/external/chromium-trace/trace-viewer/third_party/gl-matrix/spec/gl-matrix/ |
mat2-spec.js | 96 describe("adjoint", function() { 98 beforeEach(function() { result = mat2.adjoint(out, matA); }); 106 beforeEach(function() { result = mat2.adjoint(matA, matA); });
|
mat3-spec.js | 152 describe("adjoint", function() { 154 beforeEach(function() { result = mat3.adjoint(out, matA); }); 174 beforeEach(function() { result = mat3.adjoint(matA, matA); });
|
mat4-spec.js | 147 describe("adjoint", function() { 149 beforeEach(function() { result = mat4.adjoint(out, matA); }); 171 beforeEach(function() { result = mat4.adjoint(matA, matA); });
|
/external/eigen/lapack/ |
eigenvalues.cpp | 59 if(UPLO(*uplo)==UP) mat = matrix(a,*n,*n,*lda).adjoint();
|
/external/eigen/test/ |
determinant.cpp | 42 VERIFY_IS_APPROX(internal::conj(m2.determinant()), m2.adjoint().determinant());
|
hessenberg.cpp | 24 VERIFY_IS_APPROX(m, Q * H * Q.adjoint());
|
jacobisvd.cpp | 41 VERIFY_IS_APPROX(m, u * sigma * v.adjoint()); 89 VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs); 124 VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
|
schur_complex.cpp | 31 VERIFY_IS_APPROX(A.template cast<ComplexScalar>(), U * T * U.adjoint());
|
product.h | 137 VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval());
|
eigensolver_complex.cpp | 49 MatrixType symmA = a.adjoint() * a;
|
qr.cpp | 68 m1 += a * a.adjoint();
|
qr_fullpivoting.cpp | 66 m1 += a * a.adjoint();
|
/external/eigen/test/eigen2/ |
eigen2_determinant.cpp | 41 VERIFY_IS_APPROX(ei_conj(m2.determinant()), m2.adjoint().determinant());
|
eigen2_sparse_product.cpp | 71 // test self adjoint products 95 VERIFY_IS_APPROX(refS.adjoint(), refS);
|
eigen2_geometry.cpp | 73 m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); 347 VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); 351 VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
|
/external/eigen/Eigen/src/Cholesky/ |
LLT.h | 283 if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); 316 if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); 358 static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } 367 static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } 463 return matrixL() * matrixL().adjoint().toDenseMatrix();
|
/external/eigen/Eigen/src/SparseCore/ |
SparseSelfAdjointView.h | 72 /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ 80 /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ 94 * call this function with u.adjoint(). 178 SparseMatrix<Scalar,MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> tmp = u * u.adjoint(); 188 * Implementation of sparse self-adjoint time dense matrix
|
/external/eigen/Eigen/src/Eigenvalues/ |
SelfAdjointEigenSolver_MKL.h | 29 * Self-adjoint eigenvalues/eigenvectors.
|
/external/eigen/Eigen/src/Jacobi/ |
Jacobi.h | 27 * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: 29 * v.applyOnTheLeft(J.adjoint()); 60 /** Returns the adjoint transformation */ 61 JacobiRotation adjoint() const { return JacobiRotation(internal::conj(m_c), -m_s); } function in class:Eigen::JacobiRotation
|
/external/eigen/Eigen/src/SVD/ |
JacobiSVD_MKL.h | 74 if (computeV()) m_matrixV = localV.adjoint(); \
|
JacobiSVD.h | 134 m_adjoint = matrix.adjoint(); 136 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); 223 m_adjoint = matrix.adjoint(); 226 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); 318 m_adjoint = matrix.adjoint(); 321 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); 379 if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); [all...] |
/external/eigen/bench/ |
benchCholesky.cpp | 47 SquareMatrixType covMat = a * a.adjoint();
|
/external/eigen/blas/ |
level3_impl.h | [all...] |
/external/eigen/Eigen/src/Eigen2Support/Geometry/ |
Transform.h | 622 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 627 scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint(); 633 rotation->noalias() = m * svd.matrixV().adjoint(); 653 Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 658 scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint(); 664 rotation->noalias() = m * svd.matrixV().adjoint();
|
/external/eigen/unsupported/Eigen/src/MatrixFunctions/ |
MatrixSquareRoot.h | 93 result = U * sqrtT * U.adjoint(); 314 // Compute square root of m_A as U * result * U.adjoint() 317 result.noalias() = tmp * U.adjoint(); 379 result = U * sqrtT * U.adjoint(); 413 result = U * sqrtT * U.adjoint();
|