Home | History | Annotate | Download | only in Lex
      1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the NumericLiteralParser, CharLiteralParser, and
     11 // StringLiteralParser interfaces.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Lex/LiteralSupport.h"
     16 #include "clang/Basic/CharInfo.h"
     17 #include "clang/Basic/TargetInfo.h"
     18 #include "clang/Lex/LexDiagnostic.h"
     19 #include "clang/Lex/Preprocessor.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/Support/ConvertUTF.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 
     24 using namespace clang;
     25 
     26 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
     27   switch (kind) {
     28   default: llvm_unreachable("Unknown token type!");
     29   case tok::char_constant:
     30   case tok::string_literal:
     31   case tok::utf8_string_literal:
     32     return Target.getCharWidth();
     33   case tok::wide_char_constant:
     34   case tok::wide_string_literal:
     35     return Target.getWCharWidth();
     36   case tok::utf16_char_constant:
     37   case tok::utf16_string_literal:
     38     return Target.getChar16Width();
     39   case tok::utf32_char_constant:
     40   case tok::utf32_string_literal:
     41     return Target.getChar32Width();
     42   }
     43 }
     44 
     45 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
     46                                            FullSourceLoc TokLoc,
     47                                            const char *TokBegin,
     48                                            const char *TokRangeBegin,
     49                                            const char *TokRangeEnd) {
     50   SourceLocation Begin =
     51     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
     52                                    TokLoc.getManager(), Features);
     53   SourceLocation End =
     54     Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
     55                                    TokLoc.getManager(), Features);
     56   return CharSourceRange::getCharRange(Begin, End);
     57 }
     58 
     59 /// \brief Produce a diagnostic highlighting some portion of a literal.
     60 ///
     61 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
     62 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
     63 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
     64 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
     65                               const LangOptions &Features, FullSourceLoc TokLoc,
     66                               const char *TokBegin, const char *TokRangeBegin,
     67                               const char *TokRangeEnd, unsigned DiagID) {
     68   SourceLocation Begin =
     69     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
     70                                    TokLoc.getManager(), Features);
     71   return Diags->Report(Begin, DiagID) <<
     72     MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
     73 }
     74 
     75 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
     76 /// either a character or a string literal.
     77 static unsigned ProcessCharEscape(const char *ThisTokBegin,
     78                                   const char *&ThisTokBuf,
     79                                   const char *ThisTokEnd, bool &HadError,
     80                                   FullSourceLoc Loc, unsigned CharWidth,
     81                                   DiagnosticsEngine *Diags,
     82                                   const LangOptions &Features) {
     83   const char *EscapeBegin = ThisTokBuf;
     84 
     85   // Skip the '\' char.
     86   ++ThisTokBuf;
     87 
     88   // We know that this character can't be off the end of the buffer, because
     89   // that would have been \", which would not have been the end of string.
     90   unsigned ResultChar = *ThisTokBuf++;
     91   switch (ResultChar) {
     92   // These map to themselves.
     93   case '\\': case '\'': case '"': case '?': break;
     94 
     95     // These have fixed mappings.
     96   case 'a':
     97     // TODO: K&R: the meaning of '\\a' is different in traditional C
     98     ResultChar = 7;
     99     break;
    100   case 'b':
    101     ResultChar = 8;
    102     break;
    103   case 'e':
    104     if (Diags)
    105       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    106            diag::ext_nonstandard_escape) << "e";
    107     ResultChar = 27;
    108     break;
    109   case 'E':
    110     if (Diags)
    111       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    112            diag::ext_nonstandard_escape) << "E";
    113     ResultChar = 27;
    114     break;
    115   case 'f':
    116     ResultChar = 12;
    117     break;
    118   case 'n':
    119     ResultChar = 10;
    120     break;
    121   case 'r':
    122     ResultChar = 13;
    123     break;
    124   case 't':
    125     ResultChar = 9;
    126     break;
    127   case 'v':
    128     ResultChar = 11;
    129     break;
    130   case 'x': { // Hex escape.
    131     ResultChar = 0;
    132     if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
    133       if (Diags)
    134         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    135              diag::err_hex_escape_no_digits) << "x";
    136       HadError = 1;
    137       break;
    138     }
    139 
    140     // Hex escapes are a maximal series of hex digits.
    141     bool Overflow = false;
    142     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
    143       int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
    144       if (CharVal == -1) break;
    145       // About to shift out a digit?
    146       Overflow |= (ResultChar & 0xF0000000) ? true : false;
    147       ResultChar <<= 4;
    148       ResultChar |= CharVal;
    149     }
    150 
    151     // See if any bits will be truncated when evaluated as a character.
    152     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
    153       Overflow = true;
    154       ResultChar &= ~0U >> (32-CharWidth);
    155     }
    156 
    157     // Check for overflow.
    158     if (Overflow && Diags)   // Too many digits to fit in
    159       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    160            diag::err_hex_escape_too_large);
    161     break;
    162   }
    163   case '0': case '1': case '2': case '3':
    164   case '4': case '5': case '6': case '7': {
    165     // Octal escapes.
    166     --ThisTokBuf;
    167     ResultChar = 0;
    168 
    169     // Octal escapes are a series of octal digits with maximum length 3.
    170     // "\0123" is a two digit sequence equal to "\012" "3".
    171     unsigned NumDigits = 0;
    172     do {
    173       ResultChar <<= 3;
    174       ResultChar |= *ThisTokBuf++ - '0';
    175       ++NumDigits;
    176     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
    177              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
    178 
    179     // Check for overflow.  Reject '\777', but not L'\777'.
    180     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
    181       if (Diags)
    182         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    183              diag::err_octal_escape_too_large);
    184       ResultChar &= ~0U >> (32-CharWidth);
    185     }
    186     break;
    187   }
    188 
    189     // Otherwise, these are not valid escapes.
    190   case '(': case '{': case '[': case '%':
    191     // GCC accepts these as extensions.  We warn about them as such though.
    192     if (Diags)
    193       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    194            diag::ext_nonstandard_escape)
    195         << std::string(1, ResultChar);
    196     break;
    197   default:
    198     if (Diags == 0)
    199       break;
    200 
    201     if (isPrintable(ResultChar))
    202       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    203            diag::ext_unknown_escape)
    204         << std::string(1, ResultChar);
    205     else
    206       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    207            diag::ext_unknown_escape)
    208         << "x" + llvm::utohexstr(ResultChar);
    209     break;
    210   }
    211 
    212   return ResultChar;
    213 }
    214 
    215 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
    216 /// return the UTF32.
    217 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    218                              const char *ThisTokEnd,
    219                              uint32_t &UcnVal, unsigned short &UcnLen,
    220                              FullSourceLoc Loc, DiagnosticsEngine *Diags,
    221                              const LangOptions &Features,
    222                              bool in_char_string_literal = false) {
    223   const char *UcnBegin = ThisTokBuf;
    224 
    225   // Skip the '\u' char's.
    226   ThisTokBuf += 2;
    227 
    228   if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
    229     if (Diags)
    230       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    231            diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
    232     return false;
    233   }
    234   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
    235   unsigned short UcnLenSave = UcnLen;
    236   for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
    237     int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
    238     if (CharVal == -1) break;
    239     UcnVal <<= 4;
    240     UcnVal |= CharVal;
    241   }
    242   // If we didn't consume the proper number of digits, there is a problem.
    243   if (UcnLenSave) {
    244     if (Diags)
    245       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    246            diag::err_ucn_escape_incomplete);
    247     return false;
    248   }
    249 
    250   // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
    251   if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
    252       UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
    253     if (Diags)
    254       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    255            diag::err_ucn_escape_invalid);
    256     return false;
    257   }
    258 
    259   // C++11 allows UCNs that refer to control characters and basic source
    260   // characters inside character and string literals
    261   if (UcnVal < 0xa0 &&
    262       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {  // $, @, `
    263     bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
    264     if (Diags) {
    265       char BasicSCSChar = UcnVal;
    266       if (UcnVal >= 0x20 && UcnVal < 0x7f)
    267         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    268              IsError ? diag::err_ucn_escape_basic_scs :
    269                        diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
    270             << StringRef(&BasicSCSChar, 1);
    271       else
    272         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    273              IsError ? diag::err_ucn_control_character :
    274                        diag::warn_cxx98_compat_literal_ucn_control_character);
    275     }
    276     if (IsError)
    277       return false;
    278   }
    279 
    280   if (!Features.CPlusPlus && !Features.C99 && Diags)
    281     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    282          diag::warn_ucn_not_valid_in_c89_literal);
    283 
    284   return true;
    285 }
    286 
    287 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
    288 /// which this UCN will occupy.
    289 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    290                             const char *ThisTokEnd, unsigned CharByteWidth,
    291                             const LangOptions &Features, bool &HadError) {
    292   // UTF-32: 4 bytes per escape.
    293   if (CharByteWidth == 4)
    294     return 4;
    295 
    296   uint32_t UcnVal = 0;
    297   unsigned short UcnLen = 0;
    298   FullSourceLoc Loc;
    299 
    300   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
    301                         UcnLen, Loc, 0, Features, true)) {
    302     HadError = true;
    303     return 0;
    304   }
    305 
    306   // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
    307   if (CharByteWidth == 2)
    308     return UcnVal <= 0xFFFF ? 2 : 4;
    309 
    310   // UTF-8.
    311   if (UcnVal < 0x80)
    312     return 1;
    313   if (UcnVal < 0x800)
    314     return 2;
    315   if (UcnVal < 0x10000)
    316     return 3;
    317   return 4;
    318 }
    319 
    320 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
    321 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
    322 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
    323 /// we will likely rework our support for UCN's.
    324 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    325                             const char *ThisTokEnd,
    326                             char *&ResultBuf, bool &HadError,
    327                             FullSourceLoc Loc, unsigned CharByteWidth,
    328                             DiagnosticsEngine *Diags,
    329                             const LangOptions &Features) {
    330   typedef uint32_t UTF32;
    331   UTF32 UcnVal = 0;
    332   unsigned short UcnLen = 0;
    333   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
    334                         Loc, Diags, Features, true)) {
    335     HadError = true;
    336     return;
    337   }
    338 
    339   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth) &&
    340          "only character widths of 1, 2, or 4 bytes supported");
    341 
    342   (void)UcnLen;
    343   assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
    344 
    345   if (CharByteWidth == 4) {
    346     // FIXME: Make the type of the result buffer correct instead of
    347     // using reinterpret_cast.
    348     UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
    349     *ResultPtr = UcnVal;
    350     ResultBuf += 4;
    351     return;
    352   }
    353 
    354   if (CharByteWidth == 2) {
    355     // FIXME: Make the type of the result buffer correct instead of
    356     // using reinterpret_cast.
    357     UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
    358 
    359     if (UcnVal <= (UTF32)0xFFFF) {
    360       *ResultPtr = UcnVal;
    361       ResultBuf += 2;
    362       return;
    363     }
    364 
    365     // Convert to UTF16.
    366     UcnVal -= 0x10000;
    367     *ResultPtr     = 0xD800 + (UcnVal >> 10);
    368     *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
    369     ResultBuf += 4;
    370     return;
    371   }
    372 
    373   assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
    374 
    375   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
    376   // The conversion below was inspired by:
    377   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
    378   // First, we determine how many bytes the result will require.
    379   typedef uint8_t UTF8;
    380 
    381   unsigned short bytesToWrite = 0;
    382   if (UcnVal < (UTF32)0x80)
    383     bytesToWrite = 1;
    384   else if (UcnVal < (UTF32)0x800)
    385     bytesToWrite = 2;
    386   else if (UcnVal < (UTF32)0x10000)
    387     bytesToWrite = 3;
    388   else
    389     bytesToWrite = 4;
    390 
    391   const unsigned byteMask = 0xBF;
    392   const unsigned byteMark = 0x80;
    393 
    394   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
    395   // into the first byte, depending on how many bytes follow.
    396   static const UTF8 firstByteMark[5] = {
    397     0x00, 0x00, 0xC0, 0xE0, 0xF0
    398   };
    399   // Finally, we write the bytes into ResultBuf.
    400   ResultBuf += bytesToWrite;
    401   switch (bytesToWrite) { // note: everything falls through.
    402   case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    403   case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    404   case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    405   case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
    406   }
    407   // Update the buffer.
    408   ResultBuf += bytesToWrite;
    409 }
    410 
    411 
    412 ///       integer-constant: [C99 6.4.4.1]
    413 ///         decimal-constant integer-suffix
    414 ///         octal-constant integer-suffix
    415 ///         hexadecimal-constant integer-suffix
    416 ///         binary-literal integer-suffix [GNU, C++1y]
    417 ///       user-defined-integer-literal: [C++11 lex.ext]
    418 ///         decimal-literal ud-suffix
    419 ///         octal-literal ud-suffix
    420 ///         hexadecimal-literal ud-suffix
    421 ///         binary-literal ud-suffix [GNU, C++1y]
    422 ///       decimal-constant:
    423 ///         nonzero-digit
    424 ///         decimal-constant digit
    425 ///       octal-constant:
    426 ///         0
    427 ///         octal-constant octal-digit
    428 ///       hexadecimal-constant:
    429 ///         hexadecimal-prefix hexadecimal-digit
    430 ///         hexadecimal-constant hexadecimal-digit
    431 ///       hexadecimal-prefix: one of
    432 ///         0x 0X
    433 ///       binary-literal:
    434 ///         0b binary-digit
    435 ///         0B binary-digit
    436 ///         binary-literal binary-digit
    437 ///       integer-suffix:
    438 ///         unsigned-suffix [long-suffix]
    439 ///         unsigned-suffix [long-long-suffix]
    440 ///         long-suffix [unsigned-suffix]
    441 ///         long-long-suffix [unsigned-sufix]
    442 ///       nonzero-digit:
    443 ///         1 2 3 4 5 6 7 8 9
    444 ///       octal-digit:
    445 ///         0 1 2 3 4 5 6 7
    446 ///       hexadecimal-digit:
    447 ///         0 1 2 3 4 5 6 7 8 9
    448 ///         a b c d e f
    449 ///         A B C D E F
    450 ///       binary-digit:
    451 ///         0
    452 ///         1
    453 ///       unsigned-suffix: one of
    454 ///         u U
    455 ///       long-suffix: one of
    456 ///         l L
    457 ///       long-long-suffix: one of
    458 ///         ll LL
    459 ///
    460 ///       floating-constant: [C99 6.4.4.2]
    461 ///         TODO: add rules...
    462 ///
    463 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
    464                                            SourceLocation TokLoc,
    465                                            Preprocessor &PP)
    466   : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
    467 
    468   // This routine assumes that the range begin/end matches the regex for integer
    469   // and FP constants (specifically, the 'pp-number' regex), and assumes that
    470   // the byte at "*end" is both valid and not part of the regex.  Because of
    471   // this, it doesn't have to check for 'overscan' in various places.
    472   assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
    473 
    474   s = DigitsBegin = ThisTokBegin;
    475   saw_exponent = false;
    476   saw_period = false;
    477   saw_ud_suffix = false;
    478   isLong = false;
    479   isUnsigned = false;
    480   isLongLong = false;
    481   isFloat = false;
    482   isImaginary = false;
    483   isMicrosoftInteger = false;
    484   hadError = false;
    485 
    486   if (*s == '0') { // parse radix
    487     ParseNumberStartingWithZero(TokLoc);
    488     if (hadError)
    489       return;
    490   } else { // the first digit is non-zero
    491     radix = 10;
    492     s = SkipDigits(s);
    493     if (s == ThisTokEnd) {
    494       // Done.
    495     } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
    496       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
    497               diag::err_invalid_decimal_digit) << StringRef(s, 1);
    498       hadError = true;
    499       return;
    500     } else if (*s == '.') {
    501       s++;
    502       saw_period = true;
    503       s = SkipDigits(s);
    504     }
    505     if ((*s == 'e' || *s == 'E')) { // exponent
    506       const char *Exponent = s;
    507       s++;
    508       saw_exponent = true;
    509       if (*s == '+' || *s == '-')  s++; // sign
    510       const char *first_non_digit = SkipDigits(s);
    511       if (first_non_digit != s) {
    512         s = first_non_digit;
    513       } else {
    514         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
    515                 diag::err_exponent_has_no_digits);
    516         hadError = true;
    517         return;
    518       }
    519     }
    520   }
    521 
    522   SuffixBegin = s;
    523 
    524   // Parse the suffix.  At this point we can classify whether we have an FP or
    525   // integer constant.
    526   bool isFPConstant = isFloatingLiteral();
    527   const char *ImaginarySuffixLoc = 0;
    528 
    529   // Loop over all of the characters of the suffix.  If we see something bad,
    530   // we break out of the loop.
    531   for (; s != ThisTokEnd; ++s) {
    532     switch (*s) {
    533     case 'f':      // FP Suffix for "float"
    534     case 'F':
    535       if (!isFPConstant) break;  // Error for integer constant.
    536       if (isFloat || isLong) break; // FF, LF invalid.
    537       isFloat = true;
    538       continue;  // Success.
    539     case 'u':
    540     case 'U':
    541       if (isFPConstant) break;  // Error for floating constant.
    542       if (isUnsigned) break;    // Cannot be repeated.
    543       isUnsigned = true;
    544       continue;  // Success.
    545     case 'l':
    546     case 'L':
    547       if (isLong || isLongLong) break;  // Cannot be repeated.
    548       if (isFloat) break;               // LF invalid.
    549 
    550       // Check for long long.  The L's need to be adjacent and the same case.
    551       if (s+1 != ThisTokEnd && s[1] == s[0]) {
    552         if (isFPConstant) break;        // long long invalid for floats.
    553         isLongLong = true;
    554         ++s;  // Eat both of them.
    555       } else {
    556         isLong = true;
    557       }
    558       continue;  // Success.
    559     case 'i':
    560     case 'I':
    561       if (PP.getLangOpts().MicrosoftExt) {
    562         if (isFPConstant || isLong || isLongLong) break;
    563 
    564         // Allow i8, i16, i32, i64, and i128.
    565         if (s + 1 != ThisTokEnd) {
    566           switch (s[1]) {
    567             case '8':
    568               s += 2; // i8 suffix
    569               isMicrosoftInteger = true;
    570               break;
    571             case '1':
    572               if (s + 2 == ThisTokEnd) break;
    573               if (s[2] == '6') {
    574                 s += 3; // i16 suffix
    575                 isMicrosoftInteger = true;
    576               }
    577               else if (s[2] == '2') {
    578                 if (s + 3 == ThisTokEnd) break;
    579                 if (s[3] == '8') {
    580                   s += 4; // i128 suffix
    581                   isMicrosoftInteger = true;
    582                 }
    583               }
    584               break;
    585             case '3':
    586               if (s + 2 == ThisTokEnd) break;
    587               if (s[2] == '2') {
    588                 s += 3; // i32 suffix
    589                 isLong = true;
    590                 isMicrosoftInteger = true;
    591               }
    592               break;
    593             case '6':
    594               if (s + 2 == ThisTokEnd) break;
    595               if (s[2] == '4') {
    596                 s += 3; // i64 suffix
    597                 isLongLong = true;
    598                 isMicrosoftInteger = true;
    599               }
    600               break;
    601             default:
    602               break;
    603           }
    604           break;
    605         }
    606       }
    607       // fall through.
    608     case 'j':
    609     case 'J':
    610       if (isImaginary) break;   // Cannot be repeated.
    611       isImaginary = true;
    612       ImaginarySuffixLoc = s;
    613       continue;  // Success.
    614     }
    615     // If we reached here, there was an error or a ud-suffix.
    616     break;
    617   }
    618 
    619   if (s != ThisTokEnd) {
    620     if (isValidUDSuffix(PP.getLangOpts(),
    621                         StringRef(SuffixBegin, ThisTokEnd - SuffixBegin))) {
    622       // Any suffix pieces we might have parsed are actually part of the
    623       // ud-suffix.
    624       isLong = false;
    625       isUnsigned = false;
    626       isLongLong = false;
    627       isFloat = false;
    628       isImaginary = false;
    629       isMicrosoftInteger = false;
    630 
    631       saw_ud_suffix = true;
    632       return;
    633     }
    634 
    635     // Report an error if there are any.
    636     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
    637             isFPConstant ? diag::err_invalid_suffix_float_constant :
    638                            diag::err_invalid_suffix_integer_constant)
    639       << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
    640     hadError = true;
    641     return;
    642   }
    643 
    644   if (isImaginary) {
    645     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
    646                                        ImaginarySuffixLoc - ThisTokBegin),
    647             diag::ext_imaginary_constant);
    648   }
    649 }
    650 
    651 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
    652 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
    653 /// treat it as an invalid suffix.
    654 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
    655                                            StringRef Suffix) {
    656   if (!LangOpts.CPlusPlus11 || Suffix.empty())
    657     return false;
    658 
    659   // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
    660   if (Suffix[0] == '_')
    661     return true;
    662 
    663   // In C++11, there are no library suffixes.
    664   if (!LangOpts.CPlusPlus1y)
    665     return false;
    666 
    667   // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
    668   return llvm::StringSwitch<bool>(Suffix)
    669       .Cases("h", "min", "s", true)
    670       .Cases("ms", "us", "ns", true)
    671       .Default(false);
    672 }
    673 
    674 /// ParseNumberStartingWithZero - This method is called when the first character
    675 /// of the number is found to be a zero.  This means it is either an octal
    676 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
    677 /// a floating point number (01239.123e4).  Eat the prefix, determining the
    678 /// radix etc.
    679 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
    680   assert(s[0] == '0' && "Invalid method call");
    681   s++;
    682 
    683   // Handle a hex number like 0x1234.
    684   if ((*s == 'x' || *s == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
    685     s++;
    686     radix = 16;
    687     DigitsBegin = s;
    688     s = SkipHexDigits(s);
    689     bool noSignificand = (s == DigitsBegin);
    690     if (s == ThisTokEnd) {
    691       // Done.
    692     } else if (*s == '.') {
    693       s++;
    694       saw_period = true;
    695       const char *floatDigitsBegin = s;
    696       s = SkipHexDigits(s);
    697       noSignificand &= (floatDigitsBegin == s);
    698     }
    699 
    700     if (noSignificand) {
    701       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
    702         diag::err_hexconstant_requires_digits);
    703       hadError = true;
    704       return;
    705     }
    706 
    707     // A binary exponent can appear with or with a '.'. If dotted, the
    708     // binary exponent is required.
    709     if (*s == 'p' || *s == 'P') {
    710       const char *Exponent = s;
    711       s++;
    712       saw_exponent = true;
    713       if (*s == '+' || *s == '-')  s++; // sign
    714       const char *first_non_digit = SkipDigits(s);
    715       if (first_non_digit == s) {
    716         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
    717                 diag::err_exponent_has_no_digits);
    718         hadError = true;
    719         return;
    720       }
    721       s = first_non_digit;
    722 
    723       if (!PP.getLangOpts().HexFloats)
    724         PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
    725     } else if (saw_period) {
    726       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    727               diag::err_hexconstant_requires_exponent);
    728       hadError = true;
    729     }
    730     return;
    731   }
    732 
    733   // Handle simple binary numbers 0b01010
    734   if (*s == 'b' || *s == 'B') {
    735     // 0b101010 is a C++1y / GCC extension.
    736     PP.Diag(TokLoc,
    737             PP.getLangOpts().CPlusPlus1y
    738               ? diag::warn_cxx11_compat_binary_literal
    739               : PP.getLangOpts().CPlusPlus
    740                 ? diag::ext_binary_literal_cxx1y
    741                 : diag::ext_binary_literal);
    742     ++s;
    743     radix = 2;
    744     DigitsBegin = s;
    745     s = SkipBinaryDigits(s);
    746     if (s == ThisTokEnd) {
    747       // Done.
    748     } else if (isHexDigit(*s)) {
    749       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    750               diag::err_invalid_binary_digit) << StringRef(s, 1);
    751       hadError = true;
    752     }
    753     // Other suffixes will be diagnosed by the caller.
    754     return;
    755   }
    756 
    757   // For now, the radix is set to 8. If we discover that we have a
    758   // floating point constant, the radix will change to 10. Octal floating
    759   // point constants are not permitted (only decimal and hexadecimal).
    760   radix = 8;
    761   DigitsBegin = s;
    762   s = SkipOctalDigits(s);
    763   if (s == ThisTokEnd)
    764     return; // Done, simple octal number like 01234
    765 
    766   // If we have some other non-octal digit that *is* a decimal digit, see if
    767   // this is part of a floating point number like 094.123 or 09e1.
    768   if (isDigit(*s)) {
    769     const char *EndDecimal = SkipDigits(s);
    770     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
    771       s = EndDecimal;
    772       radix = 10;
    773     }
    774   }
    775 
    776   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
    777   // the code is using an incorrect base.
    778   if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
    779     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    780             diag::err_invalid_octal_digit) << StringRef(s, 1);
    781     hadError = true;
    782     return;
    783   }
    784 
    785   if (*s == '.') {
    786     s++;
    787     radix = 10;
    788     saw_period = true;
    789     s = SkipDigits(s); // Skip suffix.
    790   }
    791   if (*s == 'e' || *s == 'E') { // exponent
    792     const char *Exponent = s;
    793     s++;
    794     radix = 10;
    795     saw_exponent = true;
    796     if (*s == '+' || *s == '-')  s++; // sign
    797     const char *first_non_digit = SkipDigits(s);
    798     if (first_non_digit != s) {
    799       s = first_non_digit;
    800     } else {
    801       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
    802               diag::err_exponent_has_no_digits);
    803       hadError = true;
    804       return;
    805     }
    806   }
    807 }
    808 
    809 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
    810   switch (Radix) {
    811   case 2:
    812     return NumDigits <= 64;
    813   case 8:
    814     return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
    815   case 10:
    816     return NumDigits <= 19; // floor(log10(2^64))
    817   case 16:
    818     return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
    819   default:
    820     llvm_unreachable("impossible Radix");
    821   }
    822 }
    823 
    824 /// GetIntegerValue - Convert this numeric literal value to an APInt that
    825 /// matches Val's input width.  If there is an overflow, set Val to the low bits
    826 /// of the result and return true.  Otherwise, return false.
    827 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
    828   // Fast path: Compute a conservative bound on the maximum number of
    829   // bits per digit in this radix. If we can't possibly overflow a
    830   // uint64 based on that bound then do the simple conversion to
    831   // integer. This avoids the expensive overflow checking below, and
    832   // handles the common cases that matter (small decimal integers and
    833   // hex/octal values which don't overflow).
    834   const unsigned NumDigits = SuffixBegin - DigitsBegin;
    835   if (alwaysFitsInto64Bits(radix, NumDigits)) {
    836     uint64_t N = 0;
    837     for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
    838       N = N * radix + llvm::hexDigitValue(*Ptr);
    839 
    840     // This will truncate the value to Val's input width. Simply check
    841     // for overflow by comparing.
    842     Val = N;
    843     return Val.getZExtValue() != N;
    844   }
    845 
    846   Val = 0;
    847   const char *Ptr = DigitsBegin;
    848 
    849   llvm::APInt RadixVal(Val.getBitWidth(), radix);
    850   llvm::APInt CharVal(Val.getBitWidth(), 0);
    851   llvm::APInt OldVal = Val;
    852 
    853   bool OverflowOccurred = false;
    854   while (Ptr < SuffixBegin) {
    855     unsigned C = llvm::hexDigitValue(*Ptr++);
    856 
    857     // If this letter is out of bound for this radix, reject it.
    858     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
    859 
    860     CharVal = C;
    861 
    862     // Add the digit to the value in the appropriate radix.  If adding in digits
    863     // made the value smaller, then this overflowed.
    864     OldVal = Val;
    865 
    866     // Multiply by radix, did overflow occur on the multiply?
    867     Val *= RadixVal;
    868     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
    869 
    870     // Add value, did overflow occur on the value?
    871     //   (a + b) ult b  <=> overflow
    872     Val += CharVal;
    873     OverflowOccurred |= Val.ult(CharVal);
    874   }
    875   return OverflowOccurred;
    876 }
    877 
    878 llvm::APFloat::opStatus
    879 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
    880   using llvm::APFloat;
    881 
    882   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
    883   return Result.convertFromString(StringRef(ThisTokBegin, n),
    884                                   APFloat::rmNearestTiesToEven);
    885 }
    886 
    887 
    888 /// \verbatim
    889 ///       user-defined-character-literal: [C++11 lex.ext]
    890 ///         character-literal ud-suffix
    891 ///       ud-suffix:
    892 ///         identifier
    893 ///       character-literal: [C++11 lex.ccon]
    894 ///         ' c-char-sequence '
    895 ///         u' c-char-sequence '
    896 ///         U' c-char-sequence '
    897 ///         L' c-char-sequence '
    898 ///       c-char-sequence:
    899 ///         c-char
    900 ///         c-char-sequence c-char
    901 ///       c-char:
    902 ///         any member of the source character set except the single-quote ',
    903 ///           backslash \, or new-line character
    904 ///         escape-sequence
    905 ///         universal-character-name
    906 ///       escape-sequence:
    907 ///         simple-escape-sequence
    908 ///         octal-escape-sequence
    909 ///         hexadecimal-escape-sequence
    910 ///       simple-escape-sequence:
    911 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
    912 ///       octal-escape-sequence:
    913 ///         \ octal-digit
    914 ///         \ octal-digit octal-digit
    915 ///         \ octal-digit octal-digit octal-digit
    916 ///       hexadecimal-escape-sequence:
    917 ///         \x hexadecimal-digit
    918 ///         hexadecimal-escape-sequence hexadecimal-digit
    919 ///       universal-character-name: [C++11 lex.charset]
    920 ///         \u hex-quad
    921 ///         \U hex-quad hex-quad
    922 ///       hex-quad:
    923 ///         hex-digit hex-digit hex-digit hex-digit
    924 /// \endverbatim
    925 ///
    926 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
    927                                      SourceLocation Loc, Preprocessor &PP,
    928                                      tok::TokenKind kind) {
    929   // At this point we know that the character matches the regex "(L|u|U)?'.*'".
    930   HadError = false;
    931 
    932   Kind = kind;
    933 
    934   const char *TokBegin = begin;
    935 
    936   // Skip over wide character determinant.
    937   if (Kind != tok::char_constant) {
    938     ++begin;
    939   }
    940 
    941   // Skip over the entry quote.
    942   assert(begin[0] == '\'' && "Invalid token lexed");
    943   ++begin;
    944 
    945   // Remove an optional ud-suffix.
    946   if (end[-1] != '\'') {
    947     const char *UDSuffixEnd = end;
    948     do {
    949       --end;
    950     } while (end[-1] != '\'');
    951     UDSuffixBuf.assign(end, UDSuffixEnd);
    952     UDSuffixOffset = end - TokBegin;
    953   }
    954 
    955   // Trim the ending quote.
    956   assert(end != begin && "Invalid token lexed");
    957   --end;
    958 
    959   // FIXME: The "Value" is an uint64_t so we can handle char literals of
    960   // up to 64-bits.
    961   // FIXME: This extensively assumes that 'char' is 8-bits.
    962   assert(PP.getTargetInfo().getCharWidth() == 8 &&
    963          "Assumes char is 8 bits");
    964   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
    965          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
    966          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
    967   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
    968          "Assumes sizeof(wchar) on target is <= 64");
    969 
    970   SmallVector<uint32_t,4> codepoint_buffer;
    971   codepoint_buffer.resize(end-begin);
    972   uint32_t *buffer_begin = &codepoint_buffer.front();
    973   uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
    974 
    975   // Unicode escapes representing characters that cannot be correctly
    976   // represented in a single code unit are disallowed in character literals
    977   // by this implementation.
    978   uint32_t largest_character_for_kind;
    979   if (tok::wide_char_constant == Kind) {
    980     largest_character_for_kind = 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
    981   } else if (tok::utf16_char_constant == Kind) {
    982     largest_character_for_kind = 0xFFFF;
    983   } else if (tok::utf32_char_constant == Kind) {
    984     largest_character_for_kind = 0x10FFFF;
    985   } else {
    986     largest_character_for_kind = 0x7Fu;
    987   }
    988 
    989   while (begin!=end) {
    990     // Is this a span of non-escape characters?
    991     if (begin[0] != '\\') {
    992       char const *start = begin;
    993       do {
    994         ++begin;
    995       } while (begin != end && *begin != '\\');
    996 
    997       char const *tmp_in_start = start;
    998       uint32_t *tmp_out_start = buffer_begin;
    999       ConversionResult res =
   1000       ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
   1001                          reinterpret_cast<UTF8 const *>(begin),
   1002                          &buffer_begin,buffer_end,strictConversion);
   1003       if (res!=conversionOK) {
   1004         // If we see bad encoding for unprefixed character literals, warn and
   1005         // simply copy the byte values, for compatibility with gcc and
   1006         // older versions of clang.
   1007         bool NoErrorOnBadEncoding = isAscii();
   1008         unsigned Msg = diag::err_bad_character_encoding;
   1009         if (NoErrorOnBadEncoding)
   1010           Msg = diag::warn_bad_character_encoding;
   1011         PP.Diag(Loc, Msg);
   1012         if (NoErrorOnBadEncoding) {
   1013           start = tmp_in_start;
   1014           buffer_begin = tmp_out_start;
   1015           for ( ; start != begin; ++start, ++buffer_begin)
   1016             *buffer_begin = static_cast<uint8_t>(*start);
   1017         } else {
   1018           HadError = true;
   1019         }
   1020       } else {
   1021         for (; tmp_out_start <buffer_begin; ++tmp_out_start) {
   1022           if (*tmp_out_start > largest_character_for_kind) {
   1023             HadError = true;
   1024             PP.Diag(Loc, diag::err_character_too_large);
   1025           }
   1026         }
   1027       }
   1028 
   1029       continue;
   1030     }
   1031     // Is this a Universal Character Name excape?
   1032     if (begin[1] == 'u' || begin[1] == 'U') {
   1033       unsigned short UcnLen = 0;
   1034       if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
   1035                             FullSourceLoc(Loc, PP.getSourceManager()),
   1036                             &PP.getDiagnostics(), PP.getLangOpts(),
   1037                             true))
   1038       {
   1039         HadError = true;
   1040       } else if (*buffer_begin > largest_character_for_kind) {
   1041         HadError = true;
   1042         PP.Diag(Loc, diag::err_character_too_large);
   1043       }
   1044 
   1045       ++buffer_begin;
   1046       continue;
   1047     }
   1048     unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
   1049     uint64_t result =
   1050       ProcessCharEscape(TokBegin, begin, end, HadError,
   1051                         FullSourceLoc(Loc,PP.getSourceManager()),
   1052                         CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
   1053     *buffer_begin++ = result;
   1054   }
   1055 
   1056   unsigned NumCharsSoFar = buffer_begin-&codepoint_buffer.front();
   1057 
   1058   if (NumCharsSoFar > 1) {
   1059     if (isWide())
   1060       PP.Diag(Loc, diag::warn_extraneous_char_constant);
   1061     else if (isAscii() && NumCharsSoFar == 4)
   1062       PP.Diag(Loc, diag::ext_four_char_character_literal);
   1063     else if (isAscii())
   1064       PP.Diag(Loc, diag::ext_multichar_character_literal);
   1065     else
   1066       PP.Diag(Loc, diag::err_multichar_utf_character_literal);
   1067     IsMultiChar = true;
   1068   } else
   1069     IsMultiChar = false;
   1070 
   1071   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
   1072 
   1073   // Narrow character literals act as though their value is concatenated
   1074   // in this implementation, but warn on overflow.
   1075   bool multi_char_too_long = false;
   1076   if (isAscii() && isMultiChar()) {
   1077     LitVal = 0;
   1078     for (size_t i=0;i<NumCharsSoFar;++i) {
   1079       // check for enough leading zeros to shift into
   1080       multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
   1081       LitVal <<= 8;
   1082       LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
   1083     }
   1084   } else if (NumCharsSoFar > 0) {
   1085     // otherwise just take the last character
   1086     LitVal = buffer_begin[-1];
   1087   }
   1088 
   1089   if (!HadError && multi_char_too_long) {
   1090     PP.Diag(Loc,diag::warn_char_constant_too_large);
   1091   }
   1092 
   1093   // Transfer the value from APInt to uint64_t
   1094   Value = LitVal.getZExtValue();
   1095 
   1096   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
   1097   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
   1098   // character constants are not sign extended in the this implementation:
   1099   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
   1100   if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
   1101       PP.getLangOpts().CharIsSigned)
   1102     Value = (signed char)Value;
   1103 }
   1104 
   1105 /// \verbatim
   1106 ///       string-literal: [C++0x lex.string]
   1107 ///         encoding-prefix " [s-char-sequence] "
   1108 ///         encoding-prefix R raw-string
   1109 ///       encoding-prefix:
   1110 ///         u8
   1111 ///         u
   1112 ///         U
   1113 ///         L
   1114 ///       s-char-sequence:
   1115 ///         s-char
   1116 ///         s-char-sequence s-char
   1117 ///       s-char:
   1118 ///         any member of the source character set except the double-quote ",
   1119 ///           backslash \, or new-line character
   1120 ///         escape-sequence
   1121 ///         universal-character-name
   1122 ///       raw-string:
   1123 ///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
   1124 ///       r-char-sequence:
   1125 ///         r-char
   1126 ///         r-char-sequence r-char
   1127 ///       r-char:
   1128 ///         any member of the source character set, except a right parenthesis )
   1129 ///           followed by the initial d-char-sequence (which may be empty)
   1130 ///           followed by a double quote ".
   1131 ///       d-char-sequence:
   1132 ///         d-char
   1133 ///         d-char-sequence d-char
   1134 ///       d-char:
   1135 ///         any member of the basic source character set except:
   1136 ///           space, the left parenthesis (, the right parenthesis ),
   1137 ///           the backslash \, and the control characters representing horizontal
   1138 ///           tab, vertical tab, form feed, and newline.
   1139 ///       escape-sequence: [C++0x lex.ccon]
   1140 ///         simple-escape-sequence
   1141 ///         octal-escape-sequence
   1142 ///         hexadecimal-escape-sequence
   1143 ///       simple-escape-sequence:
   1144 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
   1145 ///       octal-escape-sequence:
   1146 ///         \ octal-digit
   1147 ///         \ octal-digit octal-digit
   1148 ///         \ octal-digit octal-digit octal-digit
   1149 ///       hexadecimal-escape-sequence:
   1150 ///         \x hexadecimal-digit
   1151 ///         hexadecimal-escape-sequence hexadecimal-digit
   1152 ///       universal-character-name:
   1153 ///         \u hex-quad
   1154 ///         \U hex-quad hex-quad
   1155 ///       hex-quad:
   1156 ///         hex-digit hex-digit hex-digit hex-digit
   1157 /// \endverbatim
   1158 ///
   1159 StringLiteralParser::
   1160 StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
   1161                     Preprocessor &PP, bool Complain)
   1162   : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
   1163     Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() : 0),
   1164     MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
   1165     ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
   1166   init(StringToks, NumStringToks);
   1167 }
   1168 
   1169 void StringLiteralParser::init(const Token *StringToks, unsigned NumStringToks){
   1170   // The literal token may have come from an invalid source location (e.g. due
   1171   // to a PCH error), in which case the token length will be 0.
   1172   if (NumStringToks == 0 || StringToks[0].getLength() < 2)
   1173     return DiagnoseLexingError(SourceLocation());
   1174 
   1175   // Scan all of the string portions, remember the max individual token length,
   1176   // computing a bound on the concatenated string length, and see whether any
   1177   // piece is a wide-string.  If any of the string portions is a wide-string
   1178   // literal, the result is a wide-string literal [C99 6.4.5p4].
   1179   assert(NumStringToks && "expected at least one token");
   1180   MaxTokenLength = StringToks[0].getLength();
   1181   assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
   1182   SizeBound = StringToks[0].getLength()-2;  // -2 for "".
   1183   Kind = StringToks[0].getKind();
   1184 
   1185   hadError = false;
   1186 
   1187   // Implement Translation Phase #6: concatenation of string literals
   1188   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
   1189   for (unsigned i = 1; i != NumStringToks; ++i) {
   1190     if (StringToks[i].getLength() < 2)
   1191       return DiagnoseLexingError(StringToks[i].getLocation());
   1192 
   1193     // The string could be shorter than this if it needs cleaning, but this is a
   1194     // reasonable bound, which is all we need.
   1195     assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
   1196     SizeBound += StringToks[i].getLength()-2;  // -2 for "".
   1197 
   1198     // Remember maximum string piece length.
   1199     if (StringToks[i].getLength() > MaxTokenLength)
   1200       MaxTokenLength = StringToks[i].getLength();
   1201 
   1202     // Remember if we see any wide or utf-8/16/32 strings.
   1203     // Also check for illegal concatenations.
   1204     if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
   1205       if (isAscii()) {
   1206         Kind = StringToks[i].getKind();
   1207       } else {
   1208         if (Diags)
   1209           Diags->Report(StringToks[i].getLocation(),
   1210                         diag::err_unsupported_string_concat);
   1211         hadError = true;
   1212       }
   1213     }
   1214   }
   1215 
   1216   // Include space for the null terminator.
   1217   ++SizeBound;
   1218 
   1219   // TODO: K&R warning: "traditional C rejects string constant concatenation"
   1220 
   1221   // Get the width in bytes of char/wchar_t/char16_t/char32_t
   1222   CharByteWidth = getCharWidth(Kind, Target);
   1223   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
   1224   CharByteWidth /= 8;
   1225 
   1226   // The output buffer size needs to be large enough to hold wide characters.
   1227   // This is a worst-case assumption which basically corresponds to L"" "long".
   1228   SizeBound *= CharByteWidth;
   1229 
   1230   // Size the temporary buffer to hold the result string data.
   1231   ResultBuf.resize(SizeBound);
   1232 
   1233   // Likewise, but for each string piece.
   1234   SmallString<512> TokenBuf;
   1235   TokenBuf.resize(MaxTokenLength);
   1236 
   1237   // Loop over all the strings, getting their spelling, and expanding them to
   1238   // wide strings as appropriate.
   1239   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
   1240 
   1241   Pascal = false;
   1242 
   1243   SourceLocation UDSuffixTokLoc;
   1244 
   1245   for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
   1246     const char *ThisTokBuf = &TokenBuf[0];
   1247     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
   1248     // that ThisTokBuf points to a buffer that is big enough for the whole token
   1249     // and 'spelled' tokens can only shrink.
   1250     bool StringInvalid = false;
   1251     unsigned ThisTokLen =
   1252       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
   1253                          &StringInvalid);
   1254     if (StringInvalid)
   1255       return DiagnoseLexingError(StringToks[i].getLocation());
   1256 
   1257     const char *ThisTokBegin = ThisTokBuf;
   1258     const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
   1259 
   1260     // Remove an optional ud-suffix.
   1261     if (ThisTokEnd[-1] != '"') {
   1262       const char *UDSuffixEnd = ThisTokEnd;
   1263       do {
   1264         --ThisTokEnd;
   1265       } while (ThisTokEnd[-1] != '"');
   1266 
   1267       StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
   1268 
   1269       if (UDSuffixBuf.empty()) {
   1270         UDSuffixBuf.assign(UDSuffix);
   1271         UDSuffixToken = i;
   1272         UDSuffixOffset = ThisTokEnd - ThisTokBuf;
   1273         UDSuffixTokLoc = StringToks[i].getLocation();
   1274       } else if (!UDSuffixBuf.equals(UDSuffix)) {
   1275         // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
   1276         // result of a concatenation involving at least one user-defined-string-
   1277         // literal, all the participating user-defined-string-literals shall
   1278         // have the same ud-suffix.
   1279         if (Diags) {
   1280           SourceLocation TokLoc = StringToks[i].getLocation();
   1281           Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
   1282             << UDSuffixBuf << UDSuffix
   1283             << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
   1284             << SourceRange(TokLoc, TokLoc);
   1285         }
   1286         hadError = true;
   1287       }
   1288     }
   1289 
   1290     // Strip the end quote.
   1291     --ThisTokEnd;
   1292 
   1293     // TODO: Input character set mapping support.
   1294 
   1295     // Skip marker for wide or unicode strings.
   1296     if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
   1297       ++ThisTokBuf;
   1298       // Skip 8 of u8 marker for utf8 strings.
   1299       if (ThisTokBuf[0] == '8')
   1300         ++ThisTokBuf;
   1301     }
   1302 
   1303     // Check for raw string
   1304     if (ThisTokBuf[0] == 'R') {
   1305       ThisTokBuf += 2; // skip R"
   1306 
   1307       const char *Prefix = ThisTokBuf;
   1308       while (ThisTokBuf[0] != '(')
   1309         ++ThisTokBuf;
   1310       ++ThisTokBuf; // skip '('
   1311 
   1312       // Remove same number of characters from the end
   1313       ThisTokEnd -= ThisTokBuf - Prefix;
   1314       assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
   1315 
   1316       // Copy the string over
   1317       if (CopyStringFragment(StringToks[i], ThisTokBegin,
   1318                              StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
   1319         hadError = true;
   1320     } else {
   1321       if (ThisTokBuf[0] != '"') {
   1322         // The file may have come from PCH and then changed after loading the
   1323         // PCH; Fail gracefully.
   1324         return DiagnoseLexingError(StringToks[i].getLocation());
   1325       }
   1326       ++ThisTokBuf; // skip "
   1327 
   1328       // Check if this is a pascal string
   1329       if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
   1330           ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
   1331 
   1332         // If the \p sequence is found in the first token, we have a pascal string
   1333         // Otherwise, if we already have a pascal string, ignore the first \p
   1334         if (i == 0) {
   1335           ++ThisTokBuf;
   1336           Pascal = true;
   1337         } else if (Pascal)
   1338           ThisTokBuf += 2;
   1339       }
   1340 
   1341       while (ThisTokBuf != ThisTokEnd) {
   1342         // Is this a span of non-escape characters?
   1343         if (ThisTokBuf[0] != '\\') {
   1344           const char *InStart = ThisTokBuf;
   1345           do {
   1346             ++ThisTokBuf;
   1347           } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
   1348 
   1349           // Copy the character span over.
   1350           if (CopyStringFragment(StringToks[i], ThisTokBegin,
   1351                                  StringRef(InStart, ThisTokBuf - InStart)))
   1352             hadError = true;
   1353           continue;
   1354         }
   1355         // Is this a Universal Character Name escape?
   1356         if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
   1357           EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
   1358                           ResultPtr, hadError,
   1359                           FullSourceLoc(StringToks[i].getLocation(), SM),
   1360                           CharByteWidth, Diags, Features);
   1361           continue;
   1362         }
   1363         // Otherwise, this is a non-UCN escape character.  Process it.
   1364         unsigned ResultChar =
   1365           ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
   1366                             FullSourceLoc(StringToks[i].getLocation(), SM),
   1367                             CharByteWidth*8, Diags, Features);
   1368 
   1369         if (CharByteWidth == 4) {
   1370           // FIXME: Make the type of the result buffer correct instead of
   1371           // using reinterpret_cast.
   1372           UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
   1373           *ResultWidePtr = ResultChar;
   1374           ResultPtr += 4;
   1375         } else if (CharByteWidth == 2) {
   1376           // FIXME: Make the type of the result buffer correct instead of
   1377           // using reinterpret_cast.
   1378           UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
   1379           *ResultWidePtr = ResultChar & 0xFFFF;
   1380           ResultPtr += 2;
   1381         } else {
   1382           assert(CharByteWidth == 1 && "Unexpected char width");
   1383           *ResultPtr++ = ResultChar & 0xFF;
   1384         }
   1385       }
   1386     }
   1387   }
   1388 
   1389   if (Pascal) {
   1390     if (CharByteWidth == 4) {
   1391       // FIXME: Make the type of the result buffer correct instead of
   1392       // using reinterpret_cast.
   1393       UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
   1394       ResultWidePtr[0] = GetNumStringChars() - 1;
   1395     } else if (CharByteWidth == 2) {
   1396       // FIXME: Make the type of the result buffer correct instead of
   1397       // using reinterpret_cast.
   1398       UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
   1399       ResultWidePtr[0] = GetNumStringChars() - 1;
   1400     } else {
   1401       assert(CharByteWidth == 1 && "Unexpected char width");
   1402       ResultBuf[0] = GetNumStringChars() - 1;
   1403     }
   1404 
   1405     // Verify that pascal strings aren't too large.
   1406     if (GetStringLength() > 256) {
   1407       if (Diags)
   1408         Diags->Report(StringToks[0].getLocation(),
   1409                       diag::err_pascal_string_too_long)
   1410           << SourceRange(StringToks[0].getLocation(),
   1411                          StringToks[NumStringToks-1].getLocation());
   1412       hadError = true;
   1413       return;
   1414     }
   1415   } else if (Diags) {
   1416     // Complain if this string literal has too many characters.
   1417     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
   1418 
   1419     if (GetNumStringChars() > MaxChars)
   1420       Diags->Report(StringToks[0].getLocation(),
   1421                     diag::ext_string_too_long)
   1422         << GetNumStringChars() << MaxChars
   1423         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
   1424         << SourceRange(StringToks[0].getLocation(),
   1425                        StringToks[NumStringToks-1].getLocation());
   1426   }
   1427 }
   1428 
   1429 static const char *resyncUTF8(const char *Err, const char *End) {
   1430   if (Err == End)
   1431     return End;
   1432   End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
   1433   while (++Err != End && (*Err & 0xC0) == 0x80)
   1434     ;
   1435   return Err;
   1436 }
   1437 
   1438 /// \brief This function copies from Fragment, which is a sequence of bytes
   1439 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
   1440 /// Performs widening for multi-byte characters.
   1441 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
   1442                                              const char *TokBegin,
   1443                                              StringRef Fragment) {
   1444   const UTF8 *ErrorPtrTmp;
   1445   if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
   1446     return false;
   1447 
   1448   // If we see bad encoding for unprefixed string literals, warn and
   1449   // simply copy the byte values, for compatibility with gcc and older
   1450   // versions of clang.
   1451   bool NoErrorOnBadEncoding = isAscii();
   1452   if (NoErrorOnBadEncoding) {
   1453     memcpy(ResultPtr, Fragment.data(), Fragment.size());
   1454     ResultPtr += Fragment.size();
   1455   }
   1456 
   1457   if (Diags) {
   1458     const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
   1459 
   1460     FullSourceLoc SourceLoc(Tok.getLocation(), SM);
   1461     const DiagnosticBuilder &Builder =
   1462       Diag(Diags, Features, SourceLoc, TokBegin,
   1463            ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
   1464            NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
   1465                                 : diag::err_bad_string_encoding);
   1466 
   1467     const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
   1468     StringRef NextFragment(NextStart, Fragment.end()-NextStart);
   1469 
   1470     // Decode into a dummy buffer.
   1471     SmallString<512> Dummy;
   1472     Dummy.reserve(Fragment.size() * CharByteWidth);
   1473     char *Ptr = Dummy.data();
   1474 
   1475     while (!Builder.hasMaxRanges() &&
   1476            !ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
   1477       const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
   1478       NextStart = resyncUTF8(ErrorPtr, Fragment.end());
   1479       Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
   1480                                      ErrorPtr, NextStart);
   1481       NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
   1482     }
   1483   }
   1484   return !NoErrorOnBadEncoding;
   1485 }
   1486 
   1487 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
   1488   hadError = true;
   1489   if (Diags)
   1490     Diags->Report(Loc, diag::err_lexing_string);
   1491 }
   1492 
   1493 /// getOffsetOfStringByte - This function returns the offset of the
   1494 /// specified byte of the string data represented by Token.  This handles
   1495 /// advancing over escape sequences in the string.
   1496 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
   1497                                                     unsigned ByteNo) const {
   1498   // Get the spelling of the token.
   1499   SmallString<32> SpellingBuffer;
   1500   SpellingBuffer.resize(Tok.getLength());
   1501 
   1502   bool StringInvalid = false;
   1503   const char *SpellingPtr = &SpellingBuffer[0];
   1504   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
   1505                                        &StringInvalid);
   1506   if (StringInvalid)
   1507     return 0;
   1508 
   1509   const char *SpellingStart = SpellingPtr;
   1510   const char *SpellingEnd = SpellingPtr+TokLen;
   1511 
   1512   // Handle UTF-8 strings just like narrow strings.
   1513   if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
   1514     SpellingPtr += 2;
   1515 
   1516   assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
   1517          SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
   1518 
   1519   // For raw string literals, this is easy.
   1520   if (SpellingPtr[0] == 'R') {
   1521     assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
   1522     // Skip 'R"'.
   1523     SpellingPtr += 2;
   1524     while (*SpellingPtr != '(') {
   1525       ++SpellingPtr;
   1526       assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
   1527     }
   1528     // Skip '('.
   1529     ++SpellingPtr;
   1530     return SpellingPtr - SpellingStart + ByteNo;
   1531   }
   1532 
   1533   // Skip over the leading quote
   1534   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
   1535   ++SpellingPtr;
   1536 
   1537   // Skip over bytes until we find the offset we're looking for.
   1538   while (ByteNo) {
   1539     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
   1540 
   1541     // Step over non-escapes simply.
   1542     if (*SpellingPtr != '\\') {
   1543       ++SpellingPtr;
   1544       --ByteNo;
   1545       continue;
   1546     }
   1547 
   1548     // Otherwise, this is an escape character.  Advance over it.
   1549     bool HadError = false;
   1550     if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
   1551       const char *EscapePtr = SpellingPtr;
   1552       unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
   1553                                       1, Features, HadError);
   1554       if (Len > ByteNo) {
   1555         // ByteNo is somewhere within the escape sequence.
   1556         SpellingPtr = EscapePtr;
   1557         break;
   1558       }
   1559       ByteNo -= Len;
   1560     } else {
   1561       ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
   1562                         FullSourceLoc(Tok.getLocation(), SM),
   1563                         CharByteWidth*8, Diags, Features);
   1564       --ByteNo;
   1565     }
   1566     assert(!HadError && "This method isn't valid on erroneous strings");
   1567   }
   1568 
   1569   return SpellingPtr-SpellingStart;
   1570 }
   1571