Home | History | Annotate | Download | only in rtl
      1 //===-- tsan_mutex.cc -----------------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of ThreadSanitizer (TSan), a race detector.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "sanitizer_common/sanitizer_libc.h"
     14 #include "tsan_mutex.h"
     15 #include "tsan_platform.h"
     16 #include "tsan_rtl.h"
     17 
     18 namespace __tsan {
     19 
     20 // Simple reader-writer spin-mutex. Optimized for not-so-contended case.
     21 // Readers have preference, can possibly starvate writers.
     22 
     23 // The table fixes what mutexes can be locked under what mutexes.
     24 // E.g. if the row for MutexTypeThreads contains MutexTypeReport,
     25 // then Report mutex can be locked while under Threads mutex.
     26 // The leaf mutexes can be locked under any other mutexes.
     27 // Recursive locking is not supported.
     28 #if TSAN_DEBUG && !TSAN_GO
     29 const MutexType MutexTypeLeaf = (MutexType)-1;
     30 static MutexType CanLockTab[MutexTypeCount][MutexTypeCount] = {
     31   /*0  MutexTypeInvalid*/     {},
     32   /*1  MutexTypeTrace*/       {MutexTypeLeaf},
     33   /*2  MutexTypeThreads*/     {MutexTypeReport},
     34   /*3  MutexTypeReport*/      {MutexTypeSyncTab, MutexTypeSyncVar,
     35                                MutexTypeMBlock, MutexTypeJavaMBlock},
     36   /*4  MutexTypeSyncVar*/     {},
     37   /*5  MutexTypeSyncTab*/     {MutexTypeSyncVar},
     38   /*6  MutexTypeSlab*/        {MutexTypeLeaf},
     39   /*7  MutexTypeAnnotations*/ {},
     40   /*8  MutexTypeAtExit*/      {MutexTypeSyncTab},
     41   /*9  MutexTypeMBlock*/      {MutexTypeSyncVar},
     42   /*10 MutexTypeJavaMBlock*/  {MutexTypeSyncVar},
     43 };
     44 
     45 static bool CanLockAdj[MutexTypeCount][MutexTypeCount];
     46 #endif
     47 
     48 void InitializeMutex() {
     49 #if TSAN_DEBUG && !TSAN_GO
     50   // Build the "can lock" adjacency matrix.
     51   // If [i][j]==true, then one can lock mutex j while under mutex i.
     52   const int N = MutexTypeCount;
     53   int cnt[N] = {};
     54   bool leaf[N] = {};
     55   for (int i = 1; i < N; i++) {
     56     for (int j = 0; j < N; j++) {
     57       MutexType z = CanLockTab[i][j];
     58       if (z == MutexTypeInvalid)
     59         continue;
     60       if (z == MutexTypeLeaf) {
     61         CHECK(!leaf[i]);
     62         leaf[i] = true;
     63         continue;
     64       }
     65       CHECK(!CanLockAdj[i][(int)z]);
     66       CanLockAdj[i][(int)z] = true;
     67       cnt[i]++;
     68     }
     69   }
     70   for (int i = 0; i < N; i++) {
     71     CHECK(!leaf[i] || cnt[i] == 0);
     72   }
     73   // Add leaf mutexes.
     74   for (int i = 0; i < N; i++) {
     75     if (!leaf[i])
     76       continue;
     77     for (int j = 0; j < N; j++) {
     78       if (i == j || leaf[j] || j == MutexTypeInvalid)
     79         continue;
     80       CHECK(!CanLockAdj[j][i]);
     81       CanLockAdj[j][i] = true;
     82     }
     83   }
     84   // Build the transitive closure.
     85   bool CanLockAdj2[MutexTypeCount][MutexTypeCount];
     86   for (int i = 0; i < N; i++) {
     87     for (int j = 0; j < N; j++) {
     88       CanLockAdj2[i][j] = CanLockAdj[i][j];
     89     }
     90   }
     91   for (int k = 0; k < N; k++) {
     92     for (int i = 0; i < N; i++) {
     93       for (int j = 0; j < N; j++) {
     94         if (CanLockAdj2[i][k] && CanLockAdj2[k][j]) {
     95           CanLockAdj2[i][j] = true;
     96         }
     97       }
     98     }
     99   }
    100 #if 0
    101   Printf("Can lock graph:\n");
    102   for (int i = 0; i < N; i++) {
    103     for (int j = 0; j < N; j++) {
    104       Printf("%d ", CanLockAdj[i][j]);
    105     }
    106     Printf("\n");
    107   }
    108   Printf("Can lock graph closure:\n");
    109   for (int i = 0; i < N; i++) {
    110     for (int j = 0; j < N; j++) {
    111       Printf("%d ", CanLockAdj2[i][j]);
    112     }
    113     Printf("\n");
    114   }
    115 #endif
    116   // Verify that the graph is acyclic.
    117   for (int i = 0; i < N; i++) {
    118     if (CanLockAdj2[i][i]) {
    119       Printf("Mutex %d participates in a cycle\n", i);
    120       Die();
    121     }
    122   }
    123 #endif
    124 }
    125 
    126 DeadlockDetector::DeadlockDetector() {
    127   // Rely on zero initialization because some mutexes can be locked before ctor.
    128 }
    129 
    130 #if TSAN_DEBUG && !TSAN_GO
    131 void DeadlockDetector::Lock(MutexType t) {
    132   // Printf("LOCK %d @%zu\n", t, seq_ + 1);
    133   CHECK_GT(t, MutexTypeInvalid);
    134   CHECK_LT(t, MutexTypeCount);
    135   u64 max_seq = 0;
    136   u64 max_idx = MutexTypeInvalid;
    137   for (int i = 0; i != MutexTypeCount; i++) {
    138     if (locked_[i] == 0)
    139       continue;
    140     CHECK_NE(locked_[i], max_seq);
    141     if (max_seq < locked_[i]) {
    142       max_seq = locked_[i];
    143       max_idx = i;
    144     }
    145   }
    146   locked_[t] = ++seq_;
    147   if (max_idx == MutexTypeInvalid)
    148     return;
    149   // Printf("  last %d @%zu\n", max_idx, max_seq);
    150   if (!CanLockAdj[max_idx][t]) {
    151     Printf("ThreadSanitizer: internal deadlock detected\n");
    152     Printf("ThreadSanitizer: can't lock %d while under %zu\n",
    153                t, (uptr)max_idx);
    154     CHECK(0);
    155   }
    156 }
    157 
    158 void DeadlockDetector::Unlock(MutexType t) {
    159   // Printf("UNLO %d @%zu #%zu\n", t, seq_, locked_[t]);
    160   CHECK(locked_[t]);
    161   locked_[t] = 0;
    162 }
    163 #endif
    164 
    165 const uptr kUnlocked = 0;
    166 const uptr kWriteLock = 1;
    167 const uptr kReadLock = 2;
    168 
    169 class Backoff {
    170  public:
    171   Backoff()
    172     : iter_() {
    173   }
    174 
    175   bool Do() {
    176     if (iter_++ < kActiveSpinIters)
    177       proc_yield(kActiveSpinCnt);
    178     else
    179       internal_sched_yield();
    180     return true;
    181   }
    182 
    183   u64 Contention() const {
    184     u64 active = iter_ % kActiveSpinIters;
    185     u64 passive = iter_ - active;
    186     return active + 10 * passive;
    187   }
    188 
    189  private:
    190   int iter_;
    191   static const int kActiveSpinIters = 10;
    192   static const int kActiveSpinCnt = 20;
    193 };
    194 
    195 Mutex::Mutex(MutexType type, StatType stat_type) {
    196   CHECK_GT(type, MutexTypeInvalid);
    197   CHECK_LT(type, MutexTypeCount);
    198 #if TSAN_DEBUG
    199   type_ = type;
    200 #endif
    201 #if TSAN_COLLECT_STATS
    202   stat_type_ = stat_type;
    203 #endif
    204   atomic_store(&state_, kUnlocked, memory_order_relaxed);
    205 }
    206 
    207 Mutex::~Mutex() {
    208   CHECK_EQ(atomic_load(&state_, memory_order_relaxed), kUnlocked);
    209 }
    210 
    211 void Mutex::Lock() {
    212 #if TSAN_DEBUG && !TSAN_GO
    213   cur_thread()->deadlock_detector.Lock(type_);
    214 #endif
    215   uptr cmp = kUnlocked;
    216   if (atomic_compare_exchange_strong(&state_, &cmp, kWriteLock,
    217                                      memory_order_acquire))
    218     return;
    219   for (Backoff backoff; backoff.Do();) {
    220     if (atomic_load(&state_, memory_order_relaxed) == kUnlocked) {
    221       cmp = kUnlocked;
    222       if (atomic_compare_exchange_weak(&state_, &cmp, kWriteLock,
    223                                        memory_order_acquire)) {
    224 #if TSAN_COLLECT_STATS
    225         StatInc(cur_thread(), stat_type_, backoff.Contention());
    226 #endif
    227         return;
    228       }
    229     }
    230   }
    231 }
    232 
    233 void Mutex::Unlock() {
    234   uptr prev = atomic_fetch_sub(&state_, kWriteLock, memory_order_release);
    235   (void)prev;
    236   DCHECK_NE(prev & kWriteLock, 0);
    237 #if TSAN_DEBUG && !TSAN_GO
    238   cur_thread()->deadlock_detector.Unlock(type_);
    239 #endif
    240 }
    241 
    242 void Mutex::ReadLock() {
    243 #if TSAN_DEBUG && !TSAN_GO
    244   cur_thread()->deadlock_detector.Lock(type_);
    245 #endif
    246   uptr prev = atomic_fetch_add(&state_, kReadLock, memory_order_acquire);
    247   if ((prev & kWriteLock) == 0)
    248     return;
    249   for (Backoff backoff; backoff.Do();) {
    250     prev = atomic_load(&state_, memory_order_acquire);
    251     if ((prev & kWriteLock) == 0) {
    252 #if TSAN_COLLECT_STATS
    253       StatInc(cur_thread(), stat_type_, backoff.Contention());
    254 #endif
    255       return;
    256     }
    257   }
    258 }
    259 
    260 void Mutex::ReadUnlock() {
    261   uptr prev = atomic_fetch_sub(&state_, kReadLock, memory_order_release);
    262   (void)prev;
    263   DCHECK_EQ(prev & kWriteLock, 0);
    264   DCHECK_GT(prev & ~kWriteLock, 0);
    265 #if TSAN_DEBUG && !TSAN_GO
    266   cur_thread()->deadlock_detector.Unlock(type_);
    267 #endif
    268 }
    269 
    270 void Mutex::CheckLocked() {
    271   CHECK_NE(atomic_load(&state_, memory_order_relaxed), 0);
    272 }
    273 
    274 }  // namespace __tsan
    275