Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 //
      5 // Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
      6 // and r4_ will move after the first load):
      7 //
      8 // |----------------|-----------------------------------------|----------------|
      9 //
     10 //                                        request_frames_
     11 //                   <--------------------------------------------------------->
     12 //                                    r0_ (during first load)
     13 //
     14 //  kKernelSize / 2   kKernelSize / 2         kKernelSize / 2   kKernelSize / 2
     15 // <---------------> <--------------->       <---------------> <--------------->
     16 //        r1_               r2_                     r3_               r4_
     17 //
     18 //                             block_size_ == r4_ - r2_
     19 //                   <--------------------------------------->
     20 //
     21 //                                                  request_frames_
     22 //                                    <------------------ ... ----------------->
     23 //                                               r0_ (during second load)
     24 //
     25 // On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_
     26 // and block_size_ are reinitialized via step (3) in the algorithm below.
     27 //
     28 // These new regions remain constant until a Flush() occurs.  While complicated,
     29 // this allows us to reduce jitter by always requesting the same amount from the
     30 // provided callback.
     31 //
     32 // The algorithm:
     33 //
     34 // 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures
     35 //    there's enough room to read request_frames_ from the callback into region
     36 //    r0_ (which will move between the first and subsequent passes).
     37 //
     38 // 2) Let r1_, r2_ each represent half the kernel centered around r0_:
     39 //
     40 //        r0_ = input_buffer_ + kKernelSize / 2
     41 //        r1_ = input_buffer_
     42 //        r2_ = r0_
     43 //
     44 //    r0_ is always request_frames_ in size.  r1_, r2_ are kKernelSize / 2 in
     45 //    size.  r1_ must be zero initialized to avoid convolution with garbage (see
     46 //    step (5) for why).
     47 //
     48 // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
     49 //    r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
     50 //
     51 //        r3_ = r0_ + request_frames_ - kKernelSize
     52 //        r4_ = r0_ + request_frames_ - kKernelSize / 2
     53 //        block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2
     54 //
     55 // 4) Consume request_frames_ frames into r0_.
     56 //
     57 // 5) Position kernel centered at start of r2_ and generate output frames until
     58 //    the kernel is centered at the start of r4_ or we've finished generating
     59 //    all the output frames.
     60 //
     61 // 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
     62 //
     63 // 7) If we're on the second load, in order to avoid overwriting the frames we
     64 //    just wrapped from r4_ we need to slide r0_ to the right by the size of
     65 //    r4_, which is kKernelSize / 2:
     66 //
     67 //        r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize
     68 //
     69 //    r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
     70 //
     71 // 8) Else, if we're not on the second load, goto (4).
     72 //
     73 // Note: we're glossing over how the sub-sample handling works with
     74 // |virtual_source_idx_|, etc.
     75 
     76 // MSVC++ requires this to be set before any other includes to get M_PI.
     77 #define _USE_MATH_DEFINES
     78 
     79 #include "media/base/sinc_resampler.h"
     80 
     81 #include <cmath>
     82 #include <limits>
     83 
     84 #include "base/cpu.h"
     85 #include "base/logging.h"
     86 
     87 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
     88 #include <arm_neon.h>
     89 #endif
     90 
     91 namespace media {
     92 
     93 static double SincScaleFactor(double io_ratio) {
     94   // |sinc_scale_factor| is basically the normalized cutoff frequency of the
     95   // low-pass filter.
     96   double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
     97 
     98   // The sinc function is an idealized brick-wall filter, but since we're
     99   // windowing it the transition from pass to stop does not happen right away.
    100   // So we should adjust the low pass filter cutoff slightly downward to avoid
    101   // some aliasing at the very high-end.
    102   // TODO(crogers): this value is empirical and to be more exact should vary
    103   // depending on kKernelSize.
    104   sinc_scale_factor *= 0.9;
    105 
    106   return sinc_scale_factor;
    107 }
    108 
    109 // If we know the minimum architecture at compile time, avoid CPU detection.
    110 // Force NaCl code to use C routines since (at present) nothing there uses these
    111 // methods and plumbing the -msse built library is non-trivial.  iOS lies
    112 // about its architecture, so we also need to exclude it here.
    113 #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL) && !defined(OS_IOS)
    114 #if defined(__SSE__)
    115 #define CONVOLVE_FUNC Convolve_SSE
    116 void SincResampler::InitializeCPUSpecificFeatures() {}
    117 #else
    118 // X86 CPU detection required.  Functions will be set by
    119 // InitializeCPUSpecificFeatures().
    120 // TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed.
    121 #define CONVOLVE_FUNC g_convolve_proc_
    122 
    123 typedef float (*ConvolveProc)(const float*, const float*, const float*, double);
    124 static ConvolveProc g_convolve_proc_ = NULL;
    125 
    126 void SincResampler::InitializeCPUSpecificFeatures() {
    127   CHECK(!g_convolve_proc_);
    128   g_convolve_proc_ = base::CPU().has_sse() ? Convolve_SSE : Convolve_C;
    129 }
    130 #endif
    131 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
    132 #define CONVOLVE_FUNC Convolve_NEON
    133 void SincResampler::InitializeCPUSpecificFeatures() {}
    134 #else
    135 // Unknown architecture.
    136 #define CONVOLVE_FUNC Convolve_C
    137 void SincResampler::InitializeCPUSpecificFeatures() {}
    138 #endif
    139 
    140 SincResampler::SincResampler(double io_sample_rate_ratio,
    141                              int request_frames,
    142                              const ReadCB& read_cb)
    143     : io_sample_rate_ratio_(io_sample_rate_ratio),
    144       read_cb_(read_cb),
    145       request_frames_(request_frames),
    146       input_buffer_size_(request_frames_ + kKernelSize),
    147       // Create input buffers with a 16-byte alignment for SSE optimizations.
    148       kernel_storage_(static_cast<float*>(
    149           base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
    150       kernel_pre_sinc_storage_(static_cast<float*>(
    151           base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
    152       kernel_window_storage_(static_cast<float*>(
    153           base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
    154       input_buffer_(static_cast<float*>(
    155           base::AlignedAlloc(sizeof(float) * input_buffer_size_, 16))),
    156       r1_(input_buffer_.get()),
    157       r2_(input_buffer_.get() + kKernelSize / 2) {
    158   CHECK_GT(request_frames_, 0);
    159   Flush();
    160   CHECK_GT(block_size_, kKernelSize)
    161       << "block_size must be greater than kKernelSize!";
    162 
    163   memset(kernel_storage_.get(), 0,
    164          sizeof(*kernel_storage_.get()) * kKernelStorageSize);
    165   memset(kernel_pre_sinc_storage_.get(), 0,
    166          sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize);
    167   memset(kernel_window_storage_.get(), 0,
    168          sizeof(*kernel_window_storage_.get()) * kKernelStorageSize);
    169 
    170   InitializeKernel();
    171 }
    172 
    173 SincResampler::~SincResampler() {}
    174 
    175 void SincResampler::UpdateRegions(bool second_load) {
    176   // Setup various region pointers in the buffer (see diagram above).  If we're
    177   // on the second load we need to slide r0_ to the right by kKernelSize / 2.
    178   r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2);
    179   r3_ = r0_ + request_frames_ - kKernelSize;
    180   r4_ = r0_ + request_frames_ - kKernelSize / 2;
    181   block_size_ = r4_ - r2_;
    182 
    183   // r1_ at the beginning of the buffer.
    184   CHECK_EQ(r1_, input_buffer_.get());
    185   // r1_ left of r2_, r4_ left of r3_ and size correct.
    186   CHECK_EQ(r2_ - r1_, r4_ - r3_);
    187   // r2_ left of r3.
    188   CHECK_LT(r2_, r3_);
    189 }
    190 
    191 void SincResampler::InitializeKernel() {
    192   // Blackman window parameters.
    193   static const double kAlpha = 0.16;
    194   static const double kA0 = 0.5 * (1.0 - kAlpha);
    195   static const double kA1 = 0.5;
    196   static const double kA2 = 0.5 * kAlpha;
    197 
    198   // Generates a set of windowed sinc() kernels.
    199   // We generate a range of sub-sample offsets from 0.0 to 1.0.
    200   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
    201   for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
    202     const float subsample_offset =
    203         static_cast<float>(offset_idx) / kKernelOffsetCount;
    204 
    205     for (int i = 0; i < kKernelSize; ++i) {
    206       const int idx = i + offset_idx * kKernelSize;
    207       const float pre_sinc = M_PI * (i - kKernelSize / 2 - subsample_offset);
    208       kernel_pre_sinc_storage_[idx] = pre_sinc;
    209 
    210       // Compute Blackman window, matching the offset of the sinc().
    211       const float x = (i - subsample_offset) / kKernelSize;
    212       const float window = kA0 - kA1 * cos(2.0 * M_PI * x) + kA2
    213           * cos(4.0 * M_PI * x);
    214       kernel_window_storage_[idx] = window;
    215 
    216       // Compute the sinc with offset, then window the sinc() function and store
    217       // at the correct offset.
    218       if (pre_sinc == 0) {
    219         kernel_storage_[idx] = sinc_scale_factor * window;
    220       } else {
    221         kernel_storage_[idx] =
    222             window * sin(sinc_scale_factor * pre_sinc) / pre_sinc;
    223       }
    224     }
    225   }
    226 }
    227 
    228 void SincResampler::SetRatio(double io_sample_rate_ratio) {
    229   if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) <
    230       std::numeric_limits<double>::epsilon()) {
    231     return;
    232   }
    233 
    234   io_sample_rate_ratio_ = io_sample_rate_ratio;
    235 
    236   // Optimize reinitialization by reusing values which are independent of
    237   // |sinc_scale_factor|.  Provides a 3x speedup.
    238   const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
    239   for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
    240     for (int i = 0; i < kKernelSize; ++i) {
    241       const int idx = i + offset_idx * kKernelSize;
    242       const float window = kernel_window_storage_[idx];
    243       const float pre_sinc = kernel_pre_sinc_storage_[idx];
    244 
    245       if (pre_sinc == 0) {
    246         kernel_storage_[idx] = sinc_scale_factor * window;
    247       } else {
    248         kernel_storage_[idx] =
    249             window * sin(sinc_scale_factor * pre_sinc) / pre_sinc;
    250       }
    251     }
    252   }
    253 }
    254 
    255 void SincResampler::Resample(int frames, float* destination) {
    256   int remaining_frames = frames;
    257 
    258   // Step (1) -- Prime the input buffer at the start of the input stream.
    259   if (!buffer_primed_ && remaining_frames) {
    260     read_cb_.Run(request_frames_, r0_);
    261     buffer_primed_ = true;
    262   }
    263 
    264   // Step (2) -- Resample!  const what we can outside of the loop for speed.  It
    265   // actually has an impact on ARM performance.  See inner loop comment below.
    266   const double current_io_ratio = io_sample_rate_ratio_;
    267   const float* const kernel_ptr = kernel_storage_.get();
    268   while (remaining_frames) {
    269     // |i| may be negative if the last Resample() call ended on an iteration
    270     // that put |virtual_source_idx_| over the limit.
    271     //
    272     // Note: The loop construct here can severely impact performance on ARM
    273     // or when built with clang.  See https://codereview.chromium.org/18566009/
    274     for (int i = ceil((block_size_ - virtual_source_idx_) / current_io_ratio);
    275          i > 0; --i) {
    276       DCHECK_LT(virtual_source_idx_, block_size_);
    277 
    278       // |virtual_source_idx_| lies in between two kernel offsets so figure out
    279       // what they are.
    280       const int source_idx = virtual_source_idx_;
    281       const double subsample_remainder = virtual_source_idx_ - source_idx;
    282 
    283       const double virtual_offset_idx =
    284           subsample_remainder * kKernelOffsetCount;
    285       const int offset_idx = virtual_offset_idx;
    286 
    287       // We'll compute "convolutions" for the two kernels which straddle
    288       // |virtual_source_idx_|.
    289       const float* const k1 = kernel_ptr + offset_idx * kKernelSize;
    290       const float* const k2 = k1 + kKernelSize;
    291 
    292       // Ensure |k1|, |k2| are 16-byte aligned for SIMD usage.  Should always be
    293       // true so long as kKernelSize is a multiple of 16.
    294       DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k1) & 0x0F);
    295       DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k2) & 0x0F);
    296 
    297       // Initialize input pointer based on quantized |virtual_source_idx_|.
    298       const float* const input_ptr = r1_ + source_idx;
    299 
    300       // Figure out how much to weight each kernel's "convolution".
    301       const double kernel_interpolation_factor =
    302           virtual_offset_idx - offset_idx;
    303       *destination++ = CONVOLVE_FUNC(
    304           input_ptr, k1, k2, kernel_interpolation_factor);
    305 
    306       // Advance the virtual index.
    307       virtual_source_idx_ += current_io_ratio;
    308 
    309       if (!--remaining_frames)
    310         return;
    311     }
    312 
    313     // Wrap back around to the start.
    314     virtual_source_idx_ -= block_size_;
    315 
    316     // Step (3) -- Copy r3_, r4_ to r1_, r2_.
    317     // This wraps the last input frames back to the start of the buffer.
    318     memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize);
    319 
    320     // Step (4) -- Reinitialize regions if necessary.
    321     if (r0_ == r2_)
    322       UpdateRegions(true);
    323 
    324     // Step (5) -- Refresh the buffer with more input.
    325     read_cb_.Run(request_frames_, r0_);
    326   }
    327 }
    328 
    329 #undef CONVOLVE_FUNC
    330 
    331 int SincResampler::ChunkSize() const {
    332   return block_size_ / io_sample_rate_ratio_;
    333 }
    334 
    335 void SincResampler::Flush() {
    336   virtual_source_idx_ = 0;
    337   buffer_primed_ = false;
    338   memset(input_buffer_.get(), 0,
    339          sizeof(*input_buffer_.get()) * input_buffer_size_);
    340   UpdateRegions(false);
    341 }
    342 
    343 float SincResampler::Convolve_C(const float* input_ptr, const float* k1,
    344                                 const float* k2,
    345                                 double kernel_interpolation_factor) {
    346   float sum1 = 0;
    347   float sum2 = 0;
    348 
    349   // Generate a single output sample.  Unrolling this loop hurt performance in
    350   // local testing.
    351   int n = kKernelSize;
    352   while (n--) {
    353     sum1 += *input_ptr * *k1++;
    354     sum2 += *input_ptr++ * *k2++;
    355   }
    356 
    357   // Linearly interpolate the two "convolutions".
    358   return (1.0 - kernel_interpolation_factor) * sum1
    359       + kernel_interpolation_factor * sum2;
    360 }
    361 
    362 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
    363 float SincResampler::Convolve_NEON(const float* input_ptr, const float* k1,
    364                                    const float* k2,
    365                                    double kernel_interpolation_factor) {
    366   float32x4_t m_input;
    367   float32x4_t m_sums1 = vmovq_n_f32(0);
    368   float32x4_t m_sums2 = vmovq_n_f32(0);
    369 
    370   const float* upper = input_ptr + kKernelSize;
    371   for (; input_ptr < upper; ) {
    372     m_input = vld1q_f32(input_ptr);
    373     input_ptr += 4;
    374     m_sums1 = vmlaq_f32(m_sums1, m_input, vld1q_f32(k1));
    375     k1 += 4;
    376     m_sums2 = vmlaq_f32(m_sums2, m_input, vld1q_f32(k2));
    377     k2 += 4;
    378   }
    379 
    380   // Linearly interpolate the two "convolutions".
    381   m_sums1 = vmlaq_f32(
    382       vmulq_f32(m_sums1, vmovq_n_f32(1.0 - kernel_interpolation_factor)),
    383       m_sums2, vmovq_n_f32(kernel_interpolation_factor));
    384 
    385   // Sum components together.
    386   float32x2_t m_half = vadd_f32(vget_high_f32(m_sums1), vget_low_f32(m_sums1));
    387   return vget_lane_f32(vpadd_f32(m_half, m_half), 0);
    388 }
    389 #endif
    390 
    391 }  // namespace media
    392