/external/eigen/doc/snippets/ |
MatrixBase_adjoint.cpp | 3 cout << "Here is the adjoint of m:" << endl << m.adjoint() << endl;
|
Jacobi_makeJacobi.cpp | 2 m = (m + m.adjoint()).eval(); 6 m.applyOnTheLeft(0, 1, J.adjoint());
|
MatrixBase_part.cpp | 8 cout << "And let us now compute m*m.adjoint() in a very optimized way" << endl 11 n.part<Eigen::SelfAdjoint>() = (m*m.adjoint()).lazy();
|
LLT_solve.cpp | 7 = (samples.adjoint() * samples).llt().solve((samples.adjoint()*elevations));
|
Tridiagonalization_diagonal.cpp | 2 MatrixXcd A = X + X.adjoint(); 3 cout << "Here is a random self-adjoint 4x4 matrix:" << endl << A << endl << endl;
|
Jacobi_makeGivens.cpp | 5 v.applyOnTheLeft(0, 1, G.adjoint());
|
tut_arithmetic_transpose_conjugate.cpp | 10 cout << "Here is the matrix a^*\n" << a.adjoint() << endl;
|
HouseholderSequence_HouseholderSequence.cpp | 15 Matrix3d H0 = Matrix3d::Identity() - h(0) * v0 * v0.adjoint(); 18 Matrix3d H1 = Matrix3d::Identity() - h(1) * v1 * v1.adjoint(); 21 Matrix3d H2 = Matrix3d::Identity() - h(2) * v2 * v2.adjoint();
|
/external/eigen/test/ |
product_extra.cpp | 42 VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(), m1 * m2.adjoint().eval()); 43 VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval()); 44 VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2, m1.adjoint().eval() * m2); 45 VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()).eval() * m2) [all...] |
adjoint.cpp | 14 template<typename MatrixType> void adjoint(const MatrixType& m) function 40 // check basic compatibility of adjoint, transpose, conjugate 41 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); 42 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); 45 VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); 46 VERIFY_IS_APPROX((s1 * m1).adjoint(), internal::conj(s1) * m1.adjoint()); 68 // check compatibility of dot and adjoint [all...] |
product_selfadjoint.cpp | 39 m1 = (m1.adjoint() + m1).eval(); 44 VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix()); 48 VERIFY_IS_APPROX(m2, (m1 + (s3*(-v1)*(s2*v2).adjoint()+internal::conj(s3)*(s2*v2)*(-v1).adjoint())).template triangularView<Upper>().toDenseMatrix()); 51 m2.template selfadjointView<Upper>().rankUpdate(-s2*r1.adjoint(),r2.adjoint()*s3,s1); 52 VERIFY_IS_APPROX(m2, (m1 + s1*(-s2*r1.adjoint())*(r2.adjoint()*s3).adjoint() + internal::conj(s1)*(r2.adjoint()*s3) * (-s2*r1.adjoint()).adjoint()).template triangularView<U (…) [all...] |
product_mmtr.cpp | 40 CHECK_MMTR(matc, Lower, = s*soc*sor.adjoint()); 41 CHECK_MMTR(matc, Upper, = s*(soc*soc.adjoint())); 42 CHECK_MMTR(matr, Lower, = s*soc*soc.adjoint()); 43 CHECK_MMTR(matr, Upper, = soc*(s*sor.adjoint())); 45 CHECK_MMTR(matc, Lower, += s*soc*soc.adjoint()); 47 CHECK_MMTR(matr, Lower, += s*sor*soc.adjoint()); 48 CHECK_MMTR(matr, Upper, += soc*(s*soc.adjoint())); 50 CHECK_MMTR(matc, Lower, -= s*soc*soc.adjoint()); 52 CHECK_MMTR(matr, Lower, -= s*soc*soc.adjoint()); 53 CHECK_MMTR(matr, Upper, -= soc*(s*soc.adjoint())); [all...] |
nomalloc.cpp | 53 m2.col(0).noalias() -= m1.adjoint() * m1.col(0); 54 m2.col(0).noalias() -= m1 * m1.row(0).adjoint(); 55 m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint(); 58 m2.row(0).noalias() -= m1.row(0) * m1.adjoint(); 59 m2.row(0).noalias() -= m1.col(0).adjoint() * m1; 60 m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint(); 64 m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0); 65 m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint(); [all...] |
product_notemporary.cpp | 60 VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1); 61 VERIFY_EVALUATION_COUNT( m3.noalias() = m1 * m2.adjoint(), 0); 65 VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * m2.adjoint(), 0); 66 VERIFY_EVALUATION_COUNT( m3.noalias() = s1 * m1 * s2 * (m1*s3+m2*s2).adjoint(), 1); 67 VERIFY_EVALUATION_COUNT( m3.noalias() = (s1 * m1).adjoint() * s2 * m2, 0); 68 VERIFY_EVALUATION_COUNT( m3.noalias() += s1 * (-m1*s3).adjoint() * (s2 * m2 * s3), 0); 71 VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1).noalias() += -m1.block(r0,c0,r1,c1) * (s2*m2.block(r0,c0,r1,c1)).adjoint() ), 0); 78 VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<Upper>() * (m2+m2), 1); 79 VERIFY_EVALUATION_COUNT( rm3.noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() * m2.adjoint(), 0) [all...] |
product_syrk.cpp | 37 ((s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Lower>().toDenseMatrix())); 41 (s1 * rhs2 * rhs2.adjoint()).eval().template triangularView<Upper>().toDenseMatrix()); 44 VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs1.adjoint(),s1)._expression(), 45 (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Lower>().toDenseMatrix()); 48 VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs1.adjoint(),s1)._expression(), 49 (s1 * rhs1.adjoint() * rhs1).eval().template triangularView<Upper>().toDenseMatrix()); 52 VERIFY_IS_APPROX(m2.template selfadjointView<Lower>().rankUpdate(rhs3.adjoint(),s1)._expression(), 53 (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Lower>().toDenseMatrix()); 56 VERIFY_IS_APPROX(m2.template selfadjointView<Upper>().rankUpdate(rhs3.adjoint(),s1)._expression(), 57 (s1 * rhs3.adjoint() * rhs3).eval().template triangularView<Upper>().toDenseMatrix()) [all...] |
product_trmm.cpp | 48 VERIFY_IS_APPROX( ge_xs.noalias() = (s1*mat.adjoint()).template triangularView<Mode>() * (s2*ge_left.transpose()), s1*triTr.conjugate() * (s2*ge_left.transpose())); 49 VERIFY_IS_APPROX( ge_sx.noalias() = ge_right.transpose() * mat.adjoint().template triangularView<Mode>(), ge_right.transpose() * triTr.conjugate()); 51 VERIFY_IS_APPROX( ge_xs.noalias() = (s1*mat.adjoint()).template triangularView<Mode>() * (s2*ge_left.adjoint()), s1*triTr.conjugate() * (s2*ge_left.adjoint())); 52 VERIFY_IS_APPROX( ge_sx.noalias() = ge_right.adjoint() * mat.adjoint().template triangularView<Mode>(), ge_right.adjoint() * triTr.conjugate()); 55 VERIFY_IS_APPROX( (ge_xs_save + s1*triTr.conjugate() * (s2*ge_left.adjoint())).eval(), ge_xs.noalias() += (s1*mat.adjoint()).template triangularView<Mode>() * (s2*ge_left.adjoint()) ) [all...] |
mixingtypes.cpp | 111 VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast<CF>().eval()); 112 VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval()); 113 VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast<CF>().eval()*mcf); 114 VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf); 121 VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.template cast<CD>().eval()) [all...] |
product_symm.cpp | 29 m1 = (m1+m1.adjoint()).eval(); 51 VERIFY_IS_APPROX(rhs12 = (s1*m2).template selfadjointView<Lower>() * (s2*rhs2.adjoint()), 52 rhs13 = (s1*m1) * (s2*rhs2.adjoint())); 55 VERIFY_IS_APPROX(rhs12 = (s1*m2).template selfadjointView<Upper>() * (s2*rhs2.adjoint()), 56 rhs13 = (s1*m1) * (s2*rhs2.adjoint())); 59 VERIFY_IS_APPROX(rhs12 = (s1*m2.adjoint()).template selfadjointView<Lower>() * (s2*rhs2.adjoint()), 60 rhs13 = (s1*m1.adjoint()) * (s2*rhs2.adjoint())); 68 VERIFY_IS_APPROX(rhs12 = (s1*m2.adjoint()).template selfadjointView<Lower>() * (s2*rhs3).conjugate() [all...] |
product_trmv.cpp | 60 VERIFY((m3.adjoint() * v1).isApprox(m1.adjoint().template triangularView<Eigen::Lower>() * v1, largerEps)); 62 VERIFY((m3.adjoint() * (s1*v1.conjugate())).isApprox(m1.adjoint().template triangularView<Eigen::Upper>() * (s1*v1.conjugate()), largerEps)); 68 VERIFY((v1.adjoint() * m3).isApprox(v1.adjoint() * m1.template triangularView<Eigen::Lower>(), largerEps)); 69 VERIFY((v1.adjoint() * m3.adjoint()).isApprox(v1.adjoint() * m1.template triangularView<Eigen::Lower>().adjoint(), largerEps)) [all...] |
/external/eigen/test/eigen2/ |
eigen2_adjoint.cpp | 12 template<typename MatrixType> void adjoint(const MatrixType& m) function 43 // check basic compatibility of adjoint, transpose, conjugate 44 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); 45 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); 48 VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); 49 VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint()); 63 // check compatibility of dot and adjoint [all...] |
eigen2_svd.cpp | 47 a += a * a.adjoint() + a1 * a1.adjoint(); 60 VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); 61 VERIFY_IS_APPROX(positive, positive.adjoint()); 66 VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows())); 67 VERIFY_IS_APPROX(positive, positive.adjoint());
|
eigen2_qr.cpp | 31 SquareMatrixType b = a.adjoint() * a; 35 VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint()); 39 VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint()); 43 VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
eigen2_cholesky.cpp | 35 SquareMatrixType symm = a0 * a0.adjoint(); 38 symm += a1 * a1.adjoint(); 72 //VERIFY_IS_APPROX(symm, ldlt.matrixL() * ldlt.vectorD().asDiagonal() * ldlt.matrixL().adjoint()); 82 VERIFY_IS_APPROX(symm, chol.matrixL() * chol.matrixL().adjoint()); 93 SquareMatrixType symm = a0.block(0,0,rows,cols-4) * a0.block(0,0,rows,cols-4).adjoint();
|
/external/eigen/doc/examples/ |
tut_arithmetic_dot_cross.cpp | 12 double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar
|
/external/eigen/Eigen/src/Core/ |
Transpose.h | 24 * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint() 27 * \sa MatrixBase::transpose(), MatrixBase::adjoint() 195 * \sa transposeInPlace(), adjoint() */ 207 * \sa transposeInPlace(), adjoint() */ 215 /** \returns an expression of the adjoint (i.e. conjugate transpose) of *this. 220 * \warning If you want to replace a matrix by its own adjoint, do \b NOT do this: 222 * m = m.adjoint(); // bug!!! caused by aliasing effect 230 * m = m.adjoint().eval(); 236 MatrixBase<Derived>::adjoint() const function in class:Eigen::MatrixBase 288 * \sa transpose(), adjoint(), adjointInPlace() * [all...] |