Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains small standalone helper functions and enum definitions for
     11 // the X86 target useful for the compiler back-end and the MC libraries.
     12 // As such, it deliberately does not include references to LLVM core
     13 // code gen types, passes, etc..
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef X86BASEINFO_H
     18 #define X86BASEINFO_H
     19 
     20 #include "X86MCTargetDesc.h"
     21 #include "llvm/Support/DataTypes.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include "llvm/MC/MCInstrInfo.h"
     24 
     25 namespace llvm {
     26 
     27 namespace X86 {
     28   // Enums for memory operand decoding.  Each memory operand is represented with
     29   // a 5 operand sequence in the form:
     30   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
     31   // These enums help decode this.
     32   enum {
     33     AddrBaseReg = 0,
     34     AddrScaleAmt = 1,
     35     AddrIndexReg = 2,
     36     AddrDisp = 3,
     37 
     38     /// AddrSegmentReg - The operand # of the segment in the memory operand.
     39     AddrSegmentReg = 4,
     40 
     41     /// AddrNumOperands - Total number of operands in a memory reference.
     42     AddrNumOperands = 5
     43   };
     44 } // end namespace X86;
     45 
     46 /// X86II - This namespace holds all of the target specific flags that
     47 /// instruction info tracks.
     48 ///
     49 namespace X86II {
     50   /// Target Operand Flag enum.
     51   enum TOF {
     52     //===------------------------------------------------------------------===//
     53     // X86 Specific MachineOperand flags.
     54 
     55     MO_NO_FLAG,
     56 
     57     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
     58     /// relocation of:
     59     ///    SYMBOL_LABEL + [. - PICBASELABEL]
     60     MO_GOT_ABSOLUTE_ADDRESS,
     61 
     62     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
     63     /// immediate should get the value of the symbol minus the PIC base label:
     64     ///    SYMBOL_LABEL - PICBASELABEL
     65     MO_PIC_BASE_OFFSET,
     66 
     67     /// MO_GOT - On a symbol operand this indicates that the immediate is the
     68     /// offset to the GOT entry for the symbol name from the base of the GOT.
     69     ///
     70     /// See the X86-64 ELF ABI supplement for more details.
     71     ///    SYMBOL_LABEL @GOT
     72     MO_GOT,
     73 
     74     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
     75     /// the offset to the location of the symbol name from the base of the GOT.
     76     ///
     77     /// See the X86-64 ELF ABI supplement for more details.
     78     ///    SYMBOL_LABEL @GOTOFF
     79     MO_GOTOFF,
     80 
     81     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
     82     /// offset to the GOT entry for the symbol name from the current code
     83     /// location.
     84     ///
     85     /// See the X86-64 ELF ABI supplement for more details.
     86     ///    SYMBOL_LABEL @GOTPCREL
     87     MO_GOTPCREL,
     88 
     89     /// MO_PLT - On a symbol operand this indicates that the immediate is
     90     /// offset to the PLT entry of symbol name from the current code location.
     91     ///
     92     /// See the X86-64 ELF ABI supplement for more details.
     93     ///    SYMBOL_LABEL @PLT
     94     MO_PLT,
     95 
     96     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
     97     /// the offset of the GOT entry with the TLS index structure that contains
     98     /// the module number and variable offset for the symbol. Used in the
     99     /// general dynamic TLS access model.
    100     ///
    101     /// See 'ELF Handling for Thread-Local Storage' for more details.
    102     ///    SYMBOL_LABEL @TLSGD
    103     MO_TLSGD,
    104 
    105     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
    106     /// the offset of the GOT entry with the TLS index for the module that
    107     /// contains the symbol. When this index is passed to a call to
    108     /// __tls_get_addr, the function will return the base address of the TLS
    109     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
    110     ///
    111     /// See 'ELF Handling for Thread-Local Storage' for more details.
    112     ///    SYMBOL_LABEL @TLSLD
    113     MO_TLSLD,
    114 
    115     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
    116     /// the offset of the GOT entry with the TLS index for the module that
    117     /// contains the symbol. When this index is passed to a call to
    118     /// ___tls_get_addr, the function will return the base address of the TLS
    119     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
    120     ///
    121     /// See 'ELF Handling for Thread-Local Storage' for more details.
    122     ///    SYMBOL_LABEL @TLSLDM
    123     MO_TLSLDM,
    124 
    125     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
    126     /// the offset of the GOT entry with the thread-pointer offset for the
    127     /// symbol. Used in the x86-64 initial exec TLS access model.
    128     ///
    129     /// See 'ELF Handling for Thread-Local Storage' for more details.
    130     ///    SYMBOL_LABEL @GOTTPOFF
    131     MO_GOTTPOFF,
    132 
    133     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
    134     /// the absolute address of the GOT entry with the negative thread-pointer
    135     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
    136     /// model.
    137     ///
    138     /// See 'ELF Handling for Thread-Local Storage' for more details.
    139     ///    SYMBOL_LABEL @INDNTPOFF
    140     MO_INDNTPOFF,
    141 
    142     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
    143     /// the thread-pointer offset for the symbol. Used in the x86-64 local
    144     /// exec TLS access model.
    145     ///
    146     /// See 'ELF Handling for Thread-Local Storage' for more details.
    147     ///    SYMBOL_LABEL @TPOFF
    148     MO_TPOFF,
    149 
    150     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
    151     /// the offset of the GOT entry with the TLS offset of the symbol. Used
    152     /// in the local dynamic TLS access model.
    153     ///
    154     /// See 'ELF Handling for Thread-Local Storage' for more details.
    155     ///    SYMBOL_LABEL @DTPOFF
    156     MO_DTPOFF,
    157 
    158     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
    159     /// the negative thread-pointer offset for the symbol. Used in the IA32
    160     /// local exec TLS access model.
    161     ///
    162     /// See 'ELF Handling for Thread-Local Storage' for more details.
    163     ///    SYMBOL_LABEL @NTPOFF
    164     MO_NTPOFF,
    165 
    166     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
    167     /// the offset of the GOT entry with the negative thread-pointer offset for
    168     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
    169     ///
    170     /// See 'ELF Handling for Thread-Local Storage' for more details.
    171     ///    SYMBOL_LABEL @GOTNTPOFF
    172     MO_GOTNTPOFF,
    173 
    174     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
    175     /// reference is actually to the "__imp_FOO" symbol.  This is used for
    176     /// dllimport linkage on windows.
    177     MO_DLLIMPORT,
    178 
    179     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
    180     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
    181     /// and jumps to external functions on Tiger and earlier.
    182     MO_DARWIN_STUB,
    183 
    184     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
    185     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
    186     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    187     MO_DARWIN_NONLAZY,
    188 
    189     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
    190     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
    191     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    192     MO_DARWIN_NONLAZY_PIC_BASE,
    193 
    194     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
    195     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
    196     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
    197     /// stub.
    198     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
    199 
    200     /// MO_TLVP - On a symbol operand this indicates that the immediate is
    201     /// some TLS offset.
    202     ///
    203     /// This is the TLS offset for the Darwin TLS mechanism.
    204     MO_TLVP,
    205 
    206     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
    207     /// is some TLS offset from the picbase.
    208     ///
    209     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
    210     MO_TLVP_PIC_BASE,
    211 
    212     /// MO_SECREL - On a symbol operand this indicates that the immediate is
    213     /// the offset from beginning of section.
    214     ///
    215     /// This is the TLS offset for the COFF/Windows TLS mechanism.
    216     MO_SECREL
    217   };
    218 
    219   enum {
    220     //===------------------------------------------------------------------===//
    221     // Instruction encodings.  These are the standard/most common forms for X86
    222     // instructions.
    223     //
    224 
    225     // PseudoFrm - This represents an instruction that is a pseudo instruction
    226     // or one that has not been implemented yet.  It is illegal to code generate
    227     // it, but tolerated for intermediate implementation stages.
    228     Pseudo         = 0,
    229 
    230     /// Raw - This form is for instructions that don't have any operands, so
    231     /// they are just a fixed opcode value, like 'leave'.
    232     RawFrm         = 1,
    233 
    234     /// AddRegFrm - This form is used for instructions like 'push r32' that have
    235     /// their one register operand added to their opcode.
    236     AddRegFrm      = 2,
    237 
    238     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
    239     /// to specify a destination, which in this case is a register.
    240     ///
    241     MRMDestReg     = 3,
    242 
    243     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
    244     /// to specify a destination, which in this case is memory.
    245     ///
    246     MRMDestMem     = 4,
    247 
    248     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
    249     /// to specify a source, which in this case is a register.
    250     ///
    251     MRMSrcReg      = 5,
    252 
    253     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
    254     /// to specify a source, which in this case is memory.
    255     ///
    256     MRMSrcMem      = 6,
    257 
    258     /// MRM[0-7][rm] - These forms are used to represent instructions that use
    259     /// a Mod/RM byte, and use the middle field to hold extended opcode
    260     /// information.  In the intel manual these are represented as /0, /1, ...
    261     ///
    262 
    263     // First, instructions that operate on a register r/m operand...
    264     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
    265     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
    266 
    267     // Next, instructions that operate on a memory r/m operand...
    268     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
    269     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
    270 
    271     // MRMInitReg - This form is used for instructions whose source and
    272     // destinations are the same register.
    273     MRMInitReg = 32,
    274 
    275     //// MRM_XX - A mod/rm byte of exactly 0xXX.
    276     MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35, MRM_C4 = 36,
    277     MRM_C8 = 37, MRM_C9 = 38, MRM_CA = 39, MRM_CB = 40,
    278     MRM_E8 = 41, MRM_F0 = 42, MRM_F8 = 45, MRM_F9 = 46,
    279     MRM_D0 = 47, MRM_D1 = 48, MRM_D4 = 49, MRM_D5 = 50,
    280     MRM_D6 = 51, MRM_D8 = 52, MRM_D9 = 53, MRM_DA = 54,
    281     MRM_DB = 55, MRM_DC = 56, MRM_DD = 57, MRM_DE = 58,
    282     MRM_DF = 59,
    283 
    284     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
    285     /// immediates, the first of which is a 16-bit immediate (specified by
    286     /// the imm encoding) and the second is a 8-bit fixed value.
    287     RawFrmImm8 = 43,
    288 
    289     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
    290     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
    291     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
    292     /// manual, this operand is described as pntr16:32 and pntr16:16
    293     RawFrmImm16 = 44,
    294 
    295     FormMask       = 63,
    296 
    297     //===------------------------------------------------------------------===//
    298     // Actual flags...
    299 
    300     // OpSize - Set if this instruction requires an operand size prefix (0x66),
    301     // which most often indicates that the instruction operates on 16 bit data
    302     // instead of 32 bit data.
    303     OpSize      = 1 << 6,
    304 
    305     // AsSize - Set if this instruction requires an operand size prefix (0x67),
    306     // which most often indicates that the instruction address 16 bit address
    307     // instead of 32 bit address (or 32 bit address in 64 bit mode).
    308     AdSize      = 1 << 7,
    309 
    310     //===------------------------------------------------------------------===//
    311     // Op0Mask - There are several prefix bytes that are used to form two byte
    312     // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
    313     // used to obtain the setting of this field.  If no bits in this field is
    314     // set, there is no prefix byte for obtaining a multibyte opcode.
    315     //
    316     Op0Shift    = 8,
    317     Op0Mask     = 0x1F << Op0Shift,
    318 
    319     // TB - TwoByte - Set if this instruction has a two byte opcode, which
    320     // starts with a 0x0F byte before the real opcode.
    321     TB          = 1 << Op0Shift,
    322 
    323     // REP - The 0xF3 prefix byte indicating repetition of the following
    324     // instruction.
    325     REP         = 2 << Op0Shift,
    326 
    327     // D8-DF - These escape opcodes are used by the floating point unit.  These
    328     // values must remain sequential.
    329     D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
    330     DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
    331     DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
    332     DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
    333 
    334     // XS, XD - These prefix codes are for single and double precision scalar
    335     // floating point operations performed in the SSE registers.
    336     XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
    337 
    338     // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
    339     T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
    340     A6 = 15 << Op0Shift,  A7 = 16 << Op0Shift,
    341 
    342     // T8XD - Prefix before and after 0x0F. Combination of T8 and XD.
    343     T8XD = 17 << Op0Shift,
    344 
    345     // T8XS - Prefix before and after 0x0F. Combination of T8 and XS.
    346     T8XS = 18 << Op0Shift,
    347 
    348     // TAXD - Prefix before and after 0x0F. Combination of TA and XD.
    349     TAXD = 19 << Op0Shift,
    350 
    351     // XOP8 - Prefix to include use of imm byte.
    352     XOP8 = 20 << Op0Shift,
    353 
    354     // XOP9 - Prefix to exclude use of imm byte.
    355     XOP9 = 21 << Op0Shift,
    356 
    357     //===------------------------------------------------------------------===//
    358     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
    359     // They are used to specify GPRs and SSE registers, 64-bit operand size,
    360     // etc. We only cares about REX.W and REX.R bits and only the former is
    361     // statically determined.
    362     //
    363     REXShift    = Op0Shift + 5,
    364     REX_W       = 1 << REXShift,
    365 
    366     //===------------------------------------------------------------------===//
    367     // This three-bit field describes the size of an immediate operand.  Zero is
    368     // unused so that we can tell if we forgot to set a value.
    369     ImmShift = REXShift + 1,
    370     ImmMask    = 7 << ImmShift,
    371     Imm8       = 1 << ImmShift,
    372     Imm8PCRel  = 2 << ImmShift,
    373     Imm16      = 3 << ImmShift,
    374     Imm16PCRel = 4 << ImmShift,
    375     Imm32      = 5 << ImmShift,
    376     Imm32PCRel = 6 << ImmShift,
    377     Imm64      = 7 << ImmShift,
    378 
    379     //===------------------------------------------------------------------===//
    380     // FP Instruction Classification...  Zero is non-fp instruction.
    381 
    382     // FPTypeMask - Mask for all of the FP types...
    383     FPTypeShift = ImmShift + 3,
    384     FPTypeMask  = 7 << FPTypeShift,
    385 
    386     // NotFP - The default, set for instructions that do not use FP registers.
    387     NotFP      = 0 << FPTypeShift,
    388 
    389     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
    390     ZeroArgFP  = 1 << FPTypeShift,
    391 
    392     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
    393     OneArgFP   = 2 << FPTypeShift,
    394 
    395     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
    396     // result back to ST(0).  For example, fcos, fsqrt, etc.
    397     //
    398     OneArgFPRW = 3 << FPTypeShift,
    399 
    400     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
    401     // explicit argument, storing the result to either ST(0) or the implicit
    402     // argument.  For example: fadd, fsub, fmul, etc...
    403     TwoArgFP   = 4 << FPTypeShift,
    404 
    405     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
    406     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
    407     CompareFP  = 5 << FPTypeShift,
    408 
    409     // CondMovFP - "2 operand" floating point conditional move instructions.
    410     CondMovFP  = 6 << FPTypeShift,
    411 
    412     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
    413     SpecialFP  = 7 << FPTypeShift,
    414 
    415     // Lock prefix
    416     LOCKShift = FPTypeShift + 3,
    417     LOCK = 1 << LOCKShift,
    418 
    419     // Segment override prefixes. Currently we just need ability to address
    420     // stuff in gs and fs segments.
    421     SegOvrShift = LOCKShift + 1,
    422     SegOvrMask  = 3 << SegOvrShift,
    423     FS          = 1 << SegOvrShift,
    424     GS          = 2 << SegOvrShift,
    425 
    426     // Execution domain for SSE instructions in bits 23, 24.
    427     // 0 in bits 23-24 means normal, non-SSE instruction.
    428     SSEDomainShift = SegOvrShift + 2,
    429 
    430     OpcodeShift   = SSEDomainShift + 2,
    431 
    432     //===------------------------------------------------------------------===//
    433     /// VEX - The opcode prefix used by AVX instructions
    434     VEXShift = OpcodeShift + 8,
    435     VEX         = 1U << 0,
    436 
    437     /// VEX_W - Has a opcode specific functionality, but is used in the same
    438     /// way as REX_W is for regular SSE instructions.
    439     VEX_W       = 1U << 1,
    440 
    441     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
    442     /// address instructions in SSE are represented as 3 address ones in AVX
    443     /// and the additional register is encoded in VEX_VVVV prefix.
    444     VEX_4V      = 1U << 2,
    445 
    446     /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
    447     /// operand 3 with VEX.vvvv.
    448     VEX_4VOp3   = 1U << 3,
    449 
    450     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
    451     /// must be encoded in the i8 immediate field. This usually happens in
    452     /// instructions with 4 operands.
    453     VEX_I8IMM   = 1U << 4,
    454 
    455     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
    456     /// instruction uses 256-bit wide registers. This is usually auto detected
    457     /// if a VR256 register is used, but some AVX instructions also have this
    458     /// field marked when using a f256 memory references.
    459     VEX_L       = 1U << 5,
    460 
    461     // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
    462     // prefix. Usually used for scalar instructions. Needed by disassembler.
    463     VEX_LIG     = 1U << 6,
    464 
    465     // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
    466     // with following encoding:
    467     // - 00 V128
    468     // - 01 V256
    469     // - 10 V512
    470     // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
    471     // this will save 1 tsflag bit
    472 
    473     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
    474     // syntax support up to 32 512-bit register operands and up to 7 16-bit
    475     // mask operands as well as source operand data swizzling/memory operand
    476     // conversion, eviction hint, and rounding mode.
    477     EVEX        = 1U << 7,
    478 
    479     // EVEX_K - Set if this instruction requires masking
    480     EVEX_K      = 1U << 8,
    481 
    482     // EVEX_Z - Set if this instruction has EVEX.Z field set.
    483     EVEX_Z      = 1U << 9,
    484 
    485     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
    486     EVEX_L2     = 1U << 10,
    487 
    488     // EVEX_B - Set if this instruction has EVEX.B field set.
    489     EVEX_B      = 1U << 11,
    490 
    491     // EVEX_CD8E - compressed disp8 form, element-size
    492     EVEX_CD8EShift = VEXShift + 12,
    493     EVEX_CD8EMask = 3,
    494 
    495     // EVEX_CD8V - compressed disp8 form, vector-width
    496     EVEX_CD8VShift = EVEX_CD8EShift + 2,
    497     EVEX_CD8VMask = 7,
    498 
    499     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
    500     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
    501     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
    502     /// storing a classifier in the imm8 field.  To simplify our implementation,
    503     /// we handle this by storeing the classifier in the opcode field and using
    504     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
    505     Has3DNow0F0FOpcode = 1U << 17,
    506 
    507     /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
    508     /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
    509     MemOp4 = 1U << 18,
    510 
    511     /// XOP - Opcode prefix used by XOP instructions.
    512     XOP = 1U << 19
    513 
    514   };
    515 
    516   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
    517   // specified machine instruction.
    518   //
    519   inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
    520     return TSFlags >> X86II::OpcodeShift;
    521   }
    522 
    523   inline bool hasImm(uint64_t TSFlags) {
    524     return (TSFlags & X86II::ImmMask) != 0;
    525   }
    526 
    527   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
    528   /// of the specified instruction.
    529   inline unsigned getSizeOfImm(uint64_t TSFlags) {
    530     switch (TSFlags & X86II::ImmMask) {
    531     default: llvm_unreachable("Unknown immediate size");
    532     case X86II::Imm8:
    533     case X86II::Imm8PCRel:  return 1;
    534     case X86II::Imm16:
    535     case X86II::Imm16PCRel: return 2;
    536     case X86II::Imm32:
    537     case X86II::Imm32PCRel: return 4;
    538     case X86II::Imm64:      return 8;
    539     }
    540   }
    541 
    542   /// isImmPCRel - Return true if the immediate of the specified instruction's
    543   /// TSFlags indicates that it is pc relative.
    544   inline unsigned isImmPCRel(uint64_t TSFlags) {
    545     switch (TSFlags & X86II::ImmMask) {
    546     default: llvm_unreachable("Unknown immediate size");
    547     case X86II::Imm8PCRel:
    548     case X86II::Imm16PCRel:
    549     case X86II::Imm32PCRel:
    550       return true;
    551     case X86II::Imm8:
    552     case X86II::Imm16:
    553     case X86II::Imm32:
    554     case X86II::Imm64:
    555       return false;
    556     }
    557   }
    558 
    559   /// getOperandBias - compute any additional adjustment needed to
    560   ///                  the offset to the start of the memory operand
    561   ///                  in this instruction.
    562   /// If this is a two-address instruction,skip one of the register operands.
    563   /// FIXME: This should be handled during MCInst lowering.
    564   inline int getOperandBias(const MCInstrDesc& Desc)
    565   {
    566     unsigned NumOps = Desc.getNumOperands();
    567     unsigned CurOp = 0;
    568     if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
    569       ++CurOp;
    570     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
    571              Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
    572       // Special case for AVX-512 GATHER with 2 TIED_TO operands
    573       // Skip the first 2 operands: dst, mask_wb
    574       CurOp += 2;
    575     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
    576              Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
    577       // Special case for GATHER with 2 TIED_TO operands
    578       // Skip the first 2 operands: dst, mask_wb
    579       CurOp += 2;
    580     else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
    581       // SCATTER
    582       ++CurOp;
    583     return CurOp;
    584   }
    585 
    586   /// getMemoryOperandNo - The function returns the MCInst operand # for the
    587   /// first field of the memory operand.  If the instruction doesn't have a
    588   /// memory operand, this returns -1.
    589   ///
    590   /// Note that this ignores tied operands.  If there is a tied register which
    591   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
    592   /// counted as one operand.
    593   ///
    594   inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
    595     switch (TSFlags & X86II::FormMask) {
    596     case X86II::MRMInitReg:
    597         // FIXME: Remove this form.
    598         return -1;
    599     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
    600     case X86II::Pseudo:
    601     case X86II::RawFrm:
    602     case X86II::AddRegFrm:
    603     case X86II::MRMDestReg:
    604     case X86II::MRMSrcReg:
    605     case X86II::RawFrmImm8:
    606     case X86II::RawFrmImm16:
    607        return -1;
    608     case X86II::MRMDestMem:
    609       return 0;
    610     case X86II::MRMSrcMem: {
    611       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
    612       bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
    613       bool HasEVEX = (TSFlags >> X86II::VEXShift) & X86II::EVEX;
    614       bool HasEVEX_K = HasEVEX && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
    615       unsigned FirstMemOp = 1;
    616       if (HasVEX_4V)
    617         ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
    618       if (HasMemOp4)
    619         ++FirstMemOp;// Skip the register source (which is encoded in I8IMM).
    620       if (HasEVEX_K)
    621         ++FirstMemOp;// Skip the mask register
    622       // FIXME: Maybe lea should have its own form?  This is a horrible hack.
    623       //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
    624       //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
    625       return FirstMemOp;
    626     }
    627     case X86II::MRM0r: case X86II::MRM1r:
    628     case X86II::MRM2r: case X86II::MRM3r:
    629     case X86II::MRM4r: case X86II::MRM5r:
    630     case X86II::MRM6r: case X86II::MRM7r:
    631       return -1;
    632     case X86II::MRM0m: case X86II::MRM1m:
    633     case X86II::MRM2m: case X86II::MRM3m:
    634     case X86II::MRM4m: case X86II::MRM5m:
    635     case X86II::MRM6m: case X86II::MRM7m: {
    636       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
    637       unsigned FirstMemOp = 0;
    638       if (HasVEX_4V)
    639         ++FirstMemOp;// Skip the register dest (which is encoded in VEX_VVVV).
    640       return FirstMemOp;
    641     }
    642     case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3:
    643     case X86II::MRM_C4: case X86II::MRM_C8: case X86II::MRM_C9:
    644     case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_E8:
    645     case X86II::MRM_F0: case X86II::MRM_F8: case X86II::MRM_F9:
    646     case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
    647     case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
    648     case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
    649     case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
    650     case X86II::MRM_DF:
    651       return -1;
    652     }
    653   }
    654 
    655   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
    656   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
    657   inline bool isX86_64ExtendedReg(unsigned RegNo) {
    658     if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
    659         (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
    660         (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
    661         (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
    662         (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
    663         (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
    664       return true;
    665 
    666     switch (RegNo) {
    667     default: break;
    668     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
    669     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
    670     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
    671     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
    672     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
    673     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
    674     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
    675     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
    676     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
    677     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
    678         return true;
    679     }
    680     return false;
    681   }
    682 
    683   /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
    684   /// registers? e.g. zmm21, etc.
    685   static inline bool is32ExtendedReg(unsigned RegNo) {
    686     return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
    687             (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
    688             (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
    689   }
    690 
    691 
    692   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
    693     return (reg == X86::SPL || reg == X86::BPL ||
    694             reg == X86::SIL || reg == X86::DIL);
    695   }
    696 }
    697 
    698 } // end namespace llvm;
    699 
    700 #endif
    701