Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  A natural loop
     12 // has exactly one entry-point, which is called the header. Note that natural
     13 // loops may actually be several loops that share the same header node.
     14 //
     15 // This analysis calculates the nesting structure of loops in a function.  For
     16 // each natural loop identified, this analysis identifies natural loops
     17 // contained entirely within the loop and the basic blocks the make up the loop.
     18 //
     19 // It can calculate on the fly various bits of information, for example:
     20 //
     21 //  * whether there is a preheader for the loop
     22 //  * the number of back edges to the header
     23 //  * whether or not a particular block branches out of the loop
     24 //  * the successor blocks of the loop
     25 //  * the loop depth
     26 //  * etc...
     27 //
     28 //===----------------------------------------------------------------------===//
     29 
     30 #ifndef LLVM_ANALYSIS_LOOPINFO_H
     31 #define LLVM_ANALYSIS_LOOPINFO_H
     32 
     33 #include "llvm/ADT/DenseMap.h"
     34 #include "llvm/ADT/DenseSet.h"
     35 #include "llvm/ADT/GraphTraits.h"
     36 #include "llvm/ADT/SmallVector.h"
     37 #include "llvm/Analysis/Dominators.h"
     38 #include "llvm/Pass.h"
     39 #include <algorithm>
     40 
     41 namespace llvm {
     42 
     43 template<typename T>
     44 inline void RemoveFromVector(std::vector<T*> &V, T *N) {
     45   typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
     46   assert(I != V.end() && "N is not in this list!");
     47   V.erase(I);
     48 }
     49 
     50 class DominatorTree;
     51 class LoopInfo;
     52 class Loop;
     53 class MDNode;
     54 class PHINode;
     55 class raw_ostream;
     56 template<class N, class M> class LoopInfoBase;
     57 template<class N, class M> class LoopBase;
     58 
     59 //===----------------------------------------------------------------------===//
     60 /// LoopBase class - Instances of this class are used to represent loops that
     61 /// are detected in the flow graph
     62 ///
     63 template<class BlockT, class LoopT>
     64 class LoopBase {
     65   LoopT *ParentLoop;
     66   // SubLoops - Loops contained entirely within this one.
     67   std::vector<LoopT *> SubLoops;
     68 
     69   // Blocks - The list of blocks in this loop.  First entry is the header node.
     70   std::vector<BlockT*> Blocks;
     71 
     72   LoopBase(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
     73   const LoopBase<BlockT, LoopT>&
     74     operator=(const LoopBase<BlockT, LoopT> &) LLVM_DELETED_FUNCTION;
     75 public:
     76   /// Loop ctor - This creates an empty loop.
     77   LoopBase() : ParentLoop(0) {}
     78   ~LoopBase() {
     79     for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
     80       delete SubLoops[i];
     81   }
     82 
     83   /// getLoopDepth - Return the nesting level of this loop.  An outer-most
     84   /// loop has depth 1, for consistency with loop depth values used for basic
     85   /// blocks, where depth 0 is used for blocks not inside any loops.
     86   unsigned getLoopDepth() const {
     87     unsigned D = 1;
     88     for (const LoopT *CurLoop = ParentLoop; CurLoop;
     89          CurLoop = CurLoop->ParentLoop)
     90       ++D;
     91     return D;
     92   }
     93   BlockT *getHeader() const { return Blocks.front(); }
     94   LoopT *getParentLoop() const { return ParentLoop; }
     95 
     96   /// setParentLoop is a raw interface for bypassing addChildLoop.
     97   void setParentLoop(LoopT *L) { ParentLoop = L; }
     98 
     99   /// contains - Return true if the specified loop is contained within in
    100   /// this loop.
    101   ///
    102   bool contains(const LoopT *L) const {
    103     if (L == this) return true;
    104     if (L == 0)    return false;
    105     return contains(L->getParentLoop());
    106   }
    107 
    108   /// contains - Return true if the specified basic block is in this loop.
    109   ///
    110   bool contains(const BlockT *BB) const {
    111     return std::find(block_begin(), block_end(), BB) != block_end();
    112   }
    113 
    114   /// contains - Return true if the specified instruction is in this loop.
    115   ///
    116   template<class InstT>
    117   bool contains(const InstT *Inst) const {
    118     return contains(Inst->getParent());
    119   }
    120 
    121   /// iterator/begin/end - Return the loops contained entirely within this loop.
    122   ///
    123   const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
    124   std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
    125   typedef typename std::vector<LoopT *>::const_iterator iterator;
    126   typedef typename std::vector<LoopT *>::const_reverse_iterator
    127     reverse_iterator;
    128   iterator begin() const { return SubLoops.begin(); }
    129   iterator end() const { return SubLoops.end(); }
    130   reverse_iterator rbegin() const { return SubLoops.rbegin(); }
    131   reverse_iterator rend() const { return SubLoops.rend(); }
    132   bool empty() const { return SubLoops.empty(); }
    133 
    134   /// getBlocks - Get a list of the basic blocks which make up this loop.
    135   ///
    136   const std::vector<BlockT*> &getBlocks() const { return Blocks; }
    137   std::vector<BlockT*> &getBlocksVector() { return Blocks; }
    138   typedef typename std::vector<BlockT*>::const_iterator block_iterator;
    139   block_iterator block_begin() const { return Blocks.begin(); }
    140   block_iterator block_end() const { return Blocks.end(); }
    141 
    142   /// getNumBlocks - Get the number of blocks in this loop in constant time.
    143   unsigned getNumBlocks() const {
    144     return Blocks.size();
    145   }
    146 
    147   /// isLoopExiting - True if terminator in the block can branch to another
    148   /// block that is outside of the current loop.
    149   ///
    150   bool isLoopExiting(const BlockT *BB) const {
    151     typedef GraphTraits<const BlockT*> BlockTraits;
    152     for (typename BlockTraits::ChildIteratorType SI =
    153          BlockTraits::child_begin(BB),
    154          SE = BlockTraits::child_end(BB); SI != SE; ++SI) {
    155       if (!contains(*SI))
    156         return true;
    157     }
    158     return false;
    159   }
    160 
    161   /// getNumBackEdges - Calculate the number of back edges to the loop header
    162   ///
    163   unsigned getNumBackEdges() const {
    164     unsigned NumBackEdges = 0;
    165     BlockT *H = getHeader();
    166 
    167     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    168     for (typename InvBlockTraits::ChildIteratorType I =
    169          InvBlockTraits::child_begin(H),
    170          E = InvBlockTraits::child_end(H); I != E; ++I)
    171       if (contains(*I))
    172         ++NumBackEdges;
    173 
    174     return NumBackEdges;
    175   }
    176 
    177   //===--------------------------------------------------------------------===//
    178   // APIs for simple analysis of the loop.
    179   //
    180   // Note that all of these methods can fail on general loops (ie, there may not
    181   // be a preheader, etc).  For best success, the loop simplification and
    182   // induction variable canonicalization pass should be used to normalize loops
    183   // for easy analysis.  These methods assume canonical loops.
    184 
    185   /// getExitingBlocks - Return all blocks inside the loop that have successors
    186   /// outside of the loop.  These are the blocks _inside of the current loop_
    187   /// which branch out.  The returned list is always unique.
    188   ///
    189   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
    190 
    191   /// getExitingBlock - If getExitingBlocks would return exactly one block,
    192   /// return that block. Otherwise return null.
    193   BlockT *getExitingBlock() const;
    194 
    195   /// getExitBlocks - Return all of the successor blocks of this loop.  These
    196   /// are the blocks _outside of the current loop_ which are branched to.
    197   ///
    198   void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
    199 
    200   /// getExitBlock - If getExitBlocks would return exactly one block,
    201   /// return that block. Otherwise return null.
    202   BlockT *getExitBlock() const;
    203 
    204   /// Edge type.
    205   typedef std::pair<const BlockT*, const BlockT*> Edge;
    206 
    207   /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
    208   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
    209 
    210   /// getLoopPreheader - If there is a preheader for this loop, return it.  A
    211   /// loop has a preheader if there is only one edge to the header of the loop
    212   /// from outside of the loop.  If this is the case, the block branching to the
    213   /// header of the loop is the preheader node.
    214   ///
    215   /// This method returns null if there is no preheader for the loop.
    216   ///
    217   BlockT *getLoopPreheader() const;
    218 
    219   /// getLoopPredecessor - If the given loop's header has exactly one unique
    220   /// predecessor outside the loop, return it. Otherwise return null.
    221   /// This is less strict that the loop "preheader" concept, which requires
    222   /// the predecessor to have exactly one successor.
    223   ///
    224   BlockT *getLoopPredecessor() const;
    225 
    226   /// getLoopLatch - If there is a single latch block for this loop, return it.
    227   /// A latch block is a block that contains a branch back to the header.
    228   BlockT *getLoopLatch() const;
    229 
    230   //===--------------------------------------------------------------------===//
    231   // APIs for updating loop information after changing the CFG
    232   //
    233 
    234   /// addBasicBlockToLoop - This method is used by other analyses to update loop
    235   /// information.  NewBB is set to be a new member of the current loop.
    236   /// Because of this, it is added as a member of all parent loops, and is added
    237   /// to the specified LoopInfo object as being in the current basic block.  It
    238   /// is not valid to replace the loop header with this method.
    239   ///
    240   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
    241 
    242   /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
    243   /// the OldChild entry in our children list with NewChild, and updates the
    244   /// parent pointer of OldChild to be null and the NewChild to be this loop.
    245   /// This updates the loop depth of the new child.
    246   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
    247 
    248   /// addChildLoop - Add the specified loop to be a child of this loop.  This
    249   /// updates the loop depth of the new child.
    250   ///
    251   void addChildLoop(LoopT *NewChild) {
    252     assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
    253     NewChild->ParentLoop = static_cast<LoopT *>(this);
    254     SubLoops.push_back(NewChild);
    255   }
    256 
    257   /// removeChildLoop - This removes the specified child from being a subloop of
    258   /// this loop.  The loop is not deleted, as it will presumably be inserted
    259   /// into another loop.
    260   LoopT *removeChildLoop(iterator I) {
    261     assert(I != SubLoops.end() && "Cannot remove end iterator!");
    262     LoopT *Child = *I;
    263     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
    264     SubLoops.erase(SubLoops.begin()+(I-begin()));
    265     Child->ParentLoop = 0;
    266     return Child;
    267   }
    268 
    269   /// addBlockEntry - This adds a basic block directly to the basic block list.
    270   /// This should only be used by transformations that create new loops.  Other
    271   /// transformations should use addBasicBlockToLoop.
    272   void addBlockEntry(BlockT *BB) {
    273     Blocks.push_back(BB);
    274   }
    275 
    276   /// moveToHeader - This method is used to move BB (which must be part of this
    277   /// loop) to be the loop header of the loop (the block that dominates all
    278   /// others).
    279   void moveToHeader(BlockT *BB) {
    280     if (Blocks[0] == BB) return;
    281     for (unsigned i = 0; ; ++i) {
    282       assert(i != Blocks.size() && "Loop does not contain BB!");
    283       if (Blocks[i] == BB) {
    284         Blocks[i] = Blocks[0];
    285         Blocks[0] = BB;
    286         return;
    287       }
    288     }
    289   }
    290 
    291   /// removeBlockFromLoop - This removes the specified basic block from the
    292   /// current loop, updating the Blocks as appropriate.  This does not update
    293   /// the mapping in the LoopInfo class.
    294   void removeBlockFromLoop(BlockT *BB) {
    295     RemoveFromVector(Blocks, BB);
    296   }
    297 
    298   /// verifyLoop - Verify loop structure
    299   void verifyLoop() const;
    300 
    301   /// verifyLoop - Verify loop structure of this loop and all nested loops.
    302   void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
    303 
    304   void print(raw_ostream &OS, unsigned Depth = 0) const;
    305 
    306 protected:
    307   friend class LoopInfoBase<BlockT, LoopT>;
    308   explicit LoopBase(BlockT *BB) : ParentLoop(0) {
    309     Blocks.push_back(BB);
    310   }
    311 };
    312 
    313 template<class BlockT, class LoopT>
    314 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
    315   Loop.print(OS);
    316   return OS;
    317 }
    318 
    319 // Implementation in LoopInfoImpl.h
    320 #ifdef __GNUC__
    321 __extension__ extern template class LoopBase<BasicBlock, Loop>;
    322 #endif
    323 
    324 class Loop : public LoopBase<BasicBlock, Loop> {
    325 public:
    326   Loop() {}
    327 
    328   /// isLoopInvariant - Return true if the specified value is loop invariant
    329   ///
    330   bool isLoopInvariant(Value *V) const;
    331 
    332   /// hasLoopInvariantOperands - Return true if all the operands of the
    333   /// specified instruction are loop invariant.
    334   bool hasLoopInvariantOperands(Instruction *I) const;
    335 
    336   /// makeLoopInvariant - If the given value is an instruction inside of the
    337   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    338   /// Return true if the value after any hoisting is loop invariant. This
    339   /// function can be used as a slightly more aggressive replacement for
    340   /// isLoopInvariant.
    341   ///
    342   /// If InsertPt is specified, it is the point to hoist instructions to.
    343   /// If null, the terminator of the loop preheader is used.
    344   ///
    345   bool makeLoopInvariant(Value *V, bool &Changed,
    346                          Instruction *InsertPt = 0) const;
    347 
    348   /// makeLoopInvariant - If the given instruction is inside of the
    349   /// loop and it can be hoisted, do so to make it trivially loop-invariant.
    350   /// Return true if the instruction after any hoisting is loop invariant. This
    351   /// function can be used as a slightly more aggressive replacement for
    352   /// isLoopInvariant.
    353   ///
    354   /// If InsertPt is specified, it is the point to hoist instructions to.
    355   /// If null, the terminator of the loop preheader is used.
    356   ///
    357   bool makeLoopInvariant(Instruction *I, bool &Changed,
    358                          Instruction *InsertPt = 0) const;
    359 
    360   /// getCanonicalInductionVariable - Check to see if the loop has a canonical
    361   /// induction variable: an integer recurrence that starts at 0 and increments
    362   /// by one each time through the loop.  If so, return the phi node that
    363   /// corresponds to it.
    364   ///
    365   /// The IndVarSimplify pass transforms loops to have a canonical induction
    366   /// variable.
    367   ///
    368   PHINode *getCanonicalInductionVariable() const;
    369 
    370   /// isLCSSAForm - Return true if the Loop is in LCSSA form
    371   bool isLCSSAForm(DominatorTree &DT) const;
    372 
    373   /// isLoopSimplifyForm - Return true if the Loop is in the form that
    374   /// the LoopSimplify form transforms loops to, which is sometimes called
    375   /// normal form.
    376   bool isLoopSimplifyForm() const;
    377 
    378   /// isSafeToClone - Return true if the loop body is safe to clone in practice.
    379   bool isSafeToClone() const;
    380 
    381   /// Returns true if the loop is annotated parallel.
    382   ///
    383   /// A parallel loop can be assumed to not contain any dependencies between
    384   /// iterations by the compiler. That is, any loop-carried dependency checking
    385   /// can be skipped completely when parallelizing the loop on the target
    386   /// machine. Thus, if the parallel loop information originates from the
    387   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
    388   /// programmer's responsibility to ensure there are no loop-carried
    389   /// dependencies. The final execution order of the instructions across
    390   /// iterations is not guaranteed, thus, the end result might or might not
    391   /// implement actual concurrent execution of instructions across multiple
    392   /// iterations.
    393   bool isAnnotatedParallel() const;
    394 
    395   /// Return the llvm.loop loop id metadata node for this loop if it is present.
    396   ///
    397   /// If this loop contains the same llvm.loop metadata on each branch to the
    398   /// header then the node is returned. If any latch instruction does not
    399   /// contain llvm.loop or or if multiple latches contain different nodes then
    400   /// 0 is returned.
    401   MDNode *getLoopID() const;
    402   /// Set the llvm.loop loop id metadata for this loop.
    403   ///
    404   /// The LoopID metadata node will be added to each terminator instruction in
    405   /// the loop that branches to the loop header.
    406   ///
    407   /// The LoopID metadata node should have one or more operands and the first
    408   /// operand should should be the node itself.
    409   void setLoopID(MDNode *LoopID) const;
    410 
    411   /// hasDedicatedExits - Return true if no exit block for the loop
    412   /// has a predecessor that is outside the loop.
    413   bool hasDedicatedExits() const;
    414 
    415   /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
    416   /// These are the blocks _outside of the current loop_ which are branched to.
    417   /// This assumes that loop exits are in canonical form.
    418   ///
    419   void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
    420 
    421   /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
    422   /// block, return that block. Otherwise return null.
    423   BasicBlock *getUniqueExitBlock() const;
    424 
    425   void dump() const;
    426 
    427 private:
    428   friend class LoopInfoBase<BasicBlock, Loop>;
    429   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
    430 };
    431 
    432 //===----------------------------------------------------------------------===//
    433 /// LoopInfo - This class builds and contains all of the top level loop
    434 /// structures in the specified function.
    435 ///
    436 
    437 template<class BlockT, class LoopT>
    438 class LoopInfoBase {
    439   // BBMap - Mapping of basic blocks to the inner most loop they occur in
    440   DenseMap<BlockT *, LoopT *> BBMap;
    441   std::vector<LoopT *> TopLevelLoops;
    442   friend class LoopBase<BlockT, LoopT>;
    443   friend class LoopInfo;
    444 
    445   void operator=(const LoopInfoBase &) LLVM_DELETED_FUNCTION;
    446   LoopInfoBase(const LoopInfo &) LLVM_DELETED_FUNCTION;
    447 public:
    448   LoopInfoBase() { }
    449   ~LoopInfoBase() { releaseMemory(); }
    450 
    451   void releaseMemory() {
    452     for (typename std::vector<LoopT *>::iterator I =
    453          TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
    454       delete *I;   // Delete all of the loops...
    455 
    456     BBMap.clear();                           // Reset internal state of analysis
    457     TopLevelLoops.clear();
    458   }
    459 
    460   /// iterator/begin/end - The interface to the top-level loops in the current
    461   /// function.
    462   ///
    463   typedef typename std::vector<LoopT *>::const_iterator iterator;
    464   typedef typename std::vector<LoopT *>::const_reverse_iterator
    465     reverse_iterator;
    466   iterator begin() const { return TopLevelLoops.begin(); }
    467   iterator end() const { return TopLevelLoops.end(); }
    468   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
    469   reverse_iterator rend() const { return TopLevelLoops.rend(); }
    470   bool empty() const { return TopLevelLoops.empty(); }
    471 
    472   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    473   /// block is in no loop (for example the entry node), null is returned.
    474   ///
    475   LoopT *getLoopFor(const BlockT *BB) const {
    476     return BBMap.lookup(const_cast<BlockT*>(BB));
    477   }
    478 
    479   /// operator[] - same as getLoopFor...
    480   ///
    481   const LoopT *operator[](const BlockT *BB) const {
    482     return getLoopFor(BB);
    483   }
    484 
    485   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    486   /// depth of 0 means the block is not inside any loop.
    487   ///
    488   unsigned getLoopDepth(const BlockT *BB) const {
    489     const LoopT *L = getLoopFor(BB);
    490     return L ? L->getLoopDepth() : 0;
    491   }
    492 
    493   // isLoopHeader - True if the block is a loop header node
    494   bool isLoopHeader(BlockT *BB) const {
    495     const LoopT *L = getLoopFor(BB);
    496     return L && L->getHeader() == BB;
    497   }
    498 
    499   /// removeLoop - This removes the specified top-level loop from this loop info
    500   /// object.  The loop is not deleted, as it will presumably be inserted into
    501   /// another loop.
    502   LoopT *removeLoop(iterator I) {
    503     assert(I != end() && "Cannot remove end iterator!");
    504     LoopT *L = *I;
    505     assert(L->getParentLoop() == 0 && "Not a top-level loop!");
    506     TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
    507     return L;
    508   }
    509 
    510   /// changeLoopFor - Change the top-level loop that contains BB to the
    511   /// specified loop.  This should be used by transformations that restructure
    512   /// the loop hierarchy tree.
    513   void changeLoopFor(BlockT *BB, LoopT *L) {
    514     if (!L) {
    515       BBMap.erase(BB);
    516       return;
    517     }
    518     BBMap[BB] = L;
    519   }
    520 
    521   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
    522   /// list with the indicated loop.
    523   void changeTopLevelLoop(LoopT *OldLoop,
    524                           LoopT *NewLoop) {
    525     typename std::vector<LoopT *>::iterator I =
    526                  std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
    527     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
    528     *I = NewLoop;
    529     assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
    530            "Loops already embedded into a subloop!");
    531   }
    532 
    533   /// addTopLevelLoop - This adds the specified loop to the collection of
    534   /// top-level loops.
    535   void addTopLevelLoop(LoopT *New) {
    536     assert(New->getParentLoop() == 0 && "Loop already in subloop!");
    537     TopLevelLoops.push_back(New);
    538   }
    539 
    540   /// removeBlock - This method completely removes BB from all data structures,
    541   /// including all of the Loop objects it is nested in and our mapping from
    542   /// BasicBlocks to loops.
    543   void removeBlock(BlockT *BB) {
    544     typename DenseMap<BlockT *, LoopT *>::iterator I = BBMap.find(BB);
    545     if (I != BBMap.end()) {
    546       for (LoopT *L = I->second; L; L = L->getParentLoop())
    547         L->removeBlockFromLoop(BB);
    548 
    549       BBMap.erase(I);
    550     }
    551   }
    552 
    553   // Internals
    554 
    555   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
    556                                       const LoopT *ParentLoop) {
    557     if (SubLoop == 0) return true;
    558     if (SubLoop == ParentLoop) return false;
    559     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
    560   }
    561 
    562   /// Create the loop forest using a stable algorithm.
    563   void Analyze(DominatorTreeBase<BlockT> &DomTree);
    564 
    565   // Debugging
    566 
    567   void print(raw_ostream &OS) const;
    568 };
    569 
    570 // Implementation in LoopInfoImpl.h
    571 #ifdef __GNUC__
    572 __extension__ extern template class LoopInfoBase<BasicBlock, Loop>;
    573 #endif
    574 
    575 class LoopInfo : public FunctionPass {
    576   LoopInfoBase<BasicBlock, Loop> LI;
    577   friend class LoopBase<BasicBlock, Loop>;
    578 
    579   void operator=(const LoopInfo &) LLVM_DELETED_FUNCTION;
    580   LoopInfo(const LoopInfo &) LLVM_DELETED_FUNCTION;
    581 public:
    582   static char ID; // Pass identification, replacement for typeid
    583 
    584   LoopInfo() : FunctionPass(ID) {
    585     initializeLoopInfoPass(*PassRegistry::getPassRegistry());
    586   }
    587 
    588   LoopInfoBase<BasicBlock, Loop>& getBase() { return LI; }
    589 
    590   /// iterator/begin/end - The interface to the top-level loops in the current
    591   /// function.
    592   ///
    593   typedef LoopInfoBase<BasicBlock, Loop>::iterator iterator;
    594   typedef LoopInfoBase<BasicBlock, Loop>::reverse_iterator reverse_iterator;
    595   inline iterator begin() const { return LI.begin(); }
    596   inline iterator end() const { return LI.end(); }
    597   inline reverse_iterator rbegin() const { return LI.rbegin(); }
    598   inline reverse_iterator rend() const { return LI.rend(); }
    599   bool empty() const { return LI.empty(); }
    600 
    601   /// getLoopFor - Return the inner most loop that BB lives in.  If a basic
    602   /// block is in no loop (for example the entry node), null is returned.
    603   ///
    604   inline Loop *getLoopFor(const BasicBlock *BB) const {
    605     return LI.getLoopFor(BB);
    606   }
    607 
    608   /// operator[] - same as getLoopFor...
    609   ///
    610   inline const Loop *operator[](const BasicBlock *BB) const {
    611     return LI.getLoopFor(BB);
    612   }
    613 
    614   /// getLoopDepth - Return the loop nesting level of the specified block.  A
    615   /// depth of 0 means the block is not inside any loop.
    616   ///
    617   inline unsigned getLoopDepth(const BasicBlock *BB) const {
    618     return LI.getLoopDepth(BB);
    619   }
    620 
    621   // isLoopHeader - True if the block is a loop header node
    622   inline bool isLoopHeader(BasicBlock *BB) const {
    623     return LI.isLoopHeader(BB);
    624   }
    625 
    626   /// runOnFunction - Calculate the natural loop information.
    627   ///
    628   virtual bool runOnFunction(Function &F);
    629 
    630   virtual void verifyAnalysis() const;
    631 
    632   virtual void releaseMemory() { LI.releaseMemory(); }
    633 
    634   virtual void print(raw_ostream &O, const Module* M = 0) const;
    635 
    636   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    637 
    638   /// removeLoop - This removes the specified top-level loop from this loop info
    639   /// object.  The loop is not deleted, as it will presumably be inserted into
    640   /// another loop.
    641   inline Loop *removeLoop(iterator I) { return LI.removeLoop(I); }
    642 
    643   /// changeLoopFor - Change the top-level loop that contains BB to the
    644   /// specified loop.  This should be used by transformations that restructure
    645   /// the loop hierarchy tree.
    646   inline void changeLoopFor(BasicBlock *BB, Loop *L) {
    647     LI.changeLoopFor(BB, L);
    648   }
    649 
    650   /// changeTopLevelLoop - Replace the specified loop in the top-level loops
    651   /// list with the indicated loop.
    652   inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
    653     LI.changeTopLevelLoop(OldLoop, NewLoop);
    654   }
    655 
    656   /// addTopLevelLoop - This adds the specified loop to the collection of
    657   /// top-level loops.
    658   inline void addTopLevelLoop(Loop *New) {
    659     LI.addTopLevelLoop(New);
    660   }
    661 
    662   /// removeBlock - This method completely removes BB from all data structures,
    663   /// including all of the Loop objects it is nested in and our mapping from
    664   /// BasicBlocks to loops.
    665   void removeBlock(BasicBlock *BB) {
    666     LI.removeBlock(BB);
    667   }
    668 
    669   /// updateUnloop - Update LoopInfo after removing the last backedge from a
    670   /// loop--now the "unloop". This updates the loop forest and parent loops for
    671   /// each block so that Unloop is no longer referenced, but the caller must
    672   /// actually delete the Unloop object.
    673   void updateUnloop(Loop *Unloop);
    674 
    675   /// replacementPreservesLCSSAForm - Returns true if replacing From with To
    676   /// everywhere is guaranteed to preserve LCSSA form.
    677   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
    678     // Preserving LCSSA form is only problematic if the replacing value is an
    679     // instruction.
    680     Instruction *I = dyn_cast<Instruction>(To);
    681     if (!I) return true;
    682     // If both instructions are defined in the same basic block then replacement
    683     // cannot break LCSSA form.
    684     if (I->getParent() == From->getParent())
    685       return true;
    686     // If the instruction is not defined in a loop then it can safely replace
    687     // anything.
    688     Loop *ToLoop = getLoopFor(I->getParent());
    689     if (!ToLoop) return true;
    690     // If the replacing instruction is defined in the same loop as the original
    691     // instruction, or in a loop that contains it as an inner loop, then using
    692     // it as a replacement will not break LCSSA form.
    693     return ToLoop->contains(getLoopFor(From->getParent()));
    694   }
    695 };
    696 
    697 
    698 // Allow clients to walk the list of nested loops...
    699 template <> struct GraphTraits<const Loop*> {
    700   typedef const Loop NodeType;
    701   typedef LoopInfo::iterator ChildIteratorType;
    702 
    703   static NodeType *getEntryNode(const Loop *L) { return L; }
    704   static inline ChildIteratorType child_begin(NodeType *N) {
    705     return N->begin();
    706   }
    707   static inline ChildIteratorType child_end(NodeType *N) {
    708     return N->end();
    709   }
    710 };
    711 
    712 template <> struct GraphTraits<Loop*> {
    713   typedef Loop NodeType;
    714   typedef LoopInfo::iterator ChildIteratorType;
    715 
    716   static NodeType *getEntryNode(Loop *L) { return L; }
    717   static inline ChildIteratorType child_begin(NodeType *N) {
    718     return N->begin();
    719   }
    720   static inline ChildIteratorType child_end(NodeType *N) {
    721     return N->end();
    722   }
    723 };
    724 
    725 } // End llvm namespace
    726 
    727 #endif
    728