the regular name pools. We must change the symbols' 1598 // description here. 1599 (*com_sym)->resolveInfo()->setDesc(ResolveInfo::Define); 1600 Fragment* frag = new FillFragment(0x0, 1, (*com_sym)->size()); 1601 (*com_sym)->setFragmentRef(FragmentRef::Create(*frag, 0)); 1602 1603 if (ResolveInfo::ThreadLocal == (*com_sym)->type()) { 1604 // allocate TLS common symbol in tbss section 1605 tbss_offset += ObjectBuilder::AppendFragment(*frag, 1606 *tbss_sect_data, 1607 (*com_sym)->value()); 1608 } 1609 else { 1610 bss_offset += ObjectBuilder::AppendFragment(*frag, 1611 *bss_sect_data, 1612 (*com_sym)->value()); 1613 } 1614 } 1615 } 1616 1617 // allocate all global common symbols 1618 com_end = symbol_list.commonEnd(); 1619 for (com_sym = symbol_list.commonBegin(); com_sym != com_end; ++com_sym) { 1620 // We have to reset the description of the symbol here. When doing 1621 // incremental linking, the output relocatable object may have common 1622 // symbols. Therefore, we can not treat common symbols as normal symbols 1623 // when emitting the regular name pools. We must change the symbols' 1624 // description here. 1625 (*com_sym)->resolveInfo()->setDesc(ResolveInfo::Define); 1626 Fragment* frag = new FillFragment(0x0, 1, (*com_sym)->size()); 1627 (*com_sym)->setFragmentRef(FragmentRef::Create(*frag, 0)); 1628 1629 if (ResolveInfo::ThreadLocal == (*com_sym)->type()) { 1630 // allocate TLS common symbol in tbss section 1631 tbss_offset += ObjectBuilder::AppendFragment(*frag, 1632 *tbss_sect_data, 1633 (*com_sym)->value()); 1634 } 1635 else { 1636 bss_offset += ObjectBuilder::AppendFragment(*frag, 1637 *bss_sect_data, 1638 (*com_sym)->value()); 1639 } 1640 } 1641 1642 bss_sect.setSize(bss_offset); 1643 tbss_sect.setSize(tbss_offset); 1644 symbol_list.changeCommonsToGlobal(); 1645 return true; 1646 } 1647 1648 /// updateSectionFlags - update pTo's flags when merging pFrom 1649 /// update the output section flags based on input section flags. 1650 /// @ref The Google gold linker: 1651 /// output.cc: 2809: Output_section::update_flags_for_input_section 1652 bool GNULDBackend::updateSectionFlags(LDSection& pTo, const LDSection& pFrom) 1653 { 1654 // union the flags from input 1655 uint32_t flags = pTo.flag(); 1656 flags |= (pFrom.flag() & 1657 (llvm::ELF::SHF_WRITE | 1658 llvm::ELF::SHF_ALLOC | 1659 llvm::ELF::SHF_EXECINSTR)); 1660 1661 // if there is an input section is not SHF_MERGE, clean this flag 1662 if (0 == (pFrom.flag() & llvm::ELF::SHF_MERGE)) 1663 flags &= ~llvm::ELF::SHF_MERGE; 1664 1665 // if there is an input section is not SHF_STRINGS, clean this flag 1666 if (0 == (pFrom.flag() & llvm::ELF::SHF_STRINGS)) 1667 flags &= ~llvm::ELF::SHF_STRINGS; 1668 1669 pTo.setFlag(flags); 1670 return true; 1671 } 1672 1673 /// createProgramHdrs - base on output sections to create the program headers 1674 void GNULDBackend::createProgramHdrs(Module& pModule) 1675 { 1676 ELFFileFormat *file_format = getOutputFormat(); 1677 1678 // make PT_PHDR 1679 m_ELFSegmentTable.produce(llvm::ELF::PT_PHDR); 1680 1681 // make PT_INTERP 1682 if (file_format->hasInterp()) { 1683 ELFSegment* interp_seg = m_ELFSegmentTable.produce(llvm::ELF::PT_INTERP); 1684 interp_seg->addSection(&file_format->getInterp()); 1685 } 1686 1687 uint32_t cur_flag, prev_flag = getSegmentFlag(0); 1688 ELFSegment* load_seg = NULL; 1689 // make possible PT_LOAD segments 1690 LinkerScript::AddressMap::iterator addrEnd 1691 = pModule.getScript().addressMap().end(); 1692 Module::iterator sect, sect_end = pModule.end(); 1693 for (sect = pModule.begin(); sect != sect_end; ++sect) { 1694 1695 if (0 == ((*sect)->flag() & llvm::ELF::SHF_ALLOC) && 1696 LDFileFormat::Null != (*sect)->kind()) 1697 continue; 1698 1699 cur_flag = getSegmentFlag((*sect)->flag()); 1700 bool createPT_LOAD = false; 1701 if (LDFileFormat::Null == (*sect)->kind()) { 1702 // 1. create text segment 1703 createPT_LOAD = true; 1704 } 1705 else if (!config().options().omagic() && 1706 (prev_flag & llvm::ELF::PF_W) ^ (cur_flag & llvm::ELF::PF_W)) { 1707 // 2. create data segment if w/o omagic set 1708 createPT_LOAD = true; 1709 } 1710 else if ((*sect)->kind() == LDFileFormat::BSS && 1711 load_seg->isDataSegment() && 1712 addrEnd != pModule.getScript().addressMap().find(".bss")) { 1713 // 3. create bss segment if w/ -Tbss and there is a data segment 1714 createPT_LOAD = true; 1715 } 1716 else { 1717 if ((*sect != &(file_format->getText())) && 1718 (*sect != &(file_format->getData())) && 1719 (*sect != &(file_format->getBSS())) && 1720 (addrEnd != pModule.getScript().addressMap().find((*sect)->name()))) 1721 // 4. create PT_LOAD for sections in address map except for text, data, 1722 // and bss 1723 createPT_LOAD = true; 1724 } 1725 1726 if (createPT_LOAD) { 1727 // create new PT_LOAD segment 1728 load_seg = m_ELFSegmentTable.produce(llvm::ELF::PT_LOAD, cur_flag); 1729 if (!config().options().nmagic() && !config().options().omagic()) 1730 load_seg->setAlign(abiPageSize()); 1731 } 1732 1733 assert(NULL != load_seg); 1734 load_seg->addSection((*sect)); 1735 if (cur_flag != prev_flag) 1736 load_seg->updateFlag(cur_flag); 1737 1738 prev_flag = cur_flag; 1739 } 1740 1741 // make PT_DYNAMIC 1742 if (file_format->hasDynamic()) { 1743 ELFSegment* dyn_seg = m_ELFSegmentTable.produce(llvm::ELF::PT_DYNAMIC, 1744 llvm::ELF::PF_R | 1745 llvm::ELF::PF_W); 1746 dyn_seg->addSection(&file_format->getDynamic()); 1747 } 1748 1749 if (config().options().hasRelro()) { 1750 // make PT_GNU_RELRO 1751 ELFSegment* relro_seg = m_ELFSegmentTable.produce(llvm::ELF::PT_GNU_RELRO); 1752 for (ELFSegmentFactory::iterator seg = elfSegmentTable().begin(), 1753 segEnd = elfSegmentTable().end(); seg != segEnd; ++seg) { 1754 if (llvm::ELF::PT_LOAD != (*seg).type()) 1755 continue; 1756 1757 for (ELFSegment::sect_iterator sect = (*seg).begin(), 1758 sectEnd = (*seg).end(); sect != sectEnd; ++sect) { 1759 unsigned int order = getSectionOrder(**sect); 1760 if (SHO_RELRO_LOCAL == order || 1761 SHO_RELRO == order || 1762 SHO_RELRO_LAST == order) { 1763 relro_seg->addSection(*sect); 1764 } 1765 } 1766 } 1767 } 1768 1769 // make PT_GNU_EH_FRAME 1770 if (file_format->hasEhFrameHdr()) { 1771 ELFSegment* eh_seg = m_ELFSegmentTable.produce(llvm::ELF::PT_GNU_EH_FRAME); 1772 eh_seg->addSection(&file_format->getEhFrameHdr()); 1773 } 1774 1775 // make PT_TLS 1776 if (file_format->hasTData() || file_format->hasTBSS()) { 1777 ELFSegment* tls_seg = m_ELFSegmentTable.produce(llvm::ELF::PT_TLS); 1778 if (file_format->hasTData()) 1779 tls_seg->addSection(&file_format->getTData()); 1780 if (file_format->hasTBSS()) 1781 tls_seg->addSection(&file_format->getTBSS()); 1782 } 1783 1784 // make PT_GNU_STACK 1785 if (file_format->hasStackNote()) { 1786 m_ELFSegmentTable.produce(llvm::ELF::PT_GNU_STACK, 1787 llvm::ELF::PF_R | 1788 llvm::ELF::PF_W | 1789 getSegmentFlag(file_format->getStackNote().flag())); 1790 } 1791 1792 // make PT_NOTE 1793 ELFSegment *note_seg = NULL; 1794 prev_flag = getSegmentFlag(0); 1795 for (sect = pModule.begin(); sect != sect_end; ++sect) { 1796 if ((*sect)->kind() != LDFileFormat::Note || 1797 ((*sect)->flag() & llvm::ELF::SHF_ALLOC) == 0) 1798 continue; 1799 1800 cur_flag = getSegmentFlag((*sect)->flag()); 1801 // we have different section orders for read-only and writable notes, so 1802 // create 2 segments if needed. 1803 if (note_seg == NULL || 1804 (cur_flag & llvm::ELF::PF_W) != (prev_flag & llvm::ELF::PF_W)) 1805 note_seg = m_ELFSegmentTable.produce(llvm::ELF::PT_NOTE, cur_flag); 1806 1807 note_seg->addSection(*sect); 1808 prev_flag = cur_flag; 1809 } 1810 1811 // create target dependent segments 1812 doCreateProgramHdrs(pModule); 1813 } 1814 1815 /// setupProgramHdrs - set up the attributes of segments 1816 void GNULDBackend::setupProgramHdrs(const LinkerScript& pScript) 1817 { 1818 // update segment info 1819 uint64_t seg_start_addr = getSegmentStartAddr(pScript); 1820 ELFSegmentFactory::iterator seg, seg_end = m_ELFSegmentTable.end(); 1821 for (seg = m_ELFSegmentTable.begin(); seg != seg_end; ++seg) { 1822 ELFSegment& segment = *seg; 1823 1824 // update PT_PHDR 1825 if (llvm::ELF::PT_PHDR == segment.type()) { 1826 uint64_t offset = 0, phdr_size = 0; 1827 if (config().targets().is32Bits()) { 1828 offset = sizeof(llvm::ELF::Elf32_Ehdr); 1829 phdr_size = sizeof(llvm::ELF::Elf32_Phdr); 1830 } 1831 else { 1832 offset = sizeof(llvm::ELF::Elf64_Ehdr); 1833 phdr_size = sizeof(llvm::ELF::Elf64_Phdr); 1834 } 1835 segment.setOffset(offset); 1836 segment.setVaddr(seg_start_addr + offset); 1837 segment.setPaddr(segment.vaddr()); 1838 segment.setFilesz(numOfSegments() * phdr_size); 1839 segment.setMemsz(numOfSegments() * phdr_size); 1840 segment.setAlign(config().targets().bitclass() / 8); 1841 continue; 1842 } 1843 1844 // bypass if there is no section in this segment (e.g., PT_GNU_STACK) 1845 if (segment.numOfSections() == 0) 1846 continue; 1847 1848 segment.setOffset(segment.front()->offset()); 1849 if (llvm::ELF::PT_LOAD == segment.type() && 1850 LDFileFormat::Null == segment.front()->kind()) 1851 segment.setVaddr(seg_start_addr); 1852 else 1853 segment.setVaddr(segment.front()->addr()); 1854 segment.setPaddr(segment.vaddr()); 1855 1856 const LDSection* last_sect = segment.back(); 1857 assert(NULL != last_sect); 1858 uint64_t file_size = last_sect->offset() - segment.offset(); 1859 if (LDFileFormat::BSS != last_sect->kind()) 1860 file_size += last_sect->size(); 1861 segment.setFilesz(file_size); 1862 1863 segment.setMemsz(last_sect->addr() - segment.vaddr() + last_sect->size()); 1864 } 1865 } 1866 1867 /// setupGNUStackInfo - setup the section flag of .note.GNU-stack in output 1868 /// @ref gold linker: layout.cc:2608 1869 void GNULDBackend::setupGNUStackInfo(Module& pModule) 1870 { 1871 uint32_t flag = 0x0; 1872 if (config().options().hasStackSet()) { 1873 // 1. check the command line option (-z execstack or -z noexecstack) 1874 if (config().options().hasExecStack()) 1875 flag = llvm::ELF::SHF_EXECINSTR; 1876 } 1877 else { 1878 // 2. check the stack info from the input objects 1879 // FIXME: since we alway emit .note.GNU-stack in output now, we may be able 1880 // to check this from the output .note.GNU-stack directly after section 1881 // merging is done 1882 size_t object_count = 0, stack_note_count = 0; 1883 Module::const_obj_iterator obj, objEnd = pModule.obj_end(); 1884 for (obj = pModule.obj_begin(); obj != objEnd; ++obj) { 1885 ++object_count; 1886 const LDSection* sect = (*obj)->context()->getSection(".note.GNU-stack"); 1887 if (NULL != sect) { 1888 ++stack_note_count; 1889 // 2.1 found a stack note that is set as executable 1890 if (0 != (llvm::ELF::SHF_EXECINSTR & sect->flag())) { 1891 flag = llvm::ELF::SHF_EXECINSTR; 1892 break; 1893 } 1894 } 1895 } 1896 1897 // 2.2 there are no stack note sections in all input objects 1898 if (0 == stack_note_count) 1899 return; 1900 1901 // 2.3 a special case. Use the target default to decide if the stack should 1902 // be executable 1903 if (llvm::ELF::SHF_EXECINSTR != flag && object_count != stack_note_count) 1904 if (m_pInfo->isDefaultExecStack()) 1905 flag = llvm::ELF::SHF_EXECINSTR; 1906 } 1907 1908 if (getOutputFormat()->hasStackNote()) { 1909 getOutputFormat()->getStackNote().setFlag(flag); 1910 } 1911 } 1912 1913 /// setupRelro - setup the offset constraint of PT_RELRO 1914 void GNULDBackend::setupRelro(Module& pModule) 1915 { 1916 assert(config().options().hasRelro()); 1917 // if -z relro is given, we need to adjust sections' offset again, and let 1918 // PT_GNU_RELRO end on a common page boundary 1919 1920 Module::iterator sect = pModule.begin(); 1921 for (Module::iterator sect_end = pModule.end(); sect != sect_end; ++sect) { 1922 // find the first non-relro section 1923 if (getSectionOrder(**sect) > SHO_RELRO_LAST) 1924 break; 1925 } 1926 1927 // align the first non-relro section to page boundary 1928 uint64_t offset = (*sect)->offset(); 1929 alignAddress(offset, commonPageSize()); 1930 (*sect)->setOffset(offset); 1931 1932 // It seems that compiler think .got and .got.plt are continuous (w/o any 1933 // padding between). If .got is the last section in PT_RELRO and it's not 1934 // continuous to its next section (i.e. .got.plt), we need to add padding 1935 // in front of .got instead. 1936 // FIXME: Maybe we can handle this in a more general way. 1937 LDSection& got = getOutputFormat()->getGOT(); 1938 if ((getSectionOrder(got) == SHO_RELRO_LAST) && 1939 (got.offset() + got.size() != offset)) { 1940 got.setOffset(offset - got.size()); 1941 } 1942 1943 // set up remaining section's offset 1944 setOutputSectionOffset(pModule, ++sect, pModule.end()); 1945 } 1946 1947 /// setOutputSectionOffset - helper function to set a group of output sections' 1948 /// offset, and set pSectBegin to pStartOffset if pStartOffset is not -1U. 1949 void GNULDBackend::setOutputSectionOffset(Module& pModule, 1950 Module::iterator pSectBegin, 1951 Module::iterator pSectEnd, 1952 uint64_t pStartOffset) 1953 { 1954 if (pSectBegin == pModule.end()) 1955 return; 1956 1957 assert(pSectEnd == pModule.end() || 1958 (pSectEnd != pModule.end() && 1959 (*pSectBegin)->index() <= (*pSectEnd)->index())); 1960 1961 if (pStartOffset != -1U) { 1962 (*pSectBegin)->setOffset(pStartOffset); 1963 ++pSectBegin; 1964 } 1965 1966 // set up the "cur" and "prev" iterator 1967 Module::iterator cur = pSectBegin; 1968 Module::iterator prev = pSectBegin; 1969 if (cur != pModule.begin()) 1970 --prev; 1971 else 1972 ++cur; 1973 1974 for (; cur != pSectEnd; ++cur, ++prev) { 1975 uint64_t offset = 0x0; 1976 switch ((*prev)->kind()) { 1977 case LDFileFormat::Null: 1978 offset = sectionStartOffset(); 1979 break; 1980 case LDFileFormat::BSS: 1981 offset = (*prev)->offset(); 1982 break; 1983 default: 1984 offset = (*prev)->offset() + (*prev)->size(); 1985 break; 1986 } 1987 1988 alignAddress(offset, (*cur)->align()); 1989 (*cur)->setOffset(offset); 1990 } 1991 } 1992 1993 /// setOutputSectionOffset - helper function to set output sections' address 1994 void GNULDBackend::setOutputSectionAddress(Module& pModule, 1995 Module::iterator pSectBegin, 1996 Module::iterator pSectEnd) 1997 { 1998 if (pSectBegin == pModule.end()) 1999 return; 2000 2001 assert(pSectEnd == pModule.end() || 2002 (pSectEnd != pModule.end() && 2003 (*pSectBegin)->index() <= (*pSectEnd)->index())); 2004 2005 const LinkerScript& script = pModule.getScript(); 2006 uint64_t seg_start_addr = getSegmentStartAddr(script); 2007 for (ELFSegmentFactory::iterator seg = elfSegmentTable().begin(), 2008 segEnd = elfSegmentTable().end(), prev = elfSegmentTable().end(); 2009 seg != segEnd; prev = seg, ++seg) { 2010 if (llvm::ELF::PT_LOAD != (*seg).type()) 2011 continue; 2012 2013 uint64_t start_addr = 0x0; 2014 LinkerScript::AddressMap::const_iterator mapping; 2015 if ((*seg).front()->kind() == LDFileFormat::Null) 2016 mapping = script.addressMap().find(".text"); 2017 else if ((*seg).isDataSegment()) 2018 mapping = script.addressMap().find(".data"); 2019 else if ((*seg).isBssSegment()) 2020 mapping = script.addressMap().find(".bss"); 2021 else 2022 mapping = script.addressMap().find((*seg).front()->name()); 2023 2024 if (mapping != script.addressMap().end()) { 2025 // use address mapping in script options 2026 start_addr = mapping.getEntry()->value(); 2027 } 2028 else { 2029 if ((*seg).front()->kind() == LDFileFormat::Null) { 2030 // 1st PT_LOAD 2031 start_addr = seg_start_addr; 2032 } 2033 else if ((*prev).front()->kind() == LDFileFormat::Null) { 2034 // prev segment is 1st PT_LOAD 2035 start_addr = seg_start_addr + (*seg).front()->offset(); 2036 } 2037 else { 2038 // Others 2039 start_addr = (*prev).front()->addr() + (*seg).front()->offset(); 2040 } 2041 // Try to align p_vaddr at page boundary if not in script options. 2042 // To do so will add more padding in file, but can save one page 2043 // at runtime. 2044 alignAddress(start_addr, (*seg).align()); 2045 } 2046 2047 // in p75,http://www.sco.com/developers/devspecs/gabi41.pdf 2048 // p_align: As "Program Loading" describes in this chapter of the 2049 // processor supplement, loadable process segments must have congruent 2050 // values for p_vaddr and p_offset, modulo the page size. 2051 if ((start_addr & ((*seg).align() - 1)) != 2052 ((*seg).front()->offset() & ((*seg).align() - 1))) { 2053 uint64_t padding = (*seg).align() + 2054 (start_addr & ((*seg).align() - 1)) - 2055 ((*seg).front()->offset() & ((*seg).align() - 1)); 2056 setOutputSectionOffset(pModule, 2057 pModule.begin() + (*seg).front()->index(), 2058 pModule.end(), 2059 (*seg).front()->offset() + padding); 2060 if (config().options().hasRelro()) 2061 setupRelro(pModule); 2062 } 2063 2064 for (ELFSegment::sect_iterator sect = (*seg).begin(), 2065 sectEnd = (*seg).end(); sect != sectEnd; ++sect) { 2066 if ((*sect)->index() < (*pSectBegin)->index()) 2067 continue; 2068 2069 if (LDFileFormat::Null == (*sect)->kind()) 2070 continue; 2071 2072 if (sect == pSectEnd) 2073 return; 2074 2075 if (sect != (*seg).begin()) 2076 (*sect)->setAddr(start_addr + (*sect)->offset() - 2077 (*seg).front()->offset()); 2078 else 2079 (*sect)->setAddr(start_addr); 2080 } 2081 } 2082 } 2083 2084 /// layout - layout method 2085 void GNULDBackend::layout(Module& pModule) 2086 { 2087 std::vector<SHOEntry> output_list; 2088 // 1. determine what sections will go into final output, and push the needed 2089 // sections into output_list for later processing 2090 for (Module::iterator it = pModule.begin(), ie = pModule.end(); it != ie; 2091 ++it) { 2092 switch ((*it)->kind()) { 2093 // take NULL and StackNote directly 2094 case LDFileFormat::Null: 2095 case LDFileFormat::StackNote: 2096 output_list.push_back(std::make_pair(*it, getSectionOrder(**it))); 2097 break; 2098 // ignore if section size is 0 2099 case LDFileFormat::EhFrame: 2100 if (((*it)->size() != 0) || 2101 ((*it)->hasEhFrame() && 2102 config().codeGenType() == LinkerConfig::Object)) 2103 output_list.push_back(std::make_pair(*it, getSectionOrder(**it))); 2104 break; 2105 case LDFileFormat::Relocation: 2106 if (((*it)->size() != 0) || 2107 ((*it)->hasRelocData() && 2108 config().codeGenType() == LinkerConfig::Object)) 2109 output_list.push_back(std::make_pair(*it, getSectionOrder(**it))); 2110 break; 2111 case LDFileFormat::Regular: 2112 case LDFileFormat::Target: 2113 case LDFileFormat::MetaData: 2114 case LDFileFormat::BSS: 2115 case LDFileFormat::Debug: 2116 case LDFileFormat::GCCExceptTable: 2117 case LDFileFormat::Note: 2118 case LDFileFormat::NamePool: 2119 case LDFileFormat::EhFrameHdr: 2120 if (((*it)->size() != 0) || 2121 ((*it)->hasSectionData() && 2122 config().codeGenType() == LinkerConfig::Object)) 2123 output_list.push_back(std::make_pair(*it, getSectionOrder(**it))); 2124 break; 2125 case LDFileFormat::Group: 2126 if (LinkerConfig::Object == config().codeGenType()) { 2127 //TODO: support incremental linking 2128 ; 2129 } 2130 break; 2131 case LDFileFormat::Version: 2132 if (0 != (*it)->size()) { 2133 output_list.push_back(std::make_pair(*it, getSectionOrder(**it))); 2134 warning(diag::warn_unsupported_symbolic_versioning) << (*it)->name(); 2135 } 2136 break; 2137 default: 2138 if (0 != (*it)->size()) { 2139 error(diag::err_unsupported_section) << (*it)->name() << (*it)->kind(); 2140 } 2141 break; 2142 } 2143 } // end of for 2144 2145 // 2. sort output section orders 2146 std::stable_sort(output_list.begin(), output_list.end(), SHOCompare()); 2147 2148 // 3. update output sections in Module 2149 pModule.getSectionTable().clear(); 2150 for(size_t index = 0; index < output_list.size(); ++index) { 2151 (output_list[index].first)->setIndex(index); 2152 pModule.getSectionTable().push_back(output_list[index].first); 2153 } 2154 2155 // 4. create program headers 2156 if (LinkerConfig::Object != config().codeGenType()) { 2157 createProgramHdrs(pModule); 2158 } 2159 2160 // 5. set output section offset 2161 setOutputSectionOffset(pModule, pModule.begin(), pModule.end(), 0x0); 2162 } 2163 2164 /// preLayout - Backend can do any needed modification before layout 2165 void GNULDBackend::preLayout(Module& pModule, IRBuilder& pBuilder) 2166 { 2167 // prelayout target first 2168 doPreLayout(pBuilder); 2169 2170 if (LinkerConfig::Object != config().codeGenType() && 2171 config().options().hasEhFrameHdr() && getOutputFormat()->hasEhFrame()) { 2172 // init EhFrameHdr and size the output section 2173 ELFFileFormat* format = getOutputFormat(); 2174 m_pEhFrameHdr = new EhFrameHdr(format->getEhFrameHdr(), 2175 format->getEhFrame()); 2176 m_pEhFrameHdr->sizeOutput(); 2177 } 2178 2179 // change .tbss and .tdata section symbol from Local to LocalDyn category 2180 if (NULL != f_pTDATA) 2181 pModule.getSymbolTable().changeToDynamic(*f_pTDATA); 2182 2183 if (NULL != f_pTBSS) 2184 pModule.getSymbolTable().changeToDynamic(*f_pTBSS); 2185 2186 // To merge input's relocation sections into output's relocation sections. 2187 // 2188 // If we are generating relocatables (-r), move input relocation sections 2189 // to corresponding output relocation sections. 2190 if (LinkerConfig::Object == config().codeGenType()) { 2191 Module::obj_iterator input, inEnd = pModule.obj_end(); 2192 for (input = pModule.obj_begin(); input != inEnd; ++input) { 2193 LDContext::sect_iterator rs, rsEnd = (*input)->context()->relocSectEnd(); 2194 for (rs = (*input)->context()->relocSectBegin(); rs != rsEnd; ++rs) { 2195 2196 // get the output relocation LDSection with identical name. 2197 LDSection* output_sect = pModule.getSection((*rs)->name()); 2198 if (NULL == output_sect) { 2199 output_sect = LDSection::Create((*rs)->name(), 2200 (*rs)->kind(), 2201 (*rs)->type(), 2202 (*rs)->flag()); 2203 2204 output_sect->setAlign((*rs)->align()); 2205 pModule.getSectionTable().push_back(output_sect); 2206 } 2207 2208 // set output relocation section link 2209 const LDSection* input_link = (*rs)->getLink(); 2210 assert(NULL != input_link && "Illegal input relocation section."); 2211 2212 // get the linked output section 2213 LDSection* output_link = pModule.getSection(input_link->name()); 2214 assert(NULL != output_link); 2215 2216 output_sect->setLink(output_link); 2217 2218 // get output relcoationData, create one if not exist 2219 if (!output_sect->hasRelocData()) 2220 IRBuilder::CreateRelocData(*output_sect); 2221 2222 RelocData* out_reloc_data = output_sect->getRelocData(); 2223 2224 // move relocations from input's to output's RelcoationData 2225 RelocData::RelocationListType& out_list = 2226 out_reloc_data->getRelocationList(); 2227 RelocData::RelocationListType& in_list = 2228 (*rs)->getRelocData()->getRelocationList(); 2229 out_list.splice(out_list.end(), in_list); 2230 2231 // size output 2232 if (llvm::ELF::SHT_REL == output_sect->type()) 2233 output_sect->setSize(out_reloc_data->size() * getRelEntrySize()); 2234 else if (llvm::ELF::SHT_RELA == output_sect->type()) 2235 output_sect->setSize(out_reloc_data->size() * getRelaEntrySize()); 2236 else { 2237 fatal(diag::unknown_reloc_section_type) << output_sect->type() 2238 << output_sect->name(); 2239 } 2240 } // end of for each relocation section 2241 } // end of for each input 2242 } // end of if 2243 2244 // set up the section flag of .note.GNU-stack section 2245 setupGNUStackInfo(pModule); 2246 } 2247 2248 /// postLayout - Backend can do any needed modification after layout 2249 void GNULDBackend::postLayout(Module& pModule, IRBuilder& pBuilder) 2250 { 2251 // 1. set up section address and segment attributes 2252 if (LinkerConfig::Object != config().codeGenType()) { 2253 if (config().options().hasRelro()) { 2254 // 1.1 set up the offset constraint of PT_RELRO 2255 setupRelro(pModule); 2256 } 2257 2258 // 1.2 set up the output sections' address 2259 setOutputSectionAddress(pModule, pModule.begin(), pModule.end()); 2260 2261 // 1.3 do relaxation 2262 relax(pModule, pBuilder); 2263 2264 // 1.4 set up the attributes of program headers 2265 setupProgramHdrs(pModule.getScript()); 2266 } 2267 2268 // 2. target specific post layout 2269 doPostLayout(pModule, pBuilder); 2270 } 2271 2272 void GNULDBackend::postProcessing(MemoryArea& pOutput) 2273 { 2274 if (LinkerConfig::Object != config().codeGenType() && 2275 config().options().hasEhFrameHdr() && getOutputFormat()->hasEhFrame()) { 2276 // emit eh_frame_hdr 2277 m_pEhFrameHdr->emitOutput<32>(pOutput); 2278 } 2279 } 2280 2281 /// getHashBucketCount - calculate hash bucket count. 2282 /// @ref Google gold linker, dynobj.cc:791 2283 unsigned GNULDBackend::getHashBucketCount(unsigned pNumOfSymbols, 2284 bool pIsGNUStyle) 2285 { 2286 // @ref Google gold, dynobj.cc:loc 791 2287 static const unsigned int buckets[] = 2288 { 2289 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, 2290 16411, 32771, 65537, 131101, 262147 2291 }; 2292 const unsigned buckets_count = sizeof buckets / sizeof buckets[0]; 2293 2294 unsigned int result = 1; 2295 for (unsigned i = 0; i < buckets_count; ++i) { 2296 if (pNumOfSymbols < buckets[i]) 2297 break; 2298 result = buckets[i]; 2299 } 2300 2301 if (pIsGNUStyle && result < 2) 2302 result = 2; 2303 2304 return result; 2305 } 2306 2307 /// getGNUHashMaskbitslog2 - calculate the number of mask bits in log2 2308 /// @ref binutils gold, dynobj.cc:1165 2309 unsigned GNULDBackend::getGNUHashMaskbitslog2(unsigned pNumOfSymbols) const 2310 { 2311 uint32_t maskbitslog2 = 1; 2312 for (uint32_t x = pNumOfSymbols >> 1; x != 0; x >>=1) 2313 ++maskbitslog2; 2314 2315 if (maskbitslog2 < 3) 2316 maskbitslog2 = 5; 2317 else if (((1U << (maskbitslog2 - 2)) & pNumOfSymbols) != 0) 2318 maskbitslog2 += 3; 2319 else 2320 maskbitslog2 += 2; 2321 2322 if (config().targets().bitclass() == 64 && maskbitslog2 == 5) 2323 maskbitslog2 = 6; 2324 2325 return maskbitslog2; 2326 } 2327 2328 /// isDynamicSymbol 2329 /// @ref Google gold linker: symtab.cc:311 2330 bool GNULDBackend::isDynamicSymbol(const LDSymbol& pSymbol) 2331 { 2332 // If a local symbol is in the LDContext's symbol table, it's a real local 2333 // symbol. We should not add it 2334 if (pSymbol.binding() == ResolveInfo::Local) 2335 return false; 2336 2337 // If we are building shared object, and the visibility is external, we 2338 // need to add it. 2339 if (LinkerConfig::DynObj == config().codeGenType() || 2340 LinkerConfig::Exec == config().codeGenType() || 2341 LinkerConfig::Binary == config().codeGenType()) { 2342 if (pSymbol.resolveInfo()->visibility() == ResolveInfo::Default || 2343 pSymbol.resolveInfo()->visibility() == ResolveInfo::Protected) 2344 return true; 2345 } 2346 return false; 2347 } 2348 2349 /// isDynamicSymbol 2350 /// @ref Google gold linker: symtab.cc:311 2351 bool GNULDBackend::isDynamicSymbol(const ResolveInfo& pResolveInfo) 2352 { 2353 // If a local symbol is in the LDContext's symbol table, it's a real local 2354 // symbol. We should not add it 2355 if (pResolveInfo.binding() == ResolveInfo::Local) 2356 return false; 2357 2358 // If we are building shared object, and the visibility is external, we 2359 // need to add it. 2360 if (LinkerConfig::DynObj == config().codeGenType() || 2361 LinkerConfig::Exec == config().codeGenType() || 2362 LinkerConfig::Binary == config().codeGenType()) { 2363 if (pResolveInfo.visibility() == ResolveInfo::Default || 2364 pResolveInfo.visibility() == ResolveInfo::Protected) 2365 return true; 2366 } 2367 return false; 2368 } 2369 2370 /// commonPageSize - the common page size of the target machine. 2371 /// @ref gold linker: target.h:135 2372 uint64_t GNULDBackend::commonPageSize() const 2373 { 2374 if (config().options().commPageSize() > 0) 2375 return std::min(config().options().commPageSize(), abiPageSize()); 2376 else 2377 return std::min(m_pInfo->commonPageSize(), abiPageSize()); 2378 } 2379 2380 /// abiPageSize - the abi page size of the target machine. 2381 /// @ref gold linker: target.h:125 2382 uint64_t GNULDBackend::abiPageSize() const 2383 { 2384 if (config().options().maxPageSize() > 0) 2385 return config().options().maxPageSize(); 2386 else 2387 return m_pInfo->abiPageSize(); 2388 } 2389 2390 /// isSymbolPreemtible - whether the symbol can be preemted by other 2391 /// link unit 2392 /// @ref Google gold linker, symtab.h:551 2393 bool GNULDBackend::isSymbolPreemptible(const ResolveInfo& pSym) const 2394 { 2395 if (pSym.other() != ResolveInfo::Default) 2396 return false; 2397 2398 // This is because the codeGenType of pie is DynObj. And gold linker check 2399 // the "shared" option instead. 2400 if (config().options().isPIE()) 2401 return false; 2402 2403 if (LinkerConfig::DynObj != config().codeGenType()) 2404 return false; 2405 2406 if (config().options().Bsymbolic()) 2407 return false; 2408 2409 // A local defined symbol should be non-preemptible. 2410 // This issue is found when linking libstdc++ on freebsd. A R_386_GOT32 2411 // relocation refers to a local defined symbol, and we should generate a 2412 // relative dynamic relocation when applying the relocation. 2413 if (pSym.isDefine() && pSym.binding() == ResolveInfo::Local) 2414 return false; 2415 2416 return true; 2417 } 2418 2419 /// symbolNeedsDynRel - return whether the symbol needs a dynamic relocation 2420 /// @ref Google gold linker, symtab.h:645 2421 bool GNULDBackend::symbolNeedsDynRel(const ResolveInfo& pSym, 2422 bool pSymHasPLT, 2423 bool isAbsReloc) const 2424 { 2425 // an undefined reference in the executables should be statically 2426 // resolved to 0 and no need a dynamic relocation 2427 if (pSym.isUndef() && 2428 !pSym.isDyn() && 2429 (LinkerConfig::Exec == config().codeGenType() || 2430 LinkerConfig::Binary == config().codeGenType())) 2431 return false; 2432 2433 // An absolute symbol can be resolved directly if it is either local 2434 // or we are linking statically. Otherwise it can still be overridden 2435 // at runtime. 2436 if (pSym.isAbsolute() && 2437 (pSym.binding() == ResolveInfo::Local || config().isCodeStatic())) 2438 return false; 2439 if (config().isCodeIndep() && isAbsReloc) 2440 return true; 2441 if (pSymHasPLT && ResolveInfo::Function == pSym.type()) 2442 return false; 2443 if (!config().isCodeIndep() && pSymHasPLT) 2444 return false; 2445 if (pSym.isDyn() || pSym.isUndef() || 2446 isSymbolPreemptible(pSym)) 2447 return true; 2448 2449 return false; 2450 } 2451 2452 /// symbolNeedsPLT - return whether the symbol needs a PLT entry 2453 /// @ref Google gold linker, symtab.h:596 2454 bool GNULDBackend::symbolNeedsPLT(const ResolveInfo& pSym) const 2455 { 2456 if (pSym.isUndef() && 2457 !pSym.isDyn() && 2458 LinkerConfig::DynObj != config().codeGenType()) 2459 return false; 2460 2461 // An IndirectFunc symbol (i.e., STT_GNU_IFUNC) always needs a plt entry 2462 if (pSym.type() == ResolveInfo::IndirectFunc) 2463 return true; 2464 2465 if (pSym.type() != ResolveInfo::Function) 2466 return false; 2467 2468 if (config().isCodeStatic()) 2469 return false; 2470 2471 if (config().options().isPIE()) 2472 return false; 2473 2474 return (pSym.isDyn() || 2475 pSym.isUndef() || 2476 isSymbolPreemptible(pSym)); 2477 } 2478 2479 /// symbolHasFinalValue - return true if the symbol's value can be decided at 2480 /// link time 2481 /// @ref Google gold linker, Symbol::final_value_is_known 2482 bool GNULDBackend::symbolFinalValueIsKnown(const ResolveInfo& pSym) const 2483 { 2484 // if the output is pic code or if not executables, symbols' value may change 2485 // at runtime 2486 // FIXME: CodeIndep() || LinkerConfig::Relocatable == CodeGenType 2487 if (config().isCodeIndep() || 2488 (LinkerConfig::Exec != config().codeGenType() && 2489 LinkerConfig::Binary != config().codeGenType())) 2490 return false; 2491 2492 // if the symbol is from dynamic object, then its value is unknown 2493 if (pSym.isDyn()) 2494 return false; 2495 2496 // if the symbol is not in dynamic object and is not undefined, then its value 2497 // is known 2498 if (!pSym.isUndef()) 2499 return true; 2500 2501 // if the symbol is undefined and not in dynamic objects, for example, a weak 2502 // undefined symbol, then whether the symbol's final value can be known 2503 // depends on whrther we're doing static link 2504 return config().isCodeStatic(); 2505 } 2506 2507 /// symbolNeedsCopyReloc - return whether the symbol needs a copy relocation 2508 bool GNULDBackend::symbolNeedsCopyReloc(const Relocation& pReloc, 2509 const ResolveInfo& pSym) const 2510 { 2511 // only the reference from dynamic executable to non-function symbol in 2512 // the dynamic objects may need copy relocation 2513 if (config().isCodeIndep() || 2514 !pSym.isDyn() || 2515 pSym.type() == ResolveInfo::Function || 2516 pSym.size() == 0) 2517 return false; 2518 2519 // check if the option -z nocopyreloc is given 2520 if (config().options().hasNoCopyReloc()) 2521 return false; 2522 2523 // TODO: Is this check necessary? 2524 // if relocation target place is readonly, a copy relocation is needed 2525 uint32_t flag = pReloc.targetRef().frag()->getParent()->getSection().flag(); 2526 if (0 == (flag & llvm::ELF::SHF_WRITE)) 2527 return true; 2528 2529 return false; 2530 } 2531 2532 LDSymbol& GNULDBackend::getTDATASymbol() 2533 { 2534 assert(NULL != f_pTDATA); 2535 return *f_pTDATA; 2536 } 2537 2538 const LDSymbol& GNULDBackend::getTDATASymbol() const 2539 { 2540 assert(NULL != f_pTDATA); 2541 return *f_pTDATA; 2542 } 2543 2544 LDSymbol& GNULDBackend::getTBSSSymbol() 2545 { 2546 assert(NULL != f_pTBSS); 2547 return *f_pTBSS; 2548 } 2549 2550 const LDSymbol& GNULDBackend::getTBSSSymbol() const 2551 { 2552 assert(NULL != f_pTBSS); 2553 return *f_pTBSS; 2554 } 2555 2556 void GNULDBackend::checkAndSetHasTextRel(const LDSection& pSection) 2557 { 2558 if (m_bHasTextRel) 2559 return; 2560 2561 // if the target section of the dynamic relocation is ALLOCATE but is not 2562 // writable, than we should set DF_TEXTREL 2563 const uint32_t flag = pSection.flag(); 2564 if (0 == (flag & llvm::ELF::SHF_WRITE) && (flag & llvm::ELF::SHF_ALLOC)) 2565 m_bHasTextRel = true; 2566 2567 return; 2568 } 2569 2570 /// initBRIslandFactory - initialize the branch island factory for relaxation 2571 bool GNULDBackend::initBRIslandFactory() 2572 { 2573 if (NULL == m_pBRIslandFactory) { 2574 m_pBRIslandFactory = new BranchIslandFactory(maxBranchOffset()); 2575 } 2576 return true; 2577 } 2578 2579 /// initStubFactory - initialize the stub factory for relaxation 2580 bool GNULDBackend::initStubFactory() 2581 { 2582 if (NULL == m_pStubFactory) { 2583 m_pStubFactory = new StubFactory(); 2584 } 2585 return true; 2586 } 2587 2588 bool GNULDBackend::relax(Module& pModule, IRBuilder& pBuilder) 2589 { 2590 if (!mayRelax()) 2591 return true; 2592 2593 bool finished = true; 2594 do { 2595 if (doRelax(pModule, pBuilder, finished)) { 2596 // If the sections (e.g., .text) are relaxed, the layout is also changed 2597 // We need to do the following: 2598 2599 // 1. set up the offset 2600 setOutputSectionOffset(pModule, pModule.begin(), pModule.end()); 2601 2602 // 2. set up the offset constraint of PT_RELRO 2603 if (config().options().hasRelro()) 2604 setupRelro(pModule); 2605 2606 // 3. set up the output sections' address 2607 setOutputSectionAddress(pModule, pModule.begin(), pModule.end()); 2608 } 2609 } while (!finished); 2610 2611 return true; 2612 } 2613 2614 bool GNULDBackend::DynsymCompare::needGNUHash(const LDSymbol& X) const 2615 { 2616 // FIXME: in bfd and gold linker, an undefined symbol might be hashed 2617 // when the ouput is not PIC, if the symbol is referred by a non pc-relative 2618 // reloc, and its value is set to the addr of the plt entry. 2619 return !X.resolveInfo()->isUndef() && !X.isDyn(); 2620 } 2621 2622 bool GNULDBackend::DynsymCompare::operator()(const LDSymbol* X, 2623 const LDSymbol* Y) const 2624 { 2625 return !needGNUHash(*X) && needGNUHash(*Y); 2626 } 2627 2628