HomeSort by relevance Sort by last modified time
    Searched full:complex (Results 226 - 250 of 3140) sorted by null

1 2 3 4 5 6 7 8 91011>>

  /bionic/libm/upstream-freebsd/lib/msun/src/
s_cproj.c 30 #include <complex.h>
35 double complex
36 cproj(double complex z)
s_carg.c 30 #include <complex.h>
34 carg(double complex z)
s_cargf.c 30 #include <complex.h>
34 cargf(float complex z)
s_cargl.c 30 #include <complex.h>
34 cargl(long double complex z)
s_cimag.c 29 #include <complex.h>
33 cimag(double complex z)
s_cimagf.c 29 #include <complex.h>
33 cimagf(float complex z)
  /ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/complex.number/complex.members/
real_imag.pass.cpp 10 // <complex>
15 #include <complex>
22 std::complex<T> c;
  /ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/complex.number/
layout.pass.cpp 10 // <complex>
12 #include <complex>
19 std::complex<T> z;
  /external/chromium_org/third_party/skia/src/images/
SkImageEncoder_Factory.cpp 15 // Can't use the typedef here because of complex C++ corner cases
  /external/eigen/blas/
complex_double.cpp 10 #define SCALAR std::complex<double>
complex_single.cpp 10 #define SCALAR std::complex<float>
  /external/eigen/lapack/
complex_double.cpp 10 #define SCALAR std::complex<double>
complex_single.cpp 10 #define SCALAR std::complex<float>
  /external/eigen/test/eigen2/
eigen2_mixingtypes.cpp 26 typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
27 typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
30 typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
31 typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
main.h 155 template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
156 template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
180 inline bool test_ei_isApprox(const std::complex<float>& a, const std::complex<float>& b)
181 { return ei_isApprox(a, b, test_precision<std::complex<float> >()); }
182 inline bool test_ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
183 { return ei_isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
185 inline bool test_ei_isApprox(const std::complex<double>& a, const std::complex<double>& b
    [all...]
  /external/eigen/test/
hessenberg.cpp 54 CALL_SUBTEST_1(( hessenberg<std::complex<double>,1>() ));
55 CALL_SUBTEST_2(( hessenberg<std::complex<double>,2>() ));
56 CALL_SUBTEST_3(( hessenberg<std::complex<float>,4>() ));
58 CALL_SUBTEST_5(( hessenberg<std::complex<double>,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) ));
superlu_support.cpp 17 SuperLU<SparseMatrix<std::complex<double> > > superlu_cplxdouble_colmajor;
main.h 22 #include <complex>
206 template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
207 template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
231 inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b)
232 { return internal::isApprox(a, b, test_precision<std::complex<float> >()); }
233 inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
234 { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
236 inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b
    [all...]
  /external/eigen/unsupported/Eigen/src/Polynomials/
PolynomialSolver.h 21 * - greatest, smallest complex roots,
36 typedef std::complex<RealScalar> RootType;
54 /** \returns the complex roots of the polynomial */
59 * i.e. the real part of the complex roots that have an imaginary part which
65 * \param[in] absImaginaryThreshold : the maximum bound of the imaginary part of a complex
97 * \returns the complex root with greatest norm.
106 * \returns the complex root with smallest norm.
197 * A real root is defined as the real part of a complex root with absolute imaginary
220 * A real root is defined as the real part of a complex root with absolute imaginary
243 * A real root is defined as the real part of a complex root with absolute imaginar
    [all...]
  /external/skia/src/images/
SkImageEncoder_Factory.cpp 15 // Can't use the typedef here because of complex C++ corner cases
  /ndk/sources/cxx-stl/llvm-libc++/libcxx/test/language.support/support.limits/limits/
is_specialized.pass.cpp 16 // Non-arithmetic standard types, such as complex<T> (26.3.2), shall not
28 #include <complex>
65 static_assert(!std::numeric_limits<std::complex<double> >::is_specialized,
66 "!std::numeric_limits<std::complex<double> >::is_specialized");
  /ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/complex.number/cmplx.over/
arg.pass.cpp 10 // <complex>
16 #include <complex>
27 assert(std::arg(x) == arg(std::complex<double>(x, 0)));
35 assert(std::arg(x) == arg(std::complex<T>(x, 0)));
norm.pass.cpp 10 // <complex>
16 #include <complex>
27 assert(std::norm(x) == norm(std::complex<double>(x, 0)));
35 assert(std::norm(x) == norm(std::complex<T>(x, 0)));
  /ndk/sources/cxx-stl/llvm-libc++/libcxx/test/numerics/complex.number/complex.transcendentals/
exp.pass.cpp 10 // <complex>
13 // complex<T>
14 // exp(const complex<T>& x);
16 #include <complex>
23 test(const std::complex<T>& c, std::complex<T> x)
32 test(std::complex<T>(0, 0), std::complex<T>(1, 0));
40 std::complex<double> r = exp(x[i]);
log.pass.cpp 10 // <complex>
13 // complex<T>
14 // log(const complex<T>& x);
16 #include <complex>
23 test(const std::complex<T>& c, std::complex<T> x)
32 test(std::complex<T>(0, 0), std::complex<T>(-INFINITY, 0));
41 std::complex<double> r = log(x[i]);

Completed in 118 milliseconds

1 2 3 4 5 6 7 8 91011>>