Home | History | Annotate | Download | only in DebugInfo
      1 //===-- DWARFDebugLine.cpp ------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "DWARFDebugLine.h"
     11 #include "llvm/Support/Dwarf.h"
     12 #include "llvm/Support/Format.h"
     13 #include "llvm/Support/Path.h"
     14 #include "llvm/Support/raw_ostream.h"
     15 #include <algorithm>
     16 using namespace llvm;
     17 using namespace dwarf;
     18 
     19 void DWARFDebugLine::Prologue::dump(raw_ostream &OS) const {
     20   OS << "Line table prologue:\n"
     21      << format("   total_length: 0x%8.8x\n", TotalLength)
     22      << format("        version: %u\n", Version)
     23      << format("prologue_length: 0x%8.8x\n", PrologueLength)
     24      << format("min_inst_length: %u\n", MinInstLength)
     25      << format("default_is_stmt: %u\n", DefaultIsStmt)
     26      << format("      line_base: %i\n", LineBase)
     27      << format("     line_range: %u\n", LineRange)
     28      << format("    opcode_base: %u\n", OpcodeBase);
     29 
     30   for (uint32_t i = 0; i < StandardOpcodeLengths.size(); ++i)
     31     OS << format("standard_opcode_lengths[%s] = %u\n", LNStandardString(i+1),
     32                  StandardOpcodeLengths[i]);
     33 
     34   if (!IncludeDirectories.empty())
     35     for (uint32_t i = 0; i < IncludeDirectories.size(); ++i)
     36       OS << format("include_directories[%3u] = '", i+1)
     37          << IncludeDirectories[i] << "'\n";
     38 
     39   if (!FileNames.empty()) {
     40     OS << "                Dir  Mod Time   File Len   File Name\n"
     41        << "                ---- ---------- ---------- -----------"
     42           "----------------\n";
     43     for (uint32_t i = 0; i < FileNames.size(); ++i) {
     44       const FileNameEntry& fileEntry = FileNames[i];
     45       OS << format("file_names[%3u] %4" PRIu64 " ", i+1, fileEntry.DirIdx)
     46          << format("0x%8.8" PRIx64 " 0x%8.8" PRIx64 " ",
     47                    fileEntry.ModTime, fileEntry.Length)
     48          << fileEntry.Name << '\n';
     49     }
     50   }
     51 }
     52 
     53 void DWARFDebugLine::Row::postAppend() {
     54   BasicBlock = false;
     55   PrologueEnd = false;
     56   EpilogueBegin = false;
     57 }
     58 
     59 void DWARFDebugLine::Row::reset(bool default_is_stmt) {
     60   Address = 0;
     61   Line = 1;
     62   Column = 0;
     63   File = 1;
     64   Isa = 0;
     65   IsStmt = default_is_stmt;
     66   BasicBlock = false;
     67   EndSequence = false;
     68   PrologueEnd = false;
     69   EpilogueBegin = false;
     70 }
     71 
     72 void DWARFDebugLine::Row::dump(raw_ostream &OS) const {
     73   OS << format("0x%16.16" PRIx64 " %6u %6u", Address, Line, Column)
     74      << format(" %6u %3u ", File, Isa)
     75      << (IsStmt ? " is_stmt" : "")
     76      << (BasicBlock ? " basic_block" : "")
     77      << (PrologueEnd ? " prologue_end" : "")
     78      << (EpilogueBegin ? " epilogue_begin" : "")
     79      << (EndSequence ? " end_sequence" : "")
     80      << '\n';
     81 }
     82 
     83 void DWARFDebugLine::LineTable::dump(raw_ostream &OS) const {
     84   Prologue.dump(OS);
     85   OS << '\n';
     86 
     87   if (!Rows.empty()) {
     88     OS << "Address            Line   Column File   ISA Flags\n"
     89        << "------------------ ------ ------ ------ --- -------------\n";
     90     for (std::vector<Row>::const_iterator pos = Rows.begin(),
     91          end = Rows.end(); pos != end; ++pos)
     92       pos->dump(OS);
     93   }
     94 }
     95 
     96 DWARFDebugLine::State::~State() {}
     97 
     98 void DWARFDebugLine::State::appendRowToMatrix(uint32_t offset) {
     99   if (Sequence::Empty) {
    100     // Record the beginning of instruction sequence.
    101     Sequence::Empty = false;
    102     Sequence::LowPC = Address;
    103     Sequence::FirstRowIndex = row;
    104   }
    105   ++row;  // Increase the row number.
    106   LineTable::appendRow(*this);
    107   if (EndSequence) {
    108     // Record the end of instruction sequence.
    109     Sequence::HighPC = Address;
    110     Sequence::LastRowIndex = row;
    111     if (Sequence::isValid())
    112       LineTable::appendSequence(*this);
    113     Sequence::reset();
    114   }
    115   Row::postAppend();
    116 }
    117 
    118 void DWARFDebugLine::State::finalize() {
    119   row = DoneParsingLineTable;
    120   if (!Sequence::Empty) {
    121     fprintf(stderr, "warning: last sequence in debug line table is not"
    122                     "terminated!\n");
    123   }
    124   // Sort all sequences so that address lookup will work faster.
    125   if (!Sequences.empty()) {
    126     std::sort(Sequences.begin(), Sequences.end(), Sequence::orderByLowPC);
    127     // Note: actually, instruction address ranges of sequences should not
    128     // overlap (in shared objects and executables). If they do, the address
    129     // lookup would still work, though, but result would be ambiguous.
    130     // We don't report warning in this case. For example,
    131     // sometimes .so compiled from multiple object files contains a few
    132     // rudimentary sequences for address ranges [0x0, 0xsomething).
    133   }
    134 }
    135 
    136 DWARFDebugLine::DumpingState::~DumpingState() {}
    137 
    138 void DWARFDebugLine::DumpingState::finalize() {
    139   LineTable::dump(OS);
    140 }
    141 
    142 const DWARFDebugLine::LineTable *
    143 DWARFDebugLine::getLineTable(uint32_t offset) const {
    144   LineTableConstIter pos = LineTableMap.find(offset);
    145   if (pos != LineTableMap.end())
    146     return &pos->second;
    147   return 0;
    148 }
    149 
    150 const DWARFDebugLine::LineTable *
    151 DWARFDebugLine::getOrParseLineTable(DataExtractor debug_line_data,
    152                                     uint32_t offset) {
    153   std::pair<LineTableIter, bool> pos =
    154     LineTableMap.insert(LineTableMapTy::value_type(offset, LineTable()));
    155   if (pos.second) {
    156     // Parse and cache the line table for at this offset.
    157     State state;
    158     if (!parseStatementTable(debug_line_data, RelocMap, &offset, state))
    159       return 0;
    160     pos.first->second = state;
    161   }
    162   return &pos.first->second;
    163 }
    164 
    165 bool
    166 DWARFDebugLine::parsePrologue(DataExtractor debug_line_data,
    167                               uint32_t *offset_ptr, Prologue *prologue) {
    168   const uint32_t prologue_offset = *offset_ptr;
    169 
    170   prologue->clear();
    171   prologue->TotalLength = debug_line_data.getU32(offset_ptr);
    172   prologue->Version = debug_line_data.getU16(offset_ptr);
    173   if (prologue->Version != 2)
    174     return false;
    175 
    176   prologue->PrologueLength = debug_line_data.getU32(offset_ptr);
    177   const uint32_t end_prologue_offset = prologue->PrologueLength + *offset_ptr;
    178   prologue->MinInstLength = debug_line_data.getU8(offset_ptr);
    179   prologue->DefaultIsStmt = debug_line_data.getU8(offset_ptr);
    180   prologue->LineBase = debug_line_data.getU8(offset_ptr);
    181   prologue->LineRange = debug_line_data.getU8(offset_ptr);
    182   prologue->OpcodeBase = debug_line_data.getU8(offset_ptr);
    183 
    184   prologue->StandardOpcodeLengths.reserve(prologue->OpcodeBase-1);
    185   for (uint32_t i = 1; i < prologue->OpcodeBase; ++i) {
    186     uint8_t op_len = debug_line_data.getU8(offset_ptr);
    187     prologue->StandardOpcodeLengths.push_back(op_len);
    188   }
    189 
    190   while (*offset_ptr < end_prologue_offset) {
    191     const char *s = debug_line_data.getCStr(offset_ptr);
    192     if (s && s[0])
    193       prologue->IncludeDirectories.push_back(s);
    194     else
    195       break;
    196   }
    197 
    198   while (*offset_ptr < end_prologue_offset) {
    199     const char *name = debug_line_data.getCStr(offset_ptr);
    200     if (name && name[0]) {
    201       FileNameEntry fileEntry;
    202       fileEntry.Name = name;
    203       fileEntry.DirIdx = debug_line_data.getULEB128(offset_ptr);
    204       fileEntry.ModTime = debug_line_data.getULEB128(offset_ptr);
    205       fileEntry.Length = debug_line_data.getULEB128(offset_ptr);
    206       prologue->FileNames.push_back(fileEntry);
    207     } else {
    208       break;
    209     }
    210   }
    211 
    212   if (*offset_ptr != end_prologue_offset) {
    213     fprintf(stderr, "warning: parsing line table prologue at 0x%8.8x should"
    214                     " have ended at 0x%8.8x but it ended ad 0x%8.8x\n",
    215             prologue_offset, end_prologue_offset, *offset_ptr);
    216     return false;
    217   }
    218   return true;
    219 }
    220 
    221 bool
    222 DWARFDebugLine::parseStatementTable(DataExtractor debug_line_data,
    223                                     const RelocAddrMap *RMap,
    224                                     uint32_t *offset_ptr, State &state) {
    225   const uint32_t debug_line_offset = *offset_ptr;
    226 
    227   Prologue *prologue = &state.Prologue;
    228 
    229   if (!parsePrologue(debug_line_data, offset_ptr, prologue)) {
    230     // Restore our offset and return false to indicate failure!
    231     *offset_ptr = debug_line_offset;
    232     return false;
    233   }
    234 
    235   const uint32_t end_offset = debug_line_offset + prologue->TotalLength +
    236                               sizeof(prologue->TotalLength);
    237 
    238   state.reset();
    239 
    240   while (*offset_ptr < end_offset) {
    241     uint8_t opcode = debug_line_data.getU8(offset_ptr);
    242 
    243     if (opcode == 0) {
    244       // Extended Opcodes always start with a zero opcode followed by
    245       // a uleb128 length so you can skip ones you don't know about
    246       uint32_t ext_offset = *offset_ptr;
    247       uint64_t len = debug_line_data.getULEB128(offset_ptr);
    248       uint32_t arg_size = len - (*offset_ptr - ext_offset);
    249 
    250       uint8_t sub_opcode = debug_line_data.getU8(offset_ptr);
    251       switch (sub_opcode) {
    252       case DW_LNE_end_sequence:
    253         // Set the end_sequence register of the state machine to true and
    254         // append a row to the matrix using the current values of the
    255         // state-machine registers. Then reset the registers to the initial
    256         // values specified above. Every statement program sequence must end
    257         // with a DW_LNE_end_sequence instruction which creates a row whose
    258         // address is that of the byte after the last target machine instruction
    259         // of the sequence.
    260         state.EndSequence = true;
    261         state.appendRowToMatrix(*offset_ptr);
    262         state.reset();
    263         break;
    264 
    265       case DW_LNE_set_address:
    266         // Takes a single relocatable address as an operand. The size of the
    267         // operand is the size appropriate to hold an address on the target
    268         // machine. Set the address register to the value given by the
    269         // relocatable address. All of the other statement program opcodes
    270         // that affect the address register add a delta to it. This instruction
    271         // stores a relocatable value into it instead.
    272         {
    273           // If this address is in our relocation map, apply the relocation.
    274           RelocAddrMap::const_iterator AI = RMap->find(*offset_ptr);
    275           if (AI != RMap->end()) {
    276              const std::pair<uint8_t, int64_t> &R = AI->second;
    277              state.Address = debug_line_data.getAddress(offset_ptr) + R.second;
    278           } else
    279             state.Address = debug_line_data.getAddress(offset_ptr);
    280         }
    281         break;
    282 
    283       case DW_LNE_define_file:
    284         // Takes 4 arguments. The first is a null terminated string containing
    285         // a source file name. The second is an unsigned LEB128 number
    286         // representing the directory index of the directory in which the file
    287         // was found. The third is an unsigned LEB128 number representing the
    288         // time of last modification of the file. The fourth is an unsigned
    289         // LEB128 number representing the length in bytes of the file. The time
    290         // and length fields may contain LEB128(0) if the information is not
    291         // available.
    292         //
    293         // The directory index represents an entry in the include_directories
    294         // section of the statement program prologue. The index is LEB128(0)
    295         // if the file was found in the current directory of the compilation,
    296         // LEB128(1) if it was found in the first directory in the
    297         // include_directories section, and so on. The directory index is
    298         // ignored for file names that represent full path names.
    299         //
    300         // The files are numbered, starting at 1, in the order in which they
    301         // appear; the names in the prologue come before names defined by
    302         // the DW_LNE_define_file instruction. These numbers are used in the
    303         // the file register of the state machine.
    304         {
    305           FileNameEntry fileEntry;
    306           fileEntry.Name = debug_line_data.getCStr(offset_ptr);
    307           fileEntry.DirIdx = debug_line_data.getULEB128(offset_ptr);
    308           fileEntry.ModTime = debug_line_data.getULEB128(offset_ptr);
    309           fileEntry.Length = debug_line_data.getULEB128(offset_ptr);
    310           prologue->FileNames.push_back(fileEntry);
    311         }
    312         break;
    313 
    314       default:
    315         // Length doesn't include the zero opcode byte or the length itself, but
    316         // it does include the sub_opcode, so we have to adjust for that below
    317         (*offset_ptr) += arg_size;
    318         break;
    319       }
    320     } else if (opcode < prologue->OpcodeBase) {
    321       switch (opcode) {
    322       // Standard Opcodes
    323       case DW_LNS_copy:
    324         // Takes no arguments. Append a row to the matrix using the
    325         // current values of the state-machine registers. Then set
    326         // the basic_block register to false.
    327         state.appendRowToMatrix(*offset_ptr);
    328         break;
    329 
    330       case DW_LNS_advance_pc:
    331         // Takes a single unsigned LEB128 operand, multiplies it by the
    332         // min_inst_length field of the prologue, and adds the
    333         // result to the address register of the state machine.
    334         state.Address += debug_line_data.getULEB128(offset_ptr) *
    335                          prologue->MinInstLength;
    336         break;
    337 
    338       case DW_LNS_advance_line:
    339         // Takes a single signed LEB128 operand and adds that value to
    340         // the line register of the state machine.
    341         state.Line += debug_line_data.getSLEB128(offset_ptr);
    342         break;
    343 
    344       case DW_LNS_set_file:
    345         // Takes a single unsigned LEB128 operand and stores it in the file
    346         // register of the state machine.
    347         state.File = debug_line_data.getULEB128(offset_ptr);
    348         break;
    349 
    350       case DW_LNS_set_column:
    351         // Takes a single unsigned LEB128 operand and stores it in the
    352         // column register of the state machine.
    353         state.Column = debug_line_data.getULEB128(offset_ptr);
    354         break;
    355 
    356       case DW_LNS_negate_stmt:
    357         // Takes no arguments. Set the is_stmt register of the state
    358         // machine to the logical negation of its current value.
    359         state.IsStmt = !state.IsStmt;
    360         break;
    361 
    362       case DW_LNS_set_basic_block:
    363         // Takes no arguments. Set the basic_block register of the
    364         // state machine to true
    365         state.BasicBlock = true;
    366         break;
    367 
    368       case DW_LNS_const_add_pc:
    369         // Takes no arguments. Add to the address register of the state
    370         // machine the address increment value corresponding to special
    371         // opcode 255. The motivation for DW_LNS_const_add_pc is this:
    372         // when the statement program needs to advance the address by a
    373         // small amount, it can use a single special opcode, which occupies
    374         // a single byte. When it needs to advance the address by up to
    375         // twice the range of the last special opcode, it can use
    376         // DW_LNS_const_add_pc followed by a special opcode, for a total
    377         // of two bytes. Only if it needs to advance the address by more
    378         // than twice that range will it need to use both DW_LNS_advance_pc
    379         // and a special opcode, requiring three or more bytes.
    380         {
    381           uint8_t adjust_opcode = 255 - prologue->OpcodeBase;
    382           uint64_t addr_offset = (adjust_opcode / prologue->LineRange) *
    383                                  prologue->MinInstLength;
    384           state.Address += addr_offset;
    385         }
    386         break;
    387 
    388       case DW_LNS_fixed_advance_pc:
    389         // Takes a single uhalf operand. Add to the address register of
    390         // the state machine the value of the (unencoded) operand. This
    391         // is the only extended opcode that takes an argument that is not
    392         // a variable length number. The motivation for DW_LNS_fixed_advance_pc
    393         // is this: existing assemblers cannot emit DW_LNS_advance_pc or
    394         // special opcodes because they cannot encode LEB128 numbers or
    395         // judge when the computation of a special opcode overflows and
    396         // requires the use of DW_LNS_advance_pc. Such assemblers, however,
    397         // can use DW_LNS_fixed_advance_pc instead, sacrificing compression.
    398         state.Address += debug_line_data.getU16(offset_ptr);
    399         break;
    400 
    401       case DW_LNS_set_prologue_end:
    402         // Takes no arguments. Set the prologue_end register of the
    403         // state machine to true
    404         state.PrologueEnd = true;
    405         break;
    406 
    407       case DW_LNS_set_epilogue_begin:
    408         // Takes no arguments. Set the basic_block register of the
    409         // state machine to true
    410         state.EpilogueBegin = true;
    411         break;
    412 
    413       case DW_LNS_set_isa:
    414         // Takes a single unsigned LEB128 operand and stores it in the
    415         // column register of the state machine.
    416         state.Isa = debug_line_data.getULEB128(offset_ptr);
    417         break;
    418 
    419       default:
    420         // Handle any unknown standard opcodes here. We know the lengths
    421         // of such opcodes because they are specified in the prologue
    422         // as a multiple of LEB128 operands for each opcode.
    423         {
    424           assert(opcode - 1U < prologue->StandardOpcodeLengths.size());
    425           uint8_t opcode_length = prologue->StandardOpcodeLengths[opcode - 1];
    426           for (uint8_t i=0; i<opcode_length; ++i)
    427             debug_line_data.getULEB128(offset_ptr);
    428         }
    429         break;
    430       }
    431     } else {
    432       // Special Opcodes
    433 
    434       // A special opcode value is chosen based on the amount that needs
    435       // to be added to the line and address registers. The maximum line
    436       // increment for a special opcode is the value of the line_base
    437       // field in the header, plus the value of the line_range field,
    438       // minus 1 (line base + line range - 1). If the desired line
    439       // increment is greater than the maximum line increment, a standard
    440       // opcode must be used instead of a special opcode. The "address
    441       // advance" is calculated by dividing the desired address increment
    442       // by the minimum_instruction_length field from the header. The
    443       // special opcode is then calculated using the following formula:
    444       //
    445       //  opcode = (desired line increment - line_base) +
    446       //           (line_range * address advance) + opcode_base
    447       //
    448       // If the resulting opcode is greater than 255, a standard opcode
    449       // must be used instead.
    450       //
    451       // To decode a special opcode, subtract the opcode_base from the
    452       // opcode itself to give the adjusted opcode. The amount to
    453       // increment the address register is the result of the adjusted
    454       // opcode divided by the line_range multiplied by the
    455       // minimum_instruction_length field from the header. That is:
    456       //
    457       //  address increment = (adjusted opcode / line_range) *
    458       //                      minimum_instruction_length
    459       //
    460       // The amount to increment the line register is the line_base plus
    461       // the result of the adjusted opcode modulo the line_range. That is:
    462       //
    463       // line increment = line_base + (adjusted opcode % line_range)
    464 
    465       uint8_t adjust_opcode = opcode - prologue->OpcodeBase;
    466       uint64_t addr_offset = (adjust_opcode / prologue->LineRange) *
    467                              prologue->MinInstLength;
    468       int32_t line_offset = prologue->LineBase +
    469                             (adjust_opcode % prologue->LineRange);
    470       state.Line += line_offset;
    471       state.Address += addr_offset;
    472       state.appendRowToMatrix(*offset_ptr);
    473     }
    474   }
    475 
    476   state.finalize();
    477 
    478   return end_offset;
    479 }
    480 
    481 uint32_t
    482 DWARFDebugLine::LineTable::lookupAddress(uint64_t address) const {
    483   uint32_t unknown_index = UINT32_MAX;
    484   if (Sequences.empty())
    485     return unknown_index;
    486   // First, find an instruction sequence containing the given address.
    487   DWARFDebugLine::Sequence sequence;
    488   sequence.LowPC = address;
    489   SequenceIter first_seq = Sequences.begin();
    490   SequenceIter last_seq = Sequences.end();
    491   SequenceIter seq_pos = std::lower_bound(first_seq, last_seq, sequence,
    492       DWARFDebugLine::Sequence::orderByLowPC);
    493   DWARFDebugLine::Sequence found_seq;
    494   if (seq_pos == last_seq) {
    495     found_seq = Sequences.back();
    496   } else if (seq_pos->LowPC == address) {
    497     found_seq = *seq_pos;
    498   } else {
    499     if (seq_pos == first_seq)
    500       return unknown_index;
    501     found_seq = *(seq_pos - 1);
    502   }
    503   if (!found_seq.containsPC(address))
    504     return unknown_index;
    505   // Search for instruction address in the rows describing the sequence.
    506   // Rows are stored in a vector, so we may use arithmetical operations with
    507   // iterators.
    508   DWARFDebugLine::Row row;
    509   row.Address = address;
    510   RowIter first_row = Rows.begin() + found_seq.FirstRowIndex;
    511   RowIter last_row = Rows.begin() + found_seq.LastRowIndex;
    512   RowIter row_pos = std::lower_bound(first_row, last_row, row,
    513       DWARFDebugLine::Row::orderByAddress);
    514   if (row_pos == last_row) {
    515     return found_seq.LastRowIndex - 1;
    516   }
    517   uint32_t index = found_seq.FirstRowIndex + (row_pos - first_row);
    518   if (row_pos->Address > address) {
    519     if (row_pos == first_row)
    520       return unknown_index;
    521     else
    522       index--;
    523   }
    524   return index;
    525 }
    526 
    527 bool
    528 DWARFDebugLine::LineTable::lookupAddressRange(uint64_t address,
    529                                        uint64_t size,
    530                                        std::vector<uint32_t>& result) const {
    531   if (Sequences.empty())
    532     return false;
    533   uint64_t end_addr = address + size;
    534   // First, find an instruction sequence containing the given address.
    535   DWARFDebugLine::Sequence sequence;
    536   sequence.LowPC = address;
    537   SequenceIter first_seq = Sequences.begin();
    538   SequenceIter last_seq = Sequences.end();
    539   SequenceIter seq_pos = std::lower_bound(first_seq, last_seq, sequence,
    540       DWARFDebugLine::Sequence::orderByLowPC);
    541   if (seq_pos == last_seq || seq_pos->LowPC != address) {
    542     if (seq_pos == first_seq)
    543       return false;
    544     seq_pos--;
    545   }
    546   if (!seq_pos->containsPC(address))
    547     return false;
    548 
    549   SequenceIter start_pos = seq_pos;
    550 
    551   // Add the rows from the first sequence to the vector, starting with the
    552   // index we just calculated
    553 
    554   while (seq_pos != last_seq && seq_pos->LowPC < end_addr) {
    555     DWARFDebugLine::Sequence cur_seq = *seq_pos;
    556     uint32_t first_row_index;
    557     uint32_t last_row_index;
    558     if (seq_pos == start_pos) {
    559       // For the first sequence, we need to find which row in the sequence is the
    560       // first in our range. Rows are stored in a vector, so we may use
    561       // arithmetical operations with iterators.
    562       DWARFDebugLine::Row row;
    563       row.Address = address;
    564       RowIter first_row = Rows.begin() + cur_seq.FirstRowIndex;
    565       RowIter last_row = Rows.begin() + cur_seq.LastRowIndex;
    566       RowIter row_pos = std::upper_bound(first_row, last_row, row,
    567                                          DWARFDebugLine::Row::orderByAddress);
    568       // The 'row_pos' iterator references the first row that is greater than
    569       // our start address. Unless that's the first row, we want to start at
    570       // the row before that.
    571       first_row_index = cur_seq.FirstRowIndex + (row_pos - first_row);
    572       if (row_pos != first_row)
    573         --first_row_index;
    574     } else
    575       first_row_index = cur_seq.FirstRowIndex;
    576 
    577     // For the last sequence in our range, we need to figure out the last row in
    578     // range.  For all other sequences we can go to the end of the sequence.
    579     if (cur_seq.HighPC > end_addr) {
    580       DWARFDebugLine::Row row;
    581       row.Address = end_addr;
    582       RowIter first_row = Rows.begin() + cur_seq.FirstRowIndex;
    583       RowIter last_row = Rows.begin() + cur_seq.LastRowIndex;
    584       RowIter row_pos = std::upper_bound(first_row, last_row, row,
    585                                          DWARFDebugLine::Row::orderByAddress);
    586       // The 'row_pos' iterator references the first row that is greater than
    587       // our end address.  The row before that is the last row we want.
    588       last_row_index = cur_seq.FirstRowIndex + (row_pos - first_row) - 1;
    589     } else
    590       // Contrary to what you might expect, DWARFDebugLine::SequenceLastRowIndex
    591       // isn't a valid index within the current sequence.  It's that plus one.
    592       last_row_index = cur_seq.LastRowIndex - 1;
    593 
    594     for (uint32_t i = first_row_index; i <= last_row_index; ++i) {
    595       result.push_back(i);
    596     }
    597 
    598     ++seq_pos;
    599   }
    600 
    601   return true;
    602 }
    603 
    604 bool
    605 DWARFDebugLine::LineTable::getFileNameByIndex(uint64_t FileIndex,
    606                                               bool NeedsAbsoluteFilePath,
    607                                               std::string &Result) const {
    608   if (FileIndex == 0 || FileIndex > Prologue.FileNames.size())
    609     return false;
    610   const FileNameEntry &Entry = Prologue.FileNames[FileIndex - 1];
    611   const char *FileName = Entry.Name;
    612   if (!NeedsAbsoluteFilePath ||
    613       sys::path::is_absolute(FileName)) {
    614     Result = FileName;
    615     return true;
    616   }
    617   SmallString<16> FilePath;
    618   uint64_t IncludeDirIndex = Entry.DirIdx;
    619   // Be defensive about the contents of Entry.
    620   if (IncludeDirIndex > 0 &&
    621       IncludeDirIndex <= Prologue.IncludeDirectories.size()) {
    622     const char *IncludeDir = Prologue.IncludeDirectories[IncludeDirIndex - 1];
    623     sys::path::append(FilePath, IncludeDir);
    624   }
    625   sys::path::append(FilePath, FileName);
    626   Result = FilePath.str();
    627   return true;
    628 }
    629