Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 
     31 #ifndef CERES_NO_SUITESPARSE
     32 
     33 #include "ceres/visibility_based_preconditioner.h"
     34 
     35 #include <algorithm>
     36 #include <functional>
     37 #include <iterator>
     38 #include <set>
     39 #include <utility>
     40 #include <vector>
     41 #include "Eigen/Dense"
     42 #include "ceres/block_random_access_sparse_matrix.h"
     43 #include "ceres/block_sparse_matrix.h"
     44 #include "ceres/canonical_views_clustering.h"
     45 #include "ceres/collections_port.h"
     46 #include "ceres/detect_structure.h"
     47 #include "ceres/graph.h"
     48 #include "ceres/graph_algorithms.h"
     49 #include "ceres/internal/scoped_ptr.h"
     50 #include "ceres/linear_solver.h"
     51 #include "ceres/schur_eliminator.h"
     52 #include "ceres/visibility.h"
     53 #include "glog/logging.h"
     54 
     55 namespace ceres {
     56 namespace internal {
     57 
     58 // TODO(sameeragarwal): Currently these are magic weights for the
     59 // preconditioner construction. Move these higher up into the Options
     60 // struct and provide some guidelines for choosing them.
     61 //
     62 // This will require some more work on the clustering algorithm and
     63 // possibly some more refactoring of the code.
     64 static const double kSizePenaltyWeight = 3.0;
     65 static const double kSimilarityPenaltyWeight = 0.0;
     66 
     67 VisibilityBasedPreconditioner::VisibilityBasedPreconditioner(
     68     const CompressedRowBlockStructure& bs,
     69     const Preconditioner::Options& options)
     70     : options_(options),
     71       num_blocks_(0),
     72       num_clusters_(0),
     73       factor_(NULL) {
     74   CHECK_GT(options_.elimination_groups.size(), 1);
     75   CHECK_GT(options_.elimination_groups[0], 0);
     76   CHECK(options_.type == CLUSTER_JACOBI ||
     77         options_.type == CLUSTER_TRIDIAGONAL)
     78       << "Unknown preconditioner type: " << options_.type;
     79   num_blocks_ = bs.cols.size() - options_.elimination_groups[0];
     80   CHECK_GT(num_blocks_, 0)
     81       << "Jacobian should have atleast 1 f_block for "
     82       << "visibility based preconditioning.";
     83 
     84   // Vector of camera block sizes
     85   block_size_.resize(num_blocks_);
     86   for (int i = 0; i < num_blocks_; ++i) {
     87     block_size_[i] = bs.cols[i + options_.elimination_groups[0]].size;
     88   }
     89 
     90   const time_t start_time = time(NULL);
     91   switch (options_.type) {
     92     case CLUSTER_JACOBI:
     93       ComputeClusterJacobiSparsity(bs);
     94       break;
     95     case CLUSTER_TRIDIAGONAL:
     96       ComputeClusterTridiagonalSparsity(bs);
     97       break;
     98     default:
     99       LOG(FATAL) << "Unknown preconditioner type";
    100   }
    101   const time_t structure_time = time(NULL);
    102   InitStorage(bs);
    103   const time_t storage_time = time(NULL);
    104   InitEliminator(bs);
    105   const time_t eliminator_time = time(NULL);
    106 
    107   // Allocate temporary storage for a vector used during
    108   // RightMultiply.
    109   tmp_rhs_ = CHECK_NOTNULL(ss_.CreateDenseVector(NULL,
    110                                                  m_->num_rows(),
    111                                                  m_->num_rows()));
    112   const time_t init_time = time(NULL);
    113   VLOG(2) << "init time: "
    114           << init_time - start_time
    115           << " structure time: " << structure_time - start_time
    116           << " storage time:" << storage_time - structure_time
    117           << " eliminator time: " << eliminator_time - storage_time;
    118 }
    119 
    120 VisibilityBasedPreconditioner::~VisibilityBasedPreconditioner() {
    121   if (factor_ != NULL) {
    122     ss_.Free(factor_);
    123     factor_ = NULL;
    124   }
    125   if (tmp_rhs_ != NULL) {
    126     ss_.Free(tmp_rhs_);
    127     tmp_rhs_ = NULL;
    128   }
    129 }
    130 
    131 // Determine the sparsity structure of the CLUSTER_JACOBI
    132 // preconditioner. It clusters cameras using their scene
    133 // visibility. The clusters form the diagonal blocks of the
    134 // preconditioner matrix.
    135 void VisibilityBasedPreconditioner::ComputeClusterJacobiSparsity(
    136     const CompressedRowBlockStructure& bs) {
    137   vector<set<int> > visibility;
    138   ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
    139   CHECK_EQ(num_blocks_, visibility.size());
    140   ClusterCameras(visibility);
    141   cluster_pairs_.clear();
    142   for (int i = 0; i < num_clusters_; ++i) {
    143     cluster_pairs_.insert(make_pair(i, i));
    144   }
    145 }
    146 
    147 // Determine the sparsity structure of the CLUSTER_TRIDIAGONAL
    148 // preconditioner. It clusters cameras using using the scene
    149 // visibility and then finds the strongly interacting pairs of
    150 // clusters by constructing another graph with the clusters as
    151 // vertices and approximating it with a degree-2 maximum spanning
    152 // forest. The set of edges in this forest are the cluster pairs.
    153 void VisibilityBasedPreconditioner::ComputeClusterTridiagonalSparsity(
    154     const CompressedRowBlockStructure& bs) {
    155   vector<set<int> > visibility;
    156   ComputeVisibility(bs, options_.elimination_groups[0], &visibility);
    157   CHECK_EQ(num_blocks_, visibility.size());
    158   ClusterCameras(visibility);
    159 
    160   // Construct a weighted graph on the set of clusters, where the
    161   // edges are the number of 3D points/e_blocks visible in both the
    162   // clusters at the ends of the edge. Return an approximate degree-2
    163   // maximum spanning forest of this graph.
    164   vector<set<int> > cluster_visibility;
    165   ComputeClusterVisibility(visibility, &cluster_visibility);
    166   scoped_ptr<Graph<int> > cluster_graph(
    167       CHECK_NOTNULL(CreateClusterGraph(cluster_visibility)));
    168   scoped_ptr<Graph<int> > forest(
    169       CHECK_NOTNULL(Degree2MaximumSpanningForest(*cluster_graph)));
    170   ForestToClusterPairs(*forest, &cluster_pairs_);
    171 }
    172 
    173 // Allocate storage for the preconditioner matrix.
    174 void VisibilityBasedPreconditioner::InitStorage(
    175     const CompressedRowBlockStructure& bs) {
    176   ComputeBlockPairsInPreconditioner(bs);
    177   m_.reset(new BlockRandomAccessSparseMatrix(block_size_, block_pairs_));
    178 }
    179 
    180 // Call the canonical views algorithm and cluster the cameras based on
    181 // their visibility sets. The visibility set of a camera is the set of
    182 // e_blocks/3D points in the scene that are seen by it.
    183 //
    184 // The cluster_membership_ vector is updated to indicate cluster
    185 // memberships for each camera block.
    186 void VisibilityBasedPreconditioner::ClusterCameras(
    187     const vector<set<int> >& visibility) {
    188   scoped_ptr<Graph<int> > schur_complement_graph(
    189       CHECK_NOTNULL(CreateSchurComplementGraph(visibility)));
    190 
    191   CanonicalViewsClusteringOptions options;
    192   options.size_penalty_weight = kSizePenaltyWeight;
    193   options.similarity_penalty_weight = kSimilarityPenaltyWeight;
    194 
    195   vector<int> centers;
    196   HashMap<int, int> membership;
    197   ComputeCanonicalViewsClustering(*schur_complement_graph,
    198                                   options,
    199                                   &centers,
    200                                   &membership);
    201   num_clusters_ = centers.size();
    202   CHECK_GT(num_clusters_, 0);
    203   VLOG(2) << "num_clusters: " << num_clusters_;
    204   FlattenMembershipMap(membership, &cluster_membership_);
    205 }
    206 
    207 // Compute the block sparsity structure of the Schur complement
    208 // matrix. For each pair of cameras contributing a non-zero cell to
    209 // the schur complement, determine if that cell is present in the
    210 // preconditioner or not.
    211 //
    212 // A pair of cameras contribute a cell to the preconditioner if they
    213 // are part of the same cluster or if the the two clusters that they
    214 // belong have an edge connecting them in the degree-2 maximum
    215 // spanning forest.
    216 //
    217 // For example, a camera pair (i,j) where i belonges to cluster1 and
    218 // j belongs to cluster2 (assume that cluster1 < cluster2).
    219 //
    220 // The cell corresponding to (i,j) is present in the preconditioner
    221 // if cluster1 == cluster2 or the pair (cluster1, cluster2) were
    222 // connected by an edge in the degree-2 maximum spanning forest.
    223 //
    224 // Since we have already expanded the forest into a set of camera
    225 // pairs/edges, including self edges, the check can be reduced to
    226 // checking membership of (cluster1, cluster2) in cluster_pairs_.
    227 void VisibilityBasedPreconditioner::ComputeBlockPairsInPreconditioner(
    228     const CompressedRowBlockStructure& bs) {
    229   block_pairs_.clear();
    230   for (int i = 0; i < num_blocks_; ++i) {
    231     block_pairs_.insert(make_pair(i, i));
    232   }
    233 
    234   int r = 0;
    235   const int num_row_blocks = bs.rows.size();
    236   const int num_eliminate_blocks = options_.elimination_groups[0];
    237 
    238   // Iterate over each row of the matrix. The block structure of the
    239   // matrix is assumed to be sorted in order of the e_blocks/point
    240   // blocks. Thus all row blocks containing an e_block/point occur
    241   // contiguously. Further, if present, an e_block is always the first
    242   // parameter block in each row block.  These structural assumptions
    243   // are common to all Schur complement based solvers in Ceres.
    244   //
    245   // For each e_block/point block we identify the set of cameras
    246   // seeing it. The cross product of this set with itself is the set
    247   // of non-zero cells contibuted by this e_block.
    248   //
    249   // The time complexity of this is O(nm^2) where, n is the number of
    250   // 3d points and m is the maximum number of cameras seeing any
    251   // point, which for most scenes is a fairly small number.
    252   while (r < num_row_blocks) {
    253     int e_block_id = bs.rows[r].cells.front().block_id;
    254     if (e_block_id >= num_eliminate_blocks) {
    255       // Skip the rows whose first block is an f_block.
    256       break;
    257     }
    258 
    259     set<int> f_blocks;
    260     for (; r < num_row_blocks; ++r) {
    261       const CompressedRow& row = bs.rows[r];
    262       if (row.cells.front().block_id != e_block_id) {
    263         break;
    264       }
    265 
    266       // Iterate over the blocks in the row, ignoring the first block
    267       // since it is the one to be eliminated and adding the rest to
    268       // the list of f_blocks associated with this e_block.
    269       for (int c = 1; c < row.cells.size(); ++c) {
    270         const Cell& cell = row.cells[c];
    271         const int f_block_id = cell.block_id - num_eliminate_blocks;
    272         CHECK_GE(f_block_id, 0);
    273         f_blocks.insert(f_block_id);
    274       }
    275     }
    276 
    277     for (set<int>::const_iterator block1 = f_blocks.begin();
    278          block1 != f_blocks.end();
    279          ++block1) {
    280       set<int>::const_iterator block2 = block1;
    281       ++block2;
    282       for (; block2 != f_blocks.end(); ++block2) {
    283         if (IsBlockPairInPreconditioner(*block1, *block2)) {
    284           block_pairs_.insert(make_pair(*block1, *block2));
    285         }
    286       }
    287     }
    288   }
    289 
    290   // The remaining rows which do not contain any e_blocks.
    291   for (; r < num_row_blocks; ++r) {
    292     const CompressedRow& row = bs.rows[r];
    293     CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
    294     for (int i = 0; i < row.cells.size(); ++i) {
    295       const int block1 = row.cells[i].block_id - num_eliminate_blocks;
    296       for (int j = 0; j < row.cells.size(); ++j) {
    297         const int block2 = row.cells[j].block_id - num_eliminate_blocks;
    298         if (block1 <= block2) {
    299           if (IsBlockPairInPreconditioner(block1, block2)) {
    300             block_pairs_.insert(make_pair(block1, block2));
    301           }
    302         }
    303       }
    304     }
    305   }
    306 
    307   VLOG(1) << "Block pair stats: " << block_pairs_.size();
    308 }
    309 
    310 // Initialize the SchurEliminator.
    311 void VisibilityBasedPreconditioner::InitEliminator(
    312     const CompressedRowBlockStructure& bs) {
    313   LinearSolver::Options eliminator_options;
    314   eliminator_options.elimination_groups = options_.elimination_groups;
    315   eliminator_options.num_threads = options_.num_threads;
    316 
    317   DetectStructure(bs, options_.elimination_groups[0],
    318                   &eliminator_options.row_block_size,
    319                   &eliminator_options.e_block_size,
    320                   &eliminator_options.f_block_size);
    321 
    322   eliminator_.reset(SchurEliminatorBase::Create(eliminator_options));
    323   eliminator_->Init(options_.elimination_groups[0], &bs);
    324 }
    325 
    326 // Update the values of the preconditioner matrix and factorize it.
    327 bool VisibilityBasedPreconditioner::UpdateImpl(const BlockSparseMatrix& A,
    328                                                const double* D) {
    329   const time_t start_time = time(NULL);
    330   const int num_rows = m_->num_rows();
    331   CHECK_GT(num_rows, 0);
    332 
    333   // We need a dummy rhs vector and a dummy b vector since the Schur
    334   // eliminator combines the computation of the reduced camera matrix
    335   // with the computation of the right hand side of that linear
    336   // system.
    337   //
    338   // TODO(sameeragarwal): Perhaps its worth refactoring the
    339   // SchurEliminator::Eliminate function to allow NULL for the rhs. As
    340   // of now it does not seem to be worth the effort.
    341   Vector rhs = Vector::Zero(m_->num_rows());
    342   Vector b = Vector::Zero(A.num_rows());
    343 
    344   // Compute a subset of the entries of the Schur complement.
    345   eliminator_->Eliminate(&A, b.data(), D, m_.get(), rhs.data());
    346 
    347   // Try factorizing the matrix. For CLUSTER_JACOBI, this should
    348   // always succeed modulo some numerical/conditioning problems. For
    349   // CLUSTER_TRIDIAGONAL, in general the preconditioner matrix as
    350   // constructed is not positive definite. However, we will go ahead
    351   // and try factorizing it. If it works, great, otherwise we scale
    352   // all the cells in the preconditioner corresponding to the edges in
    353   // the degree-2 forest and that guarantees positive
    354   // definiteness. The proof of this fact can be found in Lemma 1 in
    355   // "Visibility Based Preconditioning for Bundle Adjustment".
    356   //
    357   // Doing the factorization like this saves us matrix mass when
    358   // scaling is not needed, which is quite often in our experience.
    359   bool status = Factorize();
    360 
    361   // The scaling only affects the tri-diagonal case, since
    362   // ScaleOffDiagonalBlocks only pays attenion to the cells that
    363   // belong to the edges of the degree-2 forest. In the CLUSTER_JACOBI
    364   // case, the preconditioner is guaranteed to be positive
    365   // semidefinite.
    366   if (!status && options_.type == CLUSTER_TRIDIAGONAL) {
    367     VLOG(1) << "Unscaled factorization failed. Retrying with off-diagonal "
    368             << "scaling";
    369     ScaleOffDiagonalCells();
    370     status = Factorize();
    371   }
    372 
    373   VLOG(2) << "Compute time: " << time(NULL) - start_time;
    374   return status;
    375 }
    376 
    377 // Consider the preconditioner matrix as meta-block matrix, whose
    378 // blocks correspond to the clusters. Then cluster pairs corresponding
    379 // to edges in the degree-2 forest are off diagonal entries of this
    380 // matrix. Scaling these off-diagonal entries by 1/2 forces this
    381 // matrix to be positive definite.
    382 void VisibilityBasedPreconditioner::ScaleOffDiagonalCells() {
    383   for (set< pair<int, int> >::const_iterator it = block_pairs_.begin();
    384        it != block_pairs_.end();
    385        ++it) {
    386     const int block1 = it->first;
    387     const int block2 = it->second;
    388     if (!IsBlockPairOffDiagonal(block1, block2)) {
    389       continue;
    390     }
    391 
    392     int r, c, row_stride, col_stride;
    393     CellInfo* cell_info = m_->GetCell(block1, block2,
    394                                       &r, &c,
    395                                       &row_stride, &col_stride);
    396     CHECK(cell_info != NULL)
    397         << "Cell missing for block pair (" << block1 << "," << block2 << ")"
    398         << " cluster pair (" << cluster_membership_[block1]
    399         << " " << cluster_membership_[block2] << ")";
    400 
    401     // Ah the magic of tri-diagonal matrices and diagonal
    402     // dominance. See Lemma 1 in "Visibility Based Preconditioning
    403     // For Bundle Adjustment".
    404     MatrixRef m(cell_info->values, row_stride, col_stride);
    405     m.block(r, c, block_size_[block1], block_size_[block2]) *= 0.5;
    406   }
    407 }
    408 
    409 // Compute the sparse Cholesky factorization of the preconditioner
    410 // matrix.
    411 bool VisibilityBasedPreconditioner::Factorize() {
    412   // Extract the TripletSparseMatrix that is used for actually storing
    413   // S and convert it into a cholmod_sparse object.
    414   cholmod_sparse* lhs = ss_.CreateSparseMatrix(
    415       down_cast<BlockRandomAccessSparseMatrix*>(
    416           m_.get())->mutable_matrix());
    417 
    418   // The matrix is symmetric, and the upper triangular part of the
    419   // matrix contains the values.
    420   lhs->stype = 1;
    421 
    422   // Symbolic factorization is computed if we don't already have one handy.
    423   if (factor_ == NULL) {
    424     factor_ = ss_.BlockAnalyzeCholesky(lhs, block_size_, block_size_);
    425   }
    426 
    427   bool status = ss_.Cholesky(lhs, factor_);
    428   ss_.Free(lhs);
    429   return status;
    430 }
    431 
    432 void VisibilityBasedPreconditioner::RightMultiply(const double* x,
    433                                                   double* y) const {
    434   CHECK_NOTNULL(x);
    435   CHECK_NOTNULL(y);
    436   SuiteSparse* ss = const_cast<SuiteSparse*>(&ss_);
    437 
    438   const int num_rows = m_->num_rows();
    439   memcpy(CHECK_NOTNULL(tmp_rhs_)->x, x, m_->num_rows() * sizeof(*x));
    440   cholmod_dense* solution = CHECK_NOTNULL(ss->Solve(factor_, tmp_rhs_));
    441   memcpy(y, solution->x, sizeof(*y) * num_rows);
    442   ss->Free(solution);
    443 }
    444 
    445 int VisibilityBasedPreconditioner::num_rows() const {
    446   return m_->num_rows();
    447 }
    448 
    449 // Classify camera/f_block pairs as in and out of the preconditioner,
    450 // based on whether the cluster pair that they belong to is in the
    451 // preconditioner or not.
    452 bool VisibilityBasedPreconditioner::IsBlockPairInPreconditioner(
    453     const int block1,
    454     const int block2) const {
    455   int cluster1 = cluster_membership_[block1];
    456   int cluster2 = cluster_membership_[block2];
    457   if (cluster1 > cluster2) {
    458     std::swap(cluster1, cluster2);
    459   }
    460   return (cluster_pairs_.count(make_pair(cluster1, cluster2)) > 0);
    461 }
    462 
    463 bool VisibilityBasedPreconditioner::IsBlockPairOffDiagonal(
    464     const int block1,
    465     const int block2) const {
    466   return (cluster_membership_[block1] != cluster_membership_[block2]);
    467 }
    468 
    469 // Convert a graph into a list of edges that includes self edges for
    470 // each vertex.
    471 void VisibilityBasedPreconditioner::ForestToClusterPairs(
    472     const Graph<int>& forest,
    473     HashSet<pair<int, int> >* cluster_pairs) const {
    474   CHECK_NOTNULL(cluster_pairs)->clear();
    475   const HashSet<int>& vertices = forest.vertices();
    476   CHECK_EQ(vertices.size(), num_clusters_);
    477 
    478   // Add all the cluster pairs corresponding to the edges in the
    479   // forest.
    480   for (HashSet<int>::const_iterator it1 = vertices.begin();
    481        it1 != vertices.end();
    482        ++it1) {
    483     const int cluster1 = *it1;
    484     cluster_pairs->insert(make_pair(cluster1, cluster1));
    485     const HashSet<int>& neighbors = forest.Neighbors(cluster1);
    486     for (HashSet<int>::const_iterator it2 = neighbors.begin();
    487          it2 != neighbors.end();
    488          ++it2) {
    489       const int cluster2 = *it2;
    490       if (cluster1 < cluster2) {
    491         cluster_pairs->insert(make_pair(cluster1, cluster2));
    492       }
    493     }
    494   }
    495 }
    496 
    497 // The visibilty set of a cluster is the union of the visibilty sets
    498 // of all its cameras. In other words, the set of points visible to
    499 // any camera in the cluster.
    500 void VisibilityBasedPreconditioner::ComputeClusterVisibility(
    501     const vector<set<int> >& visibility,
    502     vector<set<int> >* cluster_visibility) const {
    503   CHECK_NOTNULL(cluster_visibility)->resize(0);
    504   cluster_visibility->resize(num_clusters_);
    505   for (int i = 0; i < num_blocks_; ++i) {
    506     const int cluster_id = cluster_membership_[i];
    507     (*cluster_visibility)[cluster_id].insert(visibility[i].begin(),
    508                                              visibility[i].end());
    509   }
    510 }
    511 
    512 // Construct a graph whose vertices are the clusters, and the edge
    513 // weights are the number of 3D points visible to cameras in both the
    514 // vertices.
    515 Graph<int>* VisibilityBasedPreconditioner::CreateClusterGraph(
    516     const vector<set<int> >& cluster_visibility) const {
    517   Graph<int>* cluster_graph = new Graph<int>;
    518 
    519   for (int i = 0; i < num_clusters_; ++i) {
    520     cluster_graph->AddVertex(i);
    521   }
    522 
    523   for (int i = 0; i < num_clusters_; ++i) {
    524     const set<int>& cluster_i = cluster_visibility[i];
    525     for (int j = i+1; j < num_clusters_; ++j) {
    526       vector<int> intersection;
    527       const set<int>& cluster_j = cluster_visibility[j];
    528       set_intersection(cluster_i.begin(), cluster_i.end(),
    529                        cluster_j.begin(), cluster_j.end(),
    530                        back_inserter(intersection));
    531 
    532       if (intersection.size() > 0) {
    533         // Clusters interact strongly when they share a large number
    534         // of 3D points. The degree-2 maximum spanning forest
    535         // alorithm, iterates on the edges in decreasing order of
    536         // their weight, which is the number of points shared by the
    537         // two cameras that it connects.
    538         cluster_graph->AddEdge(i, j, intersection.size());
    539       }
    540     }
    541   }
    542   return cluster_graph;
    543 }
    544 
    545 // Canonical views clustering returns a HashMap from vertices to
    546 // cluster ids. Convert this into a flat array for quick lookup. It is
    547 // possible that some of the vertices may not be associated with any
    548 // cluster. In that case, randomly assign them to one of the clusters.
    549 void VisibilityBasedPreconditioner::FlattenMembershipMap(
    550     const HashMap<int, int>& membership_map,
    551     vector<int>* membership_vector) const {
    552   CHECK_NOTNULL(membership_vector)->resize(0);
    553   membership_vector->resize(num_blocks_, -1);
    554   // Iterate over the cluster membership map and update the
    555   // cluster_membership_ vector assigning arbitrary cluster ids to
    556   // the few cameras that have not been clustered.
    557   for (HashMap<int, int>::const_iterator it = membership_map.begin();
    558        it != membership_map.end();
    559        ++it) {
    560     const int camera_id = it->first;
    561     int cluster_id = it->second;
    562 
    563     // If the view was not clustered, randomly assign it to one of the
    564     // clusters. This preserves the mathematical correctness of the
    565     // preconditioner. If there are too many views which are not
    566     // clustered, it may lead to some quality degradation though.
    567     //
    568     // TODO(sameeragarwal): Check if a large number of views have not
    569     // been clustered and deal with it?
    570     if (cluster_id == -1) {
    571       cluster_id = camera_id % num_clusters_;
    572     }
    573 
    574     membership_vector->at(camera_id) = cluster_id;
    575   }
    576 }
    577 
    578 }  // namespace internal
    579 }  // namespace ceres
    580 
    581 #endif  // CERES_NO_SUITESPARSE
    582