Home | History | Annotate | Download | only in core

Lines Matching refs:x2

173 // helper function to determine if upper-left 2x2 of matrix is degenerate
1015 // check the 2x2 for overflow
1574 SkFixed x0, y0, x1, y1, x2, y2;
1580 x2 = srcPt[2].fX - srcPt[3].fX;
1583 /* check if abs(x2) > abs(y2) */
1584 if ( x2 > 0 ? y2 > 0 ? x2 > y2 : x2 > -y2 : y2 > 0 ? -x2 > y2 : x2 < y2) {
1585 SkFixed denom = SkMulDiv(x1, y2, x2) - y1;
1589 a1 = SkFractDiv(SkMulDiv(x0 - x1, y2, x2) - y0 + y1, denom);
1591 SkFixed denom = x1 - SkMulDiv(y1, x2, y2);
1595 a1 = SkFractDiv(x0 - x1 - SkMulDiv(y0 - y1, x2, y2), denom);
1600 SkFixed denom = y2 - SkMulDiv(x2, y1, x1);
1604 a2 = SkFractDiv(y0 - y2 - SkMulDiv(x0 - x2, y1, x1), denom);
1606 SkFixed denom = SkMulDiv(y2, x1, y1) - x2;
1610 a2 = SkFractDiv(SkMulDiv(y0 - y2, x1, y1) - x0 + x2, denom);
1707 float x0, y0, x1, y1, x2, y2;
1713 x2 = srcPt[2].fX - srcPt[3].fX;
1716 /* check if abs(x2) > abs(y2) */
1717 if ( x2 > 0 ? y2 > 0 ? x2 > y2 : x2 > -y2 : y2 > 0 ? -x2 > y2 : x2 < y2) {
1718 float denom = SkScalarMulDiv(x1, y2, x2) - y1;
1722 a1 = SkScalarDiv(SkScalarMulDiv(x0 - x1, y2, x2) - y0 + y1, denom);
1724 float denom = x1 - SkScalarMulDiv(y1, x2, y2);
1728 a1 = SkScalarDiv(x0 - x1 - SkScalarMulDiv(y0 - y1, x2, y2), denom);
1733 float denom = y2 - SkScalarMulDiv(x2, y1, x1);
1737 a2 = SkScalarDiv(y0 - y2 - SkScalarMulDiv(x0 - x2, y1, x1), denom);
1739 float denom = SkScalarMulDiv(y2, x1, y1) - x2;
1743 a2 = SkScalarDiv(SkScalarMulDiv(y0 - y2, x1, y1) - x0 + x2, denom);
1833 // ignore the translation part of the matrix, just look at 2x2 portion.
1849 // if upper left 2x2 is orthogonal save some math
1979 // borrowed from Jim Blinn's article "Consider the Lowly 2x2 Matrix"