Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===/
      8 //
      9 //  This file implements C++ template argument deduction.
     10 //
     11 //===----------------------------------------------------------------------===/
     12 
     13 #include "clang/Sema/TemplateDeduction.h"
     14 #include "TreeTransform.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/DeclObjC.h"
     17 #include "clang/AST/DeclTemplate.h"
     18 #include "clang/AST/Expr.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/AST/StmtVisitor.h"
     21 #include "clang/Sema/DeclSpec.h"
     22 #include "clang/Sema/Sema.h"
     23 #include "clang/Sema/Template.h"
     24 #include "llvm/ADT/SmallBitVector.h"
     25 #include <algorithm>
     26 
     27 namespace clang {
     28   using namespace sema;
     29 
     30   /// \brief Various flags that control template argument deduction.
     31   ///
     32   /// These flags can be bitwise-OR'd together.
     33   enum TemplateDeductionFlags {
     34     /// \brief No template argument deduction flags, which indicates the
     35     /// strictest results for template argument deduction (as used for, e.g.,
     36     /// matching class template partial specializations).
     37     TDF_None = 0,
     38     /// \brief Within template argument deduction from a function call, we are
     39     /// matching with a parameter type for which the original parameter was
     40     /// a reference.
     41     TDF_ParamWithReferenceType = 0x1,
     42     /// \brief Within template argument deduction from a function call, we
     43     /// are matching in a case where we ignore cv-qualifiers.
     44     TDF_IgnoreQualifiers = 0x02,
     45     /// \brief Within template argument deduction from a function call,
     46     /// we are matching in a case where we can perform template argument
     47     /// deduction from a template-id of a derived class of the argument type.
     48     TDF_DerivedClass = 0x04,
     49     /// \brief Allow non-dependent types to differ, e.g., when performing
     50     /// template argument deduction from a function call where conversions
     51     /// may apply.
     52     TDF_SkipNonDependent = 0x08,
     53     /// \brief Whether we are performing template argument deduction for
     54     /// parameters and arguments in a top-level template argument
     55     TDF_TopLevelParameterTypeList = 0x10,
     56     /// \brief Within template argument deduction from overload resolution per
     57     /// C++ [over.over] allow matching function types that are compatible in
     58     /// terms of noreturn and default calling convention adjustments.
     59     TDF_InOverloadResolution = 0x20
     60   };
     61 }
     62 
     63 using namespace clang;
     64 
     65 /// \brief Compare two APSInts, extending and switching the sign as
     66 /// necessary to compare their values regardless of underlying type.
     67 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
     68   if (Y.getBitWidth() > X.getBitWidth())
     69     X = X.extend(Y.getBitWidth());
     70   else if (Y.getBitWidth() < X.getBitWidth())
     71     Y = Y.extend(X.getBitWidth());
     72 
     73   // If there is a signedness mismatch, correct it.
     74   if (X.isSigned() != Y.isSigned()) {
     75     // If the signed value is negative, then the values cannot be the same.
     76     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
     77       return false;
     78 
     79     Y.setIsSigned(true);
     80     X.setIsSigned(true);
     81   }
     82 
     83   return X == Y;
     84 }
     85 
     86 static Sema::TemplateDeductionResult
     87 DeduceTemplateArguments(Sema &S,
     88                         TemplateParameterList *TemplateParams,
     89                         const TemplateArgument &Param,
     90                         TemplateArgument Arg,
     91                         TemplateDeductionInfo &Info,
     92                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
     93 
     94 /// \brief Whether template argument deduction for two reference parameters
     95 /// resulted in the argument type, parameter type, or neither type being more
     96 /// qualified than the other.
     97 enum DeductionQualifierComparison {
     98   NeitherMoreQualified = 0,
     99   ParamMoreQualified,
    100   ArgMoreQualified
    101 };
    102 
    103 /// \brief Stores the result of comparing two reference parameters while
    104 /// performing template argument deduction for partial ordering of function
    105 /// templates.
    106 struct RefParamPartialOrderingComparison {
    107   /// \brief Whether the parameter type is an rvalue reference type.
    108   bool ParamIsRvalueRef;
    109   /// \brief Whether the argument type is an rvalue reference type.
    110   bool ArgIsRvalueRef;
    111 
    112   /// \brief Whether the parameter or argument (or neither) is more qualified.
    113   DeductionQualifierComparison Qualifiers;
    114 };
    115 
    116 
    117 
    118 static Sema::TemplateDeductionResult
    119 DeduceTemplateArgumentsByTypeMatch(Sema &S,
    120                                    TemplateParameterList *TemplateParams,
    121                                    QualType Param,
    122                                    QualType Arg,
    123                                    TemplateDeductionInfo &Info,
    124                                    SmallVectorImpl<DeducedTemplateArgument> &
    125                                                       Deduced,
    126                                    unsigned TDF,
    127                                    bool PartialOrdering = false,
    128                             SmallVectorImpl<RefParamPartialOrderingComparison> *
    129                                                       RefParamComparisons = 0);
    130 
    131 static Sema::TemplateDeductionResult
    132 DeduceTemplateArguments(Sema &S,
    133                         TemplateParameterList *TemplateParams,
    134                         const TemplateArgument *Params, unsigned NumParams,
    135                         const TemplateArgument *Args, unsigned NumArgs,
    136                         TemplateDeductionInfo &Info,
    137                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
    138 
    139 /// \brief If the given expression is of a form that permits the deduction
    140 /// of a non-type template parameter, return the declaration of that
    141 /// non-type template parameter.
    142 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
    143   // If we are within an alias template, the expression may have undergone
    144   // any number of parameter substitutions already.
    145   while (1) {
    146     if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
    147       E = IC->getSubExpr();
    148     else if (SubstNonTypeTemplateParmExpr *Subst =
    149                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
    150       E = Subst->getReplacement();
    151     else
    152       break;
    153   }
    154 
    155   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    156     return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
    157 
    158   return 0;
    159 }
    160 
    161 /// \brief Determine whether two declaration pointers refer to the same
    162 /// declaration.
    163 static bool isSameDeclaration(Decl *X, Decl *Y) {
    164   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
    165     X = NX->getUnderlyingDecl();
    166   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
    167     Y = NY->getUnderlyingDecl();
    168 
    169   return X->getCanonicalDecl() == Y->getCanonicalDecl();
    170 }
    171 
    172 /// \brief Verify that the given, deduced template arguments are compatible.
    173 ///
    174 /// \returns The deduced template argument, or a NULL template argument if
    175 /// the deduced template arguments were incompatible.
    176 static DeducedTemplateArgument
    177 checkDeducedTemplateArguments(ASTContext &Context,
    178                               const DeducedTemplateArgument &X,
    179                               const DeducedTemplateArgument &Y) {
    180   // We have no deduction for one or both of the arguments; they're compatible.
    181   if (X.isNull())
    182     return Y;
    183   if (Y.isNull())
    184     return X;
    185 
    186   switch (X.getKind()) {
    187   case TemplateArgument::Null:
    188     llvm_unreachable("Non-deduced template arguments handled above");
    189 
    190   case TemplateArgument::Type:
    191     // If two template type arguments have the same type, they're compatible.
    192     if (Y.getKind() == TemplateArgument::Type &&
    193         Context.hasSameType(X.getAsType(), Y.getAsType()))
    194       return X;
    195 
    196     return DeducedTemplateArgument();
    197 
    198   case TemplateArgument::Integral:
    199     // If we deduced a constant in one case and either a dependent expression or
    200     // declaration in another case, keep the integral constant.
    201     // If both are integral constants with the same value, keep that value.
    202     if (Y.getKind() == TemplateArgument::Expression ||
    203         Y.getKind() == TemplateArgument::Declaration ||
    204         (Y.getKind() == TemplateArgument::Integral &&
    205          hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
    206       return DeducedTemplateArgument(X,
    207                                      X.wasDeducedFromArrayBound() &&
    208                                      Y.wasDeducedFromArrayBound());
    209 
    210     // All other combinations are incompatible.
    211     return DeducedTemplateArgument();
    212 
    213   case TemplateArgument::Template:
    214     if (Y.getKind() == TemplateArgument::Template &&
    215         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
    216       return X;
    217 
    218     // All other combinations are incompatible.
    219     return DeducedTemplateArgument();
    220 
    221   case TemplateArgument::TemplateExpansion:
    222     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
    223         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
    224                                     Y.getAsTemplateOrTemplatePattern()))
    225       return X;
    226 
    227     // All other combinations are incompatible.
    228     return DeducedTemplateArgument();
    229 
    230   case TemplateArgument::Expression:
    231     // If we deduced a dependent expression in one case and either an integral
    232     // constant or a declaration in another case, keep the integral constant
    233     // or declaration.
    234     if (Y.getKind() == TemplateArgument::Integral ||
    235         Y.getKind() == TemplateArgument::Declaration)
    236       return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
    237                                      Y.wasDeducedFromArrayBound());
    238 
    239     if (Y.getKind() == TemplateArgument::Expression) {
    240       // Compare the expressions for equality
    241       llvm::FoldingSetNodeID ID1, ID2;
    242       X.getAsExpr()->Profile(ID1, Context, true);
    243       Y.getAsExpr()->Profile(ID2, Context, true);
    244       if (ID1 == ID2)
    245         return X;
    246     }
    247 
    248     // All other combinations are incompatible.
    249     return DeducedTemplateArgument();
    250 
    251   case TemplateArgument::Declaration:
    252     // If we deduced a declaration and a dependent expression, keep the
    253     // declaration.
    254     if (Y.getKind() == TemplateArgument::Expression)
    255       return X;
    256 
    257     // If we deduced a declaration and an integral constant, keep the
    258     // integral constant.
    259     if (Y.getKind() == TemplateArgument::Integral)
    260       return Y;
    261 
    262     // If we deduced two declarations, make sure they they refer to the
    263     // same declaration.
    264     if (Y.getKind() == TemplateArgument::Declaration &&
    265         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
    266         X.isDeclForReferenceParam() == Y.isDeclForReferenceParam())
    267       return X;
    268 
    269     // All other combinations are incompatible.
    270     return DeducedTemplateArgument();
    271 
    272   case TemplateArgument::NullPtr:
    273     // If we deduced a null pointer and a dependent expression, keep the
    274     // null pointer.
    275     if (Y.getKind() == TemplateArgument::Expression)
    276       return X;
    277 
    278     // If we deduced a null pointer and an integral constant, keep the
    279     // integral constant.
    280     if (Y.getKind() == TemplateArgument::Integral)
    281       return Y;
    282 
    283     // If we deduced two null pointers, make sure they have the same type.
    284     if (Y.getKind() == TemplateArgument::NullPtr &&
    285         Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
    286       return X;
    287 
    288     // All other combinations are incompatible.
    289     return DeducedTemplateArgument();
    290 
    291   case TemplateArgument::Pack:
    292     if (Y.getKind() != TemplateArgument::Pack ||
    293         X.pack_size() != Y.pack_size())
    294       return DeducedTemplateArgument();
    295 
    296     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
    297                                       XAEnd = X.pack_end(),
    298                                          YA = Y.pack_begin();
    299          XA != XAEnd; ++XA, ++YA) {
    300       if (checkDeducedTemplateArguments(Context,
    301                     DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
    302                     DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
    303             .isNull())
    304         return DeducedTemplateArgument();
    305     }
    306 
    307     return X;
    308   }
    309 
    310   llvm_unreachable("Invalid TemplateArgument Kind!");
    311 }
    312 
    313 /// \brief Deduce the value of the given non-type template parameter
    314 /// from the given constant.
    315 static Sema::TemplateDeductionResult
    316 DeduceNonTypeTemplateArgument(Sema &S,
    317                               NonTypeTemplateParmDecl *NTTP,
    318                               llvm::APSInt Value, QualType ValueType,
    319                               bool DeducedFromArrayBound,
    320                               TemplateDeductionInfo &Info,
    321                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    322   assert(NTTP->getDepth() == 0 &&
    323          "Cannot deduce non-type template argument with depth > 0");
    324 
    325   DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
    326                                      DeducedFromArrayBound);
    327   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    328                                                      Deduced[NTTP->getIndex()],
    329                                                                  NewDeduced);
    330   if (Result.isNull()) {
    331     Info.Param = NTTP;
    332     Info.FirstArg = Deduced[NTTP->getIndex()];
    333     Info.SecondArg = NewDeduced;
    334     return Sema::TDK_Inconsistent;
    335   }
    336 
    337   Deduced[NTTP->getIndex()] = Result;
    338   return Sema::TDK_Success;
    339 }
    340 
    341 /// \brief Deduce the value of the given non-type template parameter
    342 /// from the given type- or value-dependent expression.
    343 ///
    344 /// \returns true if deduction succeeded, false otherwise.
    345 static Sema::TemplateDeductionResult
    346 DeduceNonTypeTemplateArgument(Sema &S,
    347                               NonTypeTemplateParmDecl *NTTP,
    348                               Expr *Value,
    349                               TemplateDeductionInfo &Info,
    350                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    351   assert(NTTP->getDepth() == 0 &&
    352          "Cannot deduce non-type template argument with depth > 0");
    353   assert((Value->isTypeDependent() || Value->isValueDependent()) &&
    354          "Expression template argument must be type- or value-dependent.");
    355 
    356   DeducedTemplateArgument NewDeduced(Value);
    357   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    358                                                      Deduced[NTTP->getIndex()],
    359                                                                  NewDeduced);
    360 
    361   if (Result.isNull()) {
    362     Info.Param = NTTP;
    363     Info.FirstArg = Deduced[NTTP->getIndex()];
    364     Info.SecondArg = NewDeduced;
    365     return Sema::TDK_Inconsistent;
    366   }
    367 
    368   Deduced[NTTP->getIndex()] = Result;
    369   return Sema::TDK_Success;
    370 }
    371 
    372 /// \brief Deduce the value of the given non-type template parameter
    373 /// from the given declaration.
    374 ///
    375 /// \returns true if deduction succeeded, false otherwise.
    376 static Sema::TemplateDeductionResult
    377 DeduceNonTypeTemplateArgument(Sema &S,
    378                             NonTypeTemplateParmDecl *NTTP,
    379                             ValueDecl *D,
    380                             TemplateDeductionInfo &Info,
    381                             SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    382   assert(NTTP->getDepth() == 0 &&
    383          "Cannot deduce non-type template argument with depth > 0");
    384 
    385   D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : 0;
    386   TemplateArgument New(D, NTTP->getType()->isReferenceType());
    387   DeducedTemplateArgument NewDeduced(New);
    388   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    389                                                      Deduced[NTTP->getIndex()],
    390                                                                  NewDeduced);
    391   if (Result.isNull()) {
    392     Info.Param = NTTP;
    393     Info.FirstArg = Deduced[NTTP->getIndex()];
    394     Info.SecondArg = NewDeduced;
    395     return Sema::TDK_Inconsistent;
    396   }
    397 
    398   Deduced[NTTP->getIndex()] = Result;
    399   return Sema::TDK_Success;
    400 }
    401 
    402 static Sema::TemplateDeductionResult
    403 DeduceTemplateArguments(Sema &S,
    404                         TemplateParameterList *TemplateParams,
    405                         TemplateName Param,
    406                         TemplateName Arg,
    407                         TemplateDeductionInfo &Info,
    408                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    409   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
    410   if (!ParamDecl) {
    411     // The parameter type is dependent and is not a template template parameter,
    412     // so there is nothing that we can deduce.
    413     return Sema::TDK_Success;
    414   }
    415 
    416   if (TemplateTemplateParmDecl *TempParam
    417         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
    418     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
    419     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    420                                                  Deduced[TempParam->getIndex()],
    421                                                                    NewDeduced);
    422     if (Result.isNull()) {
    423       Info.Param = TempParam;
    424       Info.FirstArg = Deduced[TempParam->getIndex()];
    425       Info.SecondArg = NewDeduced;
    426       return Sema::TDK_Inconsistent;
    427     }
    428 
    429     Deduced[TempParam->getIndex()] = Result;
    430     return Sema::TDK_Success;
    431   }
    432 
    433   // Verify that the two template names are equivalent.
    434   if (S.Context.hasSameTemplateName(Param, Arg))
    435     return Sema::TDK_Success;
    436 
    437   // Mismatch of non-dependent template parameter to argument.
    438   Info.FirstArg = TemplateArgument(Param);
    439   Info.SecondArg = TemplateArgument(Arg);
    440   return Sema::TDK_NonDeducedMismatch;
    441 }
    442 
    443 /// \brief Deduce the template arguments by comparing the template parameter
    444 /// type (which is a template-id) with the template argument type.
    445 ///
    446 /// \param S the Sema
    447 ///
    448 /// \param TemplateParams the template parameters that we are deducing
    449 ///
    450 /// \param Param the parameter type
    451 ///
    452 /// \param Arg the argument type
    453 ///
    454 /// \param Info information about the template argument deduction itself
    455 ///
    456 /// \param Deduced the deduced template arguments
    457 ///
    458 /// \returns the result of template argument deduction so far. Note that a
    459 /// "success" result means that template argument deduction has not yet failed,
    460 /// but it may still fail, later, for other reasons.
    461 static Sema::TemplateDeductionResult
    462 DeduceTemplateArguments(Sema &S,
    463                         TemplateParameterList *TemplateParams,
    464                         const TemplateSpecializationType *Param,
    465                         QualType Arg,
    466                         TemplateDeductionInfo &Info,
    467                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    468   assert(Arg.isCanonical() && "Argument type must be canonical");
    469 
    470   // Check whether the template argument is a dependent template-id.
    471   if (const TemplateSpecializationType *SpecArg
    472         = dyn_cast<TemplateSpecializationType>(Arg)) {
    473     // Perform template argument deduction for the template name.
    474     if (Sema::TemplateDeductionResult Result
    475           = DeduceTemplateArguments(S, TemplateParams,
    476                                     Param->getTemplateName(),
    477                                     SpecArg->getTemplateName(),
    478                                     Info, Deduced))
    479       return Result;
    480 
    481 
    482     // Perform template argument deduction on each template
    483     // argument. Ignore any missing/extra arguments, since they could be
    484     // filled in by default arguments.
    485     return DeduceTemplateArguments(S, TemplateParams,
    486                                    Param->getArgs(), Param->getNumArgs(),
    487                                    SpecArg->getArgs(), SpecArg->getNumArgs(),
    488                                    Info, Deduced);
    489   }
    490 
    491   // If the argument type is a class template specialization, we
    492   // perform template argument deduction using its template
    493   // arguments.
    494   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
    495   if (!RecordArg) {
    496     Info.FirstArg = TemplateArgument(QualType(Param, 0));
    497     Info.SecondArg = TemplateArgument(Arg);
    498     return Sema::TDK_NonDeducedMismatch;
    499   }
    500 
    501   ClassTemplateSpecializationDecl *SpecArg
    502     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
    503   if (!SpecArg) {
    504     Info.FirstArg = TemplateArgument(QualType(Param, 0));
    505     Info.SecondArg = TemplateArgument(Arg);
    506     return Sema::TDK_NonDeducedMismatch;
    507   }
    508 
    509   // Perform template argument deduction for the template name.
    510   if (Sema::TemplateDeductionResult Result
    511         = DeduceTemplateArguments(S,
    512                                   TemplateParams,
    513                                   Param->getTemplateName(),
    514                                TemplateName(SpecArg->getSpecializedTemplate()),
    515                                   Info, Deduced))
    516     return Result;
    517 
    518   // Perform template argument deduction for the template arguments.
    519   return DeduceTemplateArguments(S, TemplateParams,
    520                                  Param->getArgs(), Param->getNumArgs(),
    521                                  SpecArg->getTemplateArgs().data(),
    522                                  SpecArg->getTemplateArgs().size(),
    523                                  Info, Deduced);
    524 }
    525 
    526 /// \brief Determines whether the given type is an opaque type that
    527 /// might be more qualified when instantiated.
    528 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
    529   switch (T->getTypeClass()) {
    530   case Type::TypeOfExpr:
    531   case Type::TypeOf:
    532   case Type::DependentName:
    533   case Type::Decltype:
    534   case Type::UnresolvedUsing:
    535   case Type::TemplateTypeParm:
    536     return true;
    537 
    538   case Type::ConstantArray:
    539   case Type::IncompleteArray:
    540   case Type::VariableArray:
    541   case Type::DependentSizedArray:
    542     return IsPossiblyOpaquelyQualifiedType(
    543                                       cast<ArrayType>(T)->getElementType());
    544 
    545   default:
    546     return false;
    547   }
    548 }
    549 
    550 /// \brief Retrieve the depth and index of a template parameter.
    551 static std::pair<unsigned, unsigned>
    552 getDepthAndIndex(NamedDecl *ND) {
    553   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
    554     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    555 
    556   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
    557     return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
    558 
    559   TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
    560   return std::make_pair(TTP->getDepth(), TTP->getIndex());
    561 }
    562 
    563 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
    564 static std::pair<unsigned, unsigned>
    565 getDepthAndIndex(UnexpandedParameterPack UPP) {
    566   if (const TemplateTypeParmType *TTP
    567                           = UPP.first.dyn_cast<const TemplateTypeParmType *>())
    568     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    569 
    570   return getDepthAndIndex(UPP.first.get<NamedDecl *>());
    571 }
    572 
    573 /// \brief Helper function to build a TemplateParameter when we don't
    574 /// know its type statically.
    575 static TemplateParameter makeTemplateParameter(Decl *D) {
    576   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
    577     return TemplateParameter(TTP);
    578   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
    579     return TemplateParameter(NTTP);
    580 
    581   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
    582 }
    583 
    584 typedef SmallVector<SmallVector<DeducedTemplateArgument, 4>, 2>
    585   NewlyDeducedPacksType;
    586 
    587 /// \brief Prepare to perform template argument deduction for all of the
    588 /// arguments in a set of argument packs.
    589 static void
    590 PrepareArgumentPackDeduction(Sema &S,
    591                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    592                            ArrayRef<unsigned> PackIndices,
    593                            SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
    594                            NewlyDeducedPacksType &NewlyDeducedPacks) {
    595   // Save the deduced template arguments for each parameter pack expanded
    596   // by this pack expansion, then clear out the deduction.
    597   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    598     // Save the previously-deduced argument pack, then clear it out so that we
    599     // can deduce a new argument pack.
    600     SavedPacks[I] = Deduced[PackIndices[I]];
    601     Deduced[PackIndices[I]] = TemplateArgument();
    602 
    603     if (!S.CurrentInstantiationScope)
    604       continue;
    605 
    606     // If the template argument pack was explicitly specified, add that to
    607     // the set of deduced arguments.
    608     const TemplateArgument *ExplicitArgs;
    609     unsigned NumExplicitArgs;
    610     if (NamedDecl *PartiallySubstitutedPack
    611         = S.CurrentInstantiationScope->getPartiallySubstitutedPack(
    612                                                            &ExplicitArgs,
    613                                                            &NumExplicitArgs)) {
    614       if (getDepthAndIndex(PartiallySubstitutedPack).second == PackIndices[I])
    615         NewlyDeducedPacks[I].append(ExplicitArgs,
    616                                     ExplicitArgs + NumExplicitArgs);
    617     }
    618   }
    619 }
    620 
    621 /// \brief Finish template argument deduction for a set of argument packs,
    622 /// producing the argument packs and checking for consistency with prior
    623 /// deductions.
    624 static Sema::TemplateDeductionResult
    625 FinishArgumentPackDeduction(Sema &S,
    626                            TemplateParameterList *TemplateParams,
    627                            bool HasAnyArguments,
    628                            SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    629                            ArrayRef<unsigned> PackIndices,
    630                            SmallVectorImpl<DeducedTemplateArgument> &SavedPacks,
    631                            NewlyDeducedPacksType &NewlyDeducedPacks,
    632                            TemplateDeductionInfo &Info) {
    633   // Build argument packs for each of the parameter packs expanded by this
    634   // pack expansion.
    635   for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    636     if (HasAnyArguments && NewlyDeducedPacks[I].empty()) {
    637       // We were not able to deduce anything for this parameter pack,
    638       // so just restore the saved argument pack.
    639       Deduced[PackIndices[I]] = SavedPacks[I];
    640       continue;
    641     }
    642 
    643     DeducedTemplateArgument NewPack;
    644 
    645     if (NewlyDeducedPacks[I].empty()) {
    646       // If we deduced an empty argument pack, create it now.
    647       NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
    648     } else {
    649       TemplateArgument *ArgumentPack
    650         = new (S.Context) TemplateArgument [NewlyDeducedPacks[I].size()];
    651       std::copy(NewlyDeducedPacks[I].begin(), NewlyDeducedPacks[I].end(),
    652                 ArgumentPack);
    653       NewPack
    654         = DeducedTemplateArgument(TemplateArgument(ArgumentPack,
    655                                                    NewlyDeducedPacks[I].size()),
    656                             NewlyDeducedPacks[I][0].wasDeducedFromArrayBound());
    657     }
    658 
    659     DeducedTemplateArgument Result
    660       = checkDeducedTemplateArguments(S.Context, SavedPacks[I], NewPack);
    661     if (Result.isNull()) {
    662       Info.Param
    663         = makeTemplateParameter(TemplateParams->getParam(PackIndices[I]));
    664       Info.FirstArg = SavedPacks[I];
    665       Info.SecondArg = NewPack;
    666       return Sema::TDK_Inconsistent;
    667     }
    668 
    669     Deduced[PackIndices[I]] = Result;
    670   }
    671 
    672   return Sema::TDK_Success;
    673 }
    674 
    675 /// \brief Deduce the template arguments by comparing the list of parameter
    676 /// types to the list of argument types, as in the parameter-type-lists of
    677 /// function types (C++ [temp.deduct.type]p10).
    678 ///
    679 /// \param S The semantic analysis object within which we are deducing
    680 ///
    681 /// \param TemplateParams The template parameters that we are deducing
    682 ///
    683 /// \param Params The list of parameter types
    684 ///
    685 /// \param NumParams The number of types in \c Params
    686 ///
    687 /// \param Args The list of argument types
    688 ///
    689 /// \param NumArgs The number of types in \c Args
    690 ///
    691 /// \param Info information about the template argument deduction itself
    692 ///
    693 /// \param Deduced the deduced template arguments
    694 ///
    695 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    696 /// how template argument deduction is performed.
    697 ///
    698 /// \param PartialOrdering If true, we are performing template argument
    699 /// deduction for during partial ordering for a call
    700 /// (C++0x [temp.deduct.partial]).
    701 ///
    702 /// \param RefParamComparisons If we're performing template argument deduction
    703 /// in the context of partial ordering, the set of qualifier comparisons.
    704 ///
    705 /// \returns the result of template argument deduction so far. Note that a
    706 /// "success" result means that template argument deduction has not yet failed,
    707 /// but it may still fail, later, for other reasons.
    708 static Sema::TemplateDeductionResult
    709 DeduceTemplateArguments(Sema &S,
    710                         TemplateParameterList *TemplateParams,
    711                         const QualType *Params, unsigned NumParams,
    712                         const QualType *Args, unsigned NumArgs,
    713                         TemplateDeductionInfo &Info,
    714                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    715                         unsigned TDF,
    716                         bool PartialOrdering = false,
    717                         SmallVectorImpl<RefParamPartialOrderingComparison> *
    718                                                      RefParamComparisons = 0) {
    719   // Fast-path check to see if we have too many/too few arguments.
    720   if (NumParams != NumArgs &&
    721       !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
    722       !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
    723     return Sema::TDK_MiscellaneousDeductionFailure;
    724 
    725   // C++0x [temp.deduct.type]p10:
    726   //   Similarly, if P has a form that contains (T), then each parameter type
    727   //   Pi of the respective parameter-type- list of P is compared with the
    728   //   corresponding parameter type Ai of the corresponding parameter-type-list
    729   //   of A. [...]
    730   unsigned ArgIdx = 0, ParamIdx = 0;
    731   for (; ParamIdx != NumParams; ++ParamIdx) {
    732     // Check argument types.
    733     const PackExpansionType *Expansion
    734                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
    735     if (!Expansion) {
    736       // Simple case: compare the parameter and argument types at this point.
    737 
    738       // Make sure we have an argument.
    739       if (ArgIdx >= NumArgs)
    740         return Sema::TDK_MiscellaneousDeductionFailure;
    741 
    742       if (isa<PackExpansionType>(Args[ArgIdx])) {
    743         // C++0x [temp.deduct.type]p22:
    744         //   If the original function parameter associated with A is a function
    745         //   parameter pack and the function parameter associated with P is not
    746         //   a function parameter pack, then template argument deduction fails.
    747         return Sema::TDK_MiscellaneousDeductionFailure;
    748       }
    749 
    750       if (Sema::TemplateDeductionResult Result
    751             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
    752                                                  Params[ParamIdx], Args[ArgIdx],
    753                                                  Info, Deduced, TDF,
    754                                                  PartialOrdering,
    755                                                  RefParamComparisons))
    756         return Result;
    757 
    758       ++ArgIdx;
    759       continue;
    760     }
    761 
    762     // C++0x [temp.deduct.type]p5:
    763     //   The non-deduced contexts are:
    764     //     - A function parameter pack that does not occur at the end of the
    765     //       parameter-declaration-clause.
    766     if (ParamIdx + 1 < NumParams)
    767       return Sema::TDK_Success;
    768 
    769     // C++0x [temp.deduct.type]p10:
    770     //   If the parameter-declaration corresponding to Pi is a function
    771     //   parameter pack, then the type of its declarator- id is compared with
    772     //   each remaining parameter type in the parameter-type-list of A. Each
    773     //   comparison deduces template arguments for subsequent positions in the
    774     //   template parameter packs expanded by the function parameter pack.
    775 
    776     // Compute the set of template parameter indices that correspond to
    777     // parameter packs expanded by the pack expansion.
    778     SmallVector<unsigned, 2> PackIndices;
    779     QualType Pattern = Expansion->getPattern();
    780     {
    781       llvm::SmallBitVector SawIndices(TemplateParams->size());
    782       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
    783       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
    784       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
    785         unsigned Depth, Index;
    786         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
    787         if (Depth == 0 && !SawIndices[Index]) {
    788           SawIndices[Index] = true;
    789           PackIndices.push_back(Index);
    790         }
    791       }
    792     }
    793     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
    794 
    795     // Keep track of the deduced template arguments for each parameter pack
    796     // expanded by this pack expansion (the outer index) and for each
    797     // template argument (the inner SmallVectors).
    798     NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
    799     SmallVector<DeducedTemplateArgument, 2>
    800       SavedPacks(PackIndices.size());
    801     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
    802                                  NewlyDeducedPacks);
    803 
    804     bool HasAnyArguments = false;
    805     for (; ArgIdx < NumArgs; ++ArgIdx) {
    806       HasAnyArguments = true;
    807 
    808       // Deduce template arguments from the pattern.
    809       if (Sema::TemplateDeductionResult Result
    810             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
    811                                                  Args[ArgIdx], Info, Deduced,
    812                                                  TDF, PartialOrdering,
    813                                                  RefParamComparisons))
    814         return Result;
    815 
    816       // Capture the deduced template arguments for each parameter pack expanded
    817       // by this pack expansion, add them to the list of arguments we've deduced
    818       // for that pack, then clear out the deduced argument.
    819       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
    820         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
    821         if (!DeducedArg.isNull()) {
    822           NewlyDeducedPacks[I].push_back(DeducedArg);
    823           DeducedArg = DeducedTemplateArgument();
    824         }
    825       }
    826     }
    827 
    828     // Build argument packs for each of the parameter packs expanded by this
    829     // pack expansion.
    830     if (Sema::TemplateDeductionResult Result
    831           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
    832                                         Deduced, PackIndices, SavedPacks,
    833                                         NewlyDeducedPacks, Info))
    834       return Result;
    835   }
    836 
    837   // Make sure we don't have any extra arguments.
    838   if (ArgIdx < NumArgs)
    839     return Sema::TDK_MiscellaneousDeductionFailure;
    840 
    841   return Sema::TDK_Success;
    842 }
    843 
    844 /// \brief Determine whether the parameter has qualifiers that are either
    845 /// inconsistent with or a superset of the argument's qualifiers.
    846 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
    847                                                   QualType ArgType) {
    848   Qualifiers ParamQs = ParamType.getQualifiers();
    849   Qualifiers ArgQs = ArgType.getQualifiers();
    850 
    851   if (ParamQs == ArgQs)
    852     return false;
    853 
    854   // Mismatched (but not missing) Objective-C GC attributes.
    855   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
    856       ParamQs.hasObjCGCAttr())
    857     return true;
    858 
    859   // Mismatched (but not missing) address spaces.
    860   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
    861       ParamQs.hasAddressSpace())
    862     return true;
    863 
    864   // Mismatched (but not missing) Objective-C lifetime qualifiers.
    865   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
    866       ParamQs.hasObjCLifetime())
    867     return true;
    868 
    869   // CVR qualifier superset.
    870   return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
    871       ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
    872                                                 == ParamQs.getCVRQualifiers());
    873 }
    874 
    875 /// \brief Compare types for equality with respect to possibly compatible
    876 /// function types (noreturn adjustment, implicit calling conventions). If any
    877 /// of parameter and argument is not a function, just perform type comparison.
    878 ///
    879 /// \param Param the template parameter type.
    880 ///
    881 /// \param Arg the argument type.
    882 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
    883                                           CanQualType Arg) {
    884   const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
    885                      *ArgFunction   = Arg->getAs<FunctionType>();
    886 
    887   // Just compare if not functions.
    888   if (!ParamFunction || !ArgFunction)
    889     return Param == Arg;
    890 
    891   // Noreturn adjustment.
    892   QualType AdjustedParam;
    893   if (IsNoReturnConversion(Param, Arg, AdjustedParam))
    894     return Arg == Context.getCanonicalType(AdjustedParam);
    895 
    896   // FIXME: Compatible calling conventions.
    897 
    898   return Param == Arg;
    899 }
    900 
    901 /// \brief Deduce the template arguments by comparing the parameter type and
    902 /// the argument type (C++ [temp.deduct.type]).
    903 ///
    904 /// \param S the semantic analysis object within which we are deducing
    905 ///
    906 /// \param TemplateParams the template parameters that we are deducing
    907 ///
    908 /// \param ParamIn the parameter type
    909 ///
    910 /// \param ArgIn the argument type
    911 ///
    912 /// \param Info information about the template argument deduction itself
    913 ///
    914 /// \param Deduced the deduced template arguments
    915 ///
    916 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    917 /// how template argument deduction is performed.
    918 ///
    919 /// \param PartialOrdering Whether we're performing template argument deduction
    920 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
    921 ///
    922 /// \param RefParamComparisons If we're performing template argument deduction
    923 /// in the context of partial ordering, the set of qualifier comparisons.
    924 ///
    925 /// \returns the result of template argument deduction so far. Note that a
    926 /// "success" result means that template argument deduction has not yet failed,
    927 /// but it may still fail, later, for other reasons.
    928 static Sema::TemplateDeductionResult
    929 DeduceTemplateArgumentsByTypeMatch(Sema &S,
    930                                    TemplateParameterList *TemplateParams,
    931                                    QualType ParamIn, QualType ArgIn,
    932                                    TemplateDeductionInfo &Info,
    933                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    934                                    unsigned TDF,
    935                                    bool PartialOrdering,
    936                             SmallVectorImpl<RefParamPartialOrderingComparison> *
    937                                                           RefParamComparisons) {
    938   // We only want to look at the canonical types, since typedefs and
    939   // sugar are not part of template argument deduction.
    940   QualType Param = S.Context.getCanonicalType(ParamIn);
    941   QualType Arg = S.Context.getCanonicalType(ArgIn);
    942 
    943   // If the argument type is a pack expansion, look at its pattern.
    944   // This isn't explicitly called out
    945   if (const PackExpansionType *ArgExpansion
    946                                             = dyn_cast<PackExpansionType>(Arg))
    947     Arg = ArgExpansion->getPattern();
    948 
    949   if (PartialOrdering) {
    950     // C++0x [temp.deduct.partial]p5:
    951     //   Before the partial ordering is done, certain transformations are
    952     //   performed on the types used for partial ordering:
    953     //     - If P is a reference type, P is replaced by the type referred to.
    954     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
    955     if (ParamRef)
    956       Param = ParamRef->getPointeeType();
    957 
    958     //     - If A is a reference type, A is replaced by the type referred to.
    959     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
    960     if (ArgRef)
    961       Arg = ArgRef->getPointeeType();
    962 
    963     if (RefParamComparisons && ParamRef && ArgRef) {
    964       // C++0x [temp.deduct.partial]p6:
    965       //   If both P and A were reference types (before being replaced with the
    966       //   type referred to above), determine which of the two types (if any) is
    967       //   more cv-qualified than the other; otherwise the types are considered
    968       //   to be equally cv-qualified for partial ordering purposes. The result
    969       //   of this determination will be used below.
    970       //
    971       // We save this information for later, using it only when deduction
    972       // succeeds in both directions.
    973       RefParamPartialOrderingComparison Comparison;
    974       Comparison.ParamIsRvalueRef = ParamRef->getAs<RValueReferenceType>();
    975       Comparison.ArgIsRvalueRef = ArgRef->getAs<RValueReferenceType>();
    976       Comparison.Qualifiers = NeitherMoreQualified;
    977 
    978       Qualifiers ParamQuals = Param.getQualifiers();
    979       Qualifiers ArgQuals = Arg.getQualifiers();
    980       if (ParamQuals.isStrictSupersetOf(ArgQuals))
    981         Comparison.Qualifiers = ParamMoreQualified;
    982       else if (ArgQuals.isStrictSupersetOf(ParamQuals))
    983         Comparison.Qualifiers = ArgMoreQualified;
    984       RefParamComparisons->push_back(Comparison);
    985     }
    986 
    987     // C++0x [temp.deduct.partial]p7:
    988     //   Remove any top-level cv-qualifiers:
    989     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
    990     //       version of P.
    991     Param = Param.getUnqualifiedType();
    992     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
    993     //       version of A.
    994     Arg = Arg.getUnqualifiedType();
    995   } else {
    996     // C++0x [temp.deduct.call]p4 bullet 1:
    997     //   - If the original P is a reference type, the deduced A (i.e., the type
    998     //     referred to by the reference) can be more cv-qualified than the
    999     //     transformed A.
   1000     if (TDF & TDF_ParamWithReferenceType) {
   1001       Qualifiers Quals;
   1002       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
   1003       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
   1004                              Arg.getCVRQualifiers());
   1005       Param = S.Context.getQualifiedType(UnqualParam, Quals);
   1006     }
   1007 
   1008     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
   1009       // C++0x [temp.deduct.type]p10:
   1010       //   If P and A are function types that originated from deduction when
   1011       //   taking the address of a function template (14.8.2.2) or when deducing
   1012       //   template arguments from a function declaration (14.8.2.6) and Pi and
   1013       //   Ai are parameters of the top-level parameter-type-list of P and A,
   1014       //   respectively, Pi is adjusted if it is an rvalue reference to a
   1015       //   cv-unqualified template parameter and Ai is an lvalue reference, in
   1016       //   which case the type of Pi is changed to be the template parameter
   1017       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
   1018       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
   1019       //   deduced as X&. - end note ]
   1020       TDF &= ~TDF_TopLevelParameterTypeList;
   1021 
   1022       if (const RValueReferenceType *ParamRef
   1023                                         = Param->getAs<RValueReferenceType>()) {
   1024         if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
   1025             !ParamRef->getPointeeType().getQualifiers())
   1026           if (Arg->isLValueReferenceType())
   1027             Param = ParamRef->getPointeeType();
   1028       }
   1029     }
   1030   }
   1031 
   1032   // C++ [temp.deduct.type]p9:
   1033   //   A template type argument T, a template template argument TT or a
   1034   //   template non-type argument i can be deduced if P and A have one of
   1035   //   the following forms:
   1036   //
   1037   //     T
   1038   //     cv-list T
   1039   if (const TemplateTypeParmType *TemplateTypeParm
   1040         = Param->getAs<TemplateTypeParmType>()) {
   1041     // Just skip any attempts to deduce from a placeholder type.
   1042     if (Arg->isPlaceholderType())
   1043       return Sema::TDK_Success;
   1044 
   1045     unsigned Index = TemplateTypeParm->getIndex();
   1046     bool RecanonicalizeArg = false;
   1047 
   1048     // If the argument type is an array type, move the qualifiers up to the
   1049     // top level, so they can be matched with the qualifiers on the parameter.
   1050     if (isa<ArrayType>(Arg)) {
   1051       Qualifiers Quals;
   1052       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
   1053       if (Quals) {
   1054         Arg = S.Context.getQualifiedType(Arg, Quals);
   1055         RecanonicalizeArg = true;
   1056       }
   1057     }
   1058 
   1059     // The argument type can not be less qualified than the parameter
   1060     // type.
   1061     if (!(TDF & TDF_IgnoreQualifiers) &&
   1062         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
   1063       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1064       Info.FirstArg = TemplateArgument(Param);
   1065       Info.SecondArg = TemplateArgument(Arg);
   1066       return Sema::TDK_Underqualified;
   1067     }
   1068 
   1069     assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
   1070     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
   1071     QualType DeducedType = Arg;
   1072 
   1073     // Remove any qualifiers on the parameter from the deduced type.
   1074     // We checked the qualifiers for consistency above.
   1075     Qualifiers DeducedQs = DeducedType.getQualifiers();
   1076     Qualifiers ParamQs = Param.getQualifiers();
   1077     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
   1078     if (ParamQs.hasObjCGCAttr())
   1079       DeducedQs.removeObjCGCAttr();
   1080     if (ParamQs.hasAddressSpace())
   1081       DeducedQs.removeAddressSpace();
   1082     if (ParamQs.hasObjCLifetime())
   1083       DeducedQs.removeObjCLifetime();
   1084 
   1085     // Objective-C ARC:
   1086     //   If template deduction would produce a lifetime qualifier on a type
   1087     //   that is not a lifetime type, template argument deduction fails.
   1088     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
   1089         !DeducedType->isDependentType()) {
   1090       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1091       Info.FirstArg = TemplateArgument(Param);
   1092       Info.SecondArg = TemplateArgument(Arg);
   1093       return Sema::TDK_Underqualified;
   1094     }
   1095 
   1096     // Objective-C ARC:
   1097     //   If template deduction would produce an argument type with lifetime type
   1098     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
   1099     if (S.getLangOpts().ObjCAutoRefCount &&
   1100         DeducedType->isObjCLifetimeType() &&
   1101         !DeducedQs.hasObjCLifetime())
   1102       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
   1103 
   1104     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
   1105                                              DeducedQs);
   1106 
   1107     if (RecanonicalizeArg)
   1108       DeducedType = S.Context.getCanonicalType(DeducedType);
   1109 
   1110     DeducedTemplateArgument NewDeduced(DeducedType);
   1111     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
   1112                                                                  Deduced[Index],
   1113                                                                    NewDeduced);
   1114     if (Result.isNull()) {
   1115       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1116       Info.FirstArg = Deduced[Index];
   1117       Info.SecondArg = NewDeduced;
   1118       return Sema::TDK_Inconsistent;
   1119     }
   1120 
   1121     Deduced[Index] = Result;
   1122     return Sema::TDK_Success;
   1123   }
   1124 
   1125   // Set up the template argument deduction information for a failure.
   1126   Info.FirstArg = TemplateArgument(ParamIn);
   1127   Info.SecondArg = TemplateArgument(ArgIn);
   1128 
   1129   // If the parameter is an already-substituted template parameter
   1130   // pack, do nothing: we don't know which of its arguments to look
   1131   // at, so we have to wait until all of the parameter packs in this
   1132   // expansion have arguments.
   1133   if (isa<SubstTemplateTypeParmPackType>(Param))
   1134     return Sema::TDK_Success;
   1135 
   1136   // Check the cv-qualifiers on the parameter and argument types.
   1137   CanQualType CanParam = S.Context.getCanonicalType(Param);
   1138   CanQualType CanArg = S.Context.getCanonicalType(Arg);
   1139   if (!(TDF & TDF_IgnoreQualifiers)) {
   1140     if (TDF & TDF_ParamWithReferenceType) {
   1141       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
   1142         return Sema::TDK_NonDeducedMismatch;
   1143     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
   1144       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
   1145         return Sema::TDK_NonDeducedMismatch;
   1146     }
   1147 
   1148     // If the parameter type is not dependent, there is nothing to deduce.
   1149     if (!Param->isDependentType()) {
   1150       if (!(TDF & TDF_SkipNonDependent)) {
   1151         bool NonDeduced = (TDF & TDF_InOverloadResolution)?
   1152                           !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
   1153                           Param != Arg;
   1154         if (NonDeduced) {
   1155           return Sema::TDK_NonDeducedMismatch;
   1156         }
   1157       }
   1158       return Sema::TDK_Success;
   1159     }
   1160   } else if (!Param->isDependentType()) {
   1161     CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
   1162                 ArgUnqualType = CanArg.getUnqualifiedType();
   1163     bool Success = (TDF & TDF_InOverloadResolution)?
   1164                    S.isSameOrCompatibleFunctionType(ParamUnqualType,
   1165                                                     ArgUnqualType) :
   1166                    ParamUnqualType == ArgUnqualType;
   1167     if (Success)
   1168       return Sema::TDK_Success;
   1169   }
   1170 
   1171   switch (Param->getTypeClass()) {
   1172     // Non-canonical types cannot appear here.
   1173 #define NON_CANONICAL_TYPE(Class, Base) \
   1174   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
   1175 #define TYPE(Class, Base)
   1176 #include "clang/AST/TypeNodes.def"
   1177 
   1178     case Type::TemplateTypeParm:
   1179     case Type::SubstTemplateTypeParmPack:
   1180       llvm_unreachable("Type nodes handled above");
   1181 
   1182     // These types cannot be dependent, so simply check whether the types are
   1183     // the same.
   1184     case Type::Builtin:
   1185     case Type::VariableArray:
   1186     case Type::Vector:
   1187     case Type::FunctionNoProto:
   1188     case Type::Record:
   1189     case Type::Enum:
   1190     case Type::ObjCObject:
   1191     case Type::ObjCInterface:
   1192     case Type::ObjCObjectPointer: {
   1193       if (TDF & TDF_SkipNonDependent)
   1194         return Sema::TDK_Success;
   1195 
   1196       if (TDF & TDF_IgnoreQualifiers) {
   1197         Param = Param.getUnqualifiedType();
   1198         Arg = Arg.getUnqualifiedType();
   1199       }
   1200 
   1201       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
   1202     }
   1203 
   1204     //     _Complex T   [placeholder extension]
   1205     case Type::Complex:
   1206       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
   1207         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1208                                     cast<ComplexType>(Param)->getElementType(),
   1209                                     ComplexArg->getElementType(),
   1210                                     Info, Deduced, TDF);
   1211 
   1212       return Sema::TDK_NonDeducedMismatch;
   1213 
   1214     //     _Atomic T   [extension]
   1215     case Type::Atomic:
   1216       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
   1217         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1218                                        cast<AtomicType>(Param)->getValueType(),
   1219                                        AtomicArg->getValueType(),
   1220                                        Info, Deduced, TDF);
   1221 
   1222       return Sema::TDK_NonDeducedMismatch;
   1223 
   1224     //     T *
   1225     case Type::Pointer: {
   1226       QualType PointeeType;
   1227       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
   1228         PointeeType = PointerArg->getPointeeType();
   1229       } else if (const ObjCObjectPointerType *PointerArg
   1230                    = Arg->getAs<ObjCObjectPointerType>()) {
   1231         PointeeType = PointerArg->getPointeeType();
   1232       } else {
   1233         return Sema::TDK_NonDeducedMismatch;
   1234       }
   1235 
   1236       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
   1237       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1238                                      cast<PointerType>(Param)->getPointeeType(),
   1239                                      PointeeType,
   1240                                      Info, Deduced, SubTDF);
   1241     }
   1242 
   1243     //     T &
   1244     case Type::LValueReference: {
   1245       const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
   1246       if (!ReferenceArg)
   1247         return Sema::TDK_NonDeducedMismatch;
   1248 
   1249       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1250                            cast<LValueReferenceType>(Param)->getPointeeType(),
   1251                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
   1252     }
   1253 
   1254     //     T && [C++0x]
   1255     case Type::RValueReference: {
   1256       const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
   1257       if (!ReferenceArg)
   1258         return Sema::TDK_NonDeducedMismatch;
   1259 
   1260       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1261                              cast<RValueReferenceType>(Param)->getPointeeType(),
   1262                              ReferenceArg->getPointeeType(),
   1263                              Info, Deduced, 0);
   1264     }
   1265 
   1266     //     T [] (implied, but not stated explicitly)
   1267     case Type::IncompleteArray: {
   1268       const IncompleteArrayType *IncompleteArrayArg =
   1269         S.Context.getAsIncompleteArrayType(Arg);
   1270       if (!IncompleteArrayArg)
   1271         return Sema::TDK_NonDeducedMismatch;
   1272 
   1273       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1274       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1275                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
   1276                     IncompleteArrayArg->getElementType(),
   1277                     Info, Deduced, SubTDF);
   1278     }
   1279 
   1280     //     T [integer-constant]
   1281     case Type::ConstantArray: {
   1282       const ConstantArrayType *ConstantArrayArg =
   1283         S.Context.getAsConstantArrayType(Arg);
   1284       if (!ConstantArrayArg)
   1285         return Sema::TDK_NonDeducedMismatch;
   1286 
   1287       const ConstantArrayType *ConstantArrayParm =
   1288         S.Context.getAsConstantArrayType(Param);
   1289       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
   1290         return Sema::TDK_NonDeducedMismatch;
   1291 
   1292       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1293       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1294                                            ConstantArrayParm->getElementType(),
   1295                                            ConstantArrayArg->getElementType(),
   1296                                            Info, Deduced, SubTDF);
   1297     }
   1298 
   1299     //     type [i]
   1300     case Type::DependentSizedArray: {
   1301       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
   1302       if (!ArrayArg)
   1303         return Sema::TDK_NonDeducedMismatch;
   1304 
   1305       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1306 
   1307       // Check the element type of the arrays
   1308       const DependentSizedArrayType *DependentArrayParm
   1309         = S.Context.getAsDependentSizedArrayType(Param);
   1310       if (Sema::TemplateDeductionResult Result
   1311             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1312                                           DependentArrayParm->getElementType(),
   1313                                           ArrayArg->getElementType(),
   1314                                           Info, Deduced, SubTDF))
   1315         return Result;
   1316 
   1317       // Determine the array bound is something we can deduce.
   1318       NonTypeTemplateParmDecl *NTTP
   1319         = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
   1320       if (!NTTP)
   1321         return Sema::TDK_Success;
   1322 
   1323       // We can perform template argument deduction for the given non-type
   1324       // template parameter.
   1325       assert(NTTP->getDepth() == 0 &&
   1326              "Cannot deduce non-type template argument at depth > 0");
   1327       if (const ConstantArrayType *ConstantArrayArg
   1328             = dyn_cast<ConstantArrayType>(ArrayArg)) {
   1329         llvm::APSInt Size(ConstantArrayArg->getSize());
   1330         return DeduceNonTypeTemplateArgument(S, NTTP, Size,
   1331                                              S.Context.getSizeType(),
   1332                                              /*ArrayBound=*/true,
   1333                                              Info, Deduced);
   1334       }
   1335       if (const DependentSizedArrayType *DependentArrayArg
   1336             = dyn_cast<DependentSizedArrayType>(ArrayArg))
   1337         if (DependentArrayArg->getSizeExpr())
   1338           return DeduceNonTypeTemplateArgument(S, NTTP,
   1339                                                DependentArrayArg->getSizeExpr(),
   1340                                                Info, Deduced);
   1341 
   1342       // Incomplete type does not match a dependently-sized array type
   1343       return Sema::TDK_NonDeducedMismatch;
   1344     }
   1345 
   1346     //     type(*)(T)
   1347     //     T(*)()
   1348     //     T(*)(T)
   1349     case Type::FunctionProto: {
   1350       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
   1351       const FunctionProtoType *FunctionProtoArg =
   1352         dyn_cast<FunctionProtoType>(Arg);
   1353       if (!FunctionProtoArg)
   1354         return Sema::TDK_NonDeducedMismatch;
   1355 
   1356       const FunctionProtoType *FunctionProtoParam =
   1357         cast<FunctionProtoType>(Param);
   1358 
   1359       if (FunctionProtoParam->getTypeQuals()
   1360             != FunctionProtoArg->getTypeQuals() ||
   1361           FunctionProtoParam->getRefQualifier()
   1362             != FunctionProtoArg->getRefQualifier() ||
   1363           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
   1364         return Sema::TDK_NonDeducedMismatch;
   1365 
   1366       // Check return types.
   1367       if (Sema::TemplateDeductionResult Result
   1368             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1369                                             FunctionProtoParam->getResultType(),
   1370                                             FunctionProtoArg->getResultType(),
   1371                                             Info, Deduced, 0))
   1372         return Result;
   1373 
   1374       return DeduceTemplateArguments(S, TemplateParams,
   1375                                      FunctionProtoParam->arg_type_begin(),
   1376                                      FunctionProtoParam->getNumArgs(),
   1377                                      FunctionProtoArg->arg_type_begin(),
   1378                                      FunctionProtoArg->getNumArgs(),
   1379                                      Info, Deduced, SubTDF);
   1380     }
   1381 
   1382     case Type::InjectedClassName: {
   1383       // Treat a template's injected-class-name as if the template
   1384       // specialization type had been used.
   1385       Param = cast<InjectedClassNameType>(Param)
   1386         ->getInjectedSpecializationType();
   1387       assert(isa<TemplateSpecializationType>(Param) &&
   1388              "injected class name is not a template specialization type");
   1389       // fall through
   1390     }
   1391 
   1392     //     template-name<T> (where template-name refers to a class template)
   1393     //     template-name<i>
   1394     //     TT<T>
   1395     //     TT<i>
   1396     //     TT<>
   1397     case Type::TemplateSpecialization: {
   1398       const TemplateSpecializationType *SpecParam
   1399         = cast<TemplateSpecializationType>(Param);
   1400 
   1401       // Try to deduce template arguments from the template-id.
   1402       Sema::TemplateDeductionResult Result
   1403         = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
   1404                                   Info, Deduced);
   1405 
   1406       if (Result && (TDF & TDF_DerivedClass)) {
   1407         // C++ [temp.deduct.call]p3b3:
   1408         //   If P is a class, and P has the form template-id, then A can be a
   1409         //   derived class of the deduced A. Likewise, if P is a pointer to a
   1410         //   class of the form template-id, A can be a pointer to a derived
   1411         //   class pointed to by the deduced A.
   1412         //
   1413         // More importantly:
   1414         //   These alternatives are considered only if type deduction would
   1415         //   otherwise fail.
   1416         if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
   1417           // We cannot inspect base classes as part of deduction when the type
   1418           // is incomplete, so either instantiate any templates necessary to
   1419           // complete the type, or skip over it if it cannot be completed.
   1420           if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
   1421             return Result;
   1422 
   1423           // Use data recursion to crawl through the list of base classes.
   1424           // Visited contains the set of nodes we have already visited, while
   1425           // ToVisit is our stack of records that we still need to visit.
   1426           llvm::SmallPtrSet<const RecordType *, 8> Visited;
   1427           SmallVector<const RecordType *, 8> ToVisit;
   1428           ToVisit.push_back(RecordT);
   1429           bool Successful = false;
   1430           SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
   1431                                                               Deduced.end());
   1432           while (!ToVisit.empty()) {
   1433             // Retrieve the next class in the inheritance hierarchy.
   1434             const RecordType *NextT = ToVisit.back();
   1435             ToVisit.pop_back();
   1436 
   1437             // If we have already seen this type, skip it.
   1438             if (!Visited.insert(NextT))
   1439               continue;
   1440 
   1441             // If this is a base class, try to perform template argument
   1442             // deduction from it.
   1443             if (NextT != RecordT) {
   1444               TemplateDeductionInfo BaseInfo(Info.getLocation());
   1445               Sema::TemplateDeductionResult BaseResult
   1446                 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
   1447                                           QualType(NextT, 0), BaseInfo,
   1448                                           Deduced);
   1449 
   1450               // If template argument deduction for this base was successful,
   1451               // note that we had some success. Otherwise, ignore any deductions
   1452               // from this base class.
   1453               if (BaseResult == Sema::TDK_Success) {
   1454                 Successful = true;
   1455                 DeducedOrig.clear();
   1456                 DeducedOrig.append(Deduced.begin(), Deduced.end());
   1457                 Info.Param = BaseInfo.Param;
   1458                 Info.FirstArg = BaseInfo.FirstArg;
   1459                 Info.SecondArg = BaseInfo.SecondArg;
   1460               }
   1461               else
   1462                 Deduced = DeducedOrig;
   1463             }
   1464 
   1465             // Visit base classes
   1466             CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
   1467             for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
   1468                                                  BaseEnd = Next->bases_end();
   1469                  Base != BaseEnd; ++Base) {
   1470               assert(Base->getType()->isRecordType() &&
   1471                      "Base class that isn't a record?");
   1472               ToVisit.push_back(Base->getType()->getAs<RecordType>());
   1473             }
   1474           }
   1475 
   1476           if (Successful)
   1477             return Sema::TDK_Success;
   1478         }
   1479 
   1480       }
   1481 
   1482       return Result;
   1483     }
   1484 
   1485     //     T type::*
   1486     //     T T::*
   1487     //     T (type::*)()
   1488     //     type (T::*)()
   1489     //     type (type::*)(T)
   1490     //     type (T::*)(T)
   1491     //     T (type::*)(T)
   1492     //     T (T::*)()
   1493     //     T (T::*)(T)
   1494     case Type::MemberPointer: {
   1495       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
   1496       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
   1497       if (!MemPtrArg)
   1498         return Sema::TDK_NonDeducedMismatch;
   1499 
   1500       if (Sema::TemplateDeductionResult Result
   1501             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1502                                                  MemPtrParam->getPointeeType(),
   1503                                                  MemPtrArg->getPointeeType(),
   1504                                                  Info, Deduced,
   1505                                                  TDF & TDF_IgnoreQualifiers))
   1506         return Result;
   1507 
   1508       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1509                                            QualType(MemPtrParam->getClass(), 0),
   1510                                            QualType(MemPtrArg->getClass(), 0),
   1511                                            Info, Deduced,
   1512                                            TDF & TDF_IgnoreQualifiers);
   1513     }
   1514 
   1515     //     (clang extension)
   1516     //
   1517     //     type(^)(T)
   1518     //     T(^)()
   1519     //     T(^)(T)
   1520     case Type::BlockPointer: {
   1521       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
   1522       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
   1523 
   1524       if (!BlockPtrArg)
   1525         return Sema::TDK_NonDeducedMismatch;
   1526 
   1527       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1528                                                 BlockPtrParam->getPointeeType(),
   1529                                                 BlockPtrArg->getPointeeType(),
   1530                                                 Info, Deduced, 0);
   1531     }
   1532 
   1533     //     (clang extension)
   1534     //
   1535     //     T __attribute__(((ext_vector_type(<integral constant>))))
   1536     case Type::ExtVector: {
   1537       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
   1538       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1539         // Make sure that the vectors have the same number of elements.
   1540         if (VectorParam->getNumElements() != VectorArg->getNumElements())
   1541           return Sema::TDK_NonDeducedMismatch;
   1542 
   1543         // Perform deduction on the element types.
   1544         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1545                                                   VectorParam->getElementType(),
   1546                                                   VectorArg->getElementType(),
   1547                                                   Info, Deduced, TDF);
   1548       }
   1549 
   1550       if (const DependentSizedExtVectorType *VectorArg
   1551                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1552         // We can't check the number of elements, since the argument has a
   1553         // dependent number of elements. This can only occur during partial
   1554         // ordering.
   1555 
   1556         // Perform deduction on the element types.
   1557         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1558                                                   VectorParam->getElementType(),
   1559                                                   VectorArg->getElementType(),
   1560                                                   Info, Deduced, TDF);
   1561       }
   1562 
   1563       return Sema::TDK_NonDeducedMismatch;
   1564     }
   1565 
   1566     //     (clang extension)
   1567     //
   1568     //     T __attribute__(((ext_vector_type(N))))
   1569     case Type::DependentSizedExtVector: {
   1570       const DependentSizedExtVectorType *VectorParam
   1571         = cast<DependentSizedExtVectorType>(Param);
   1572 
   1573       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1574         // Perform deduction on the element types.
   1575         if (Sema::TemplateDeductionResult Result
   1576               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1577                                                   VectorParam->getElementType(),
   1578                                                    VectorArg->getElementType(),
   1579                                                    Info, Deduced, TDF))
   1580           return Result;
   1581 
   1582         // Perform deduction on the vector size, if we can.
   1583         NonTypeTemplateParmDecl *NTTP
   1584           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1585         if (!NTTP)
   1586           return Sema::TDK_Success;
   1587 
   1588         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
   1589         ArgSize = VectorArg->getNumElements();
   1590         return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
   1591                                              false, Info, Deduced);
   1592       }
   1593 
   1594       if (const DependentSizedExtVectorType *VectorArg
   1595                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1596         // Perform deduction on the element types.
   1597         if (Sema::TemplateDeductionResult Result
   1598             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1599                                                  VectorParam->getElementType(),
   1600                                                  VectorArg->getElementType(),
   1601                                                  Info, Deduced, TDF))
   1602           return Result;
   1603 
   1604         // Perform deduction on the vector size, if we can.
   1605         NonTypeTemplateParmDecl *NTTP
   1606           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1607         if (!NTTP)
   1608           return Sema::TDK_Success;
   1609 
   1610         return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
   1611                                              Info, Deduced);
   1612       }
   1613 
   1614       return Sema::TDK_NonDeducedMismatch;
   1615     }
   1616 
   1617     case Type::TypeOfExpr:
   1618     case Type::TypeOf:
   1619     case Type::DependentName:
   1620     case Type::UnresolvedUsing:
   1621     case Type::Decltype:
   1622     case Type::UnaryTransform:
   1623     case Type::Auto:
   1624     case Type::DependentTemplateSpecialization:
   1625     case Type::PackExpansion:
   1626       // No template argument deduction for these types
   1627       return Sema::TDK_Success;
   1628   }
   1629 
   1630   llvm_unreachable("Invalid Type Class!");
   1631 }
   1632 
   1633 static Sema::TemplateDeductionResult
   1634 DeduceTemplateArguments(Sema &S,
   1635                         TemplateParameterList *TemplateParams,
   1636                         const TemplateArgument &Param,
   1637                         TemplateArgument Arg,
   1638                         TemplateDeductionInfo &Info,
   1639                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1640   // If the template argument is a pack expansion, perform template argument
   1641   // deduction against the pattern of that expansion. This only occurs during
   1642   // partial ordering.
   1643   if (Arg.isPackExpansion())
   1644     Arg = Arg.getPackExpansionPattern();
   1645 
   1646   switch (Param.getKind()) {
   1647   case TemplateArgument::Null:
   1648     llvm_unreachable("Null template argument in parameter list");
   1649 
   1650   case TemplateArgument::Type:
   1651     if (Arg.getKind() == TemplateArgument::Type)
   1652       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1653                                                 Param.getAsType(),
   1654                                                 Arg.getAsType(),
   1655                                                 Info, Deduced, 0);
   1656     Info.FirstArg = Param;
   1657     Info.SecondArg = Arg;
   1658     return Sema::TDK_NonDeducedMismatch;
   1659 
   1660   case TemplateArgument::Template:
   1661     if (Arg.getKind() == TemplateArgument::Template)
   1662       return DeduceTemplateArguments(S, TemplateParams,
   1663                                      Param.getAsTemplate(),
   1664                                      Arg.getAsTemplate(), Info, Deduced);
   1665     Info.FirstArg = Param;
   1666     Info.SecondArg = Arg;
   1667     return Sema::TDK_NonDeducedMismatch;
   1668 
   1669   case TemplateArgument::TemplateExpansion:
   1670     llvm_unreachable("caller should handle pack expansions");
   1671 
   1672   case TemplateArgument::Declaration:
   1673     if (Arg.getKind() == TemplateArgument::Declaration &&
   1674         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()) &&
   1675         Param.isDeclForReferenceParam() == Arg.isDeclForReferenceParam())
   1676       return Sema::TDK_Success;
   1677 
   1678     Info.FirstArg = Param;
   1679     Info.SecondArg = Arg;
   1680     return Sema::TDK_NonDeducedMismatch;
   1681 
   1682   case TemplateArgument::NullPtr:
   1683     if (Arg.getKind() == TemplateArgument::NullPtr &&
   1684         S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
   1685       return Sema::TDK_Success;
   1686 
   1687     Info.FirstArg = Param;
   1688     Info.SecondArg = Arg;
   1689     return Sema::TDK_NonDeducedMismatch;
   1690 
   1691   case TemplateArgument::Integral:
   1692     if (Arg.getKind() == TemplateArgument::Integral) {
   1693       if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
   1694         return Sema::TDK_Success;
   1695 
   1696       Info.FirstArg = Param;
   1697       Info.SecondArg = Arg;
   1698       return Sema::TDK_NonDeducedMismatch;
   1699     }
   1700 
   1701     if (Arg.getKind() == TemplateArgument::Expression) {
   1702       Info.FirstArg = Param;
   1703       Info.SecondArg = Arg;
   1704       return Sema::TDK_NonDeducedMismatch;
   1705     }
   1706 
   1707     Info.FirstArg = Param;
   1708     Info.SecondArg = Arg;
   1709     return Sema::TDK_NonDeducedMismatch;
   1710 
   1711   case TemplateArgument::Expression: {
   1712     if (NonTypeTemplateParmDecl *NTTP
   1713           = getDeducedParameterFromExpr(Param.getAsExpr())) {
   1714       if (Arg.getKind() == TemplateArgument::Integral)
   1715         return DeduceNonTypeTemplateArgument(S, NTTP,
   1716                                              Arg.getAsIntegral(),
   1717                                              Arg.getIntegralType(),
   1718                                              /*ArrayBound=*/false,
   1719                                              Info, Deduced);
   1720       if (Arg.getKind() == TemplateArgument::Expression)
   1721         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
   1722                                              Info, Deduced);
   1723       if (Arg.getKind() == TemplateArgument::Declaration)
   1724         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
   1725                                              Info, Deduced);
   1726 
   1727       Info.FirstArg = Param;
   1728       Info.SecondArg = Arg;
   1729       return Sema::TDK_NonDeducedMismatch;
   1730     }
   1731 
   1732     // Can't deduce anything, but that's okay.
   1733     return Sema::TDK_Success;
   1734   }
   1735   case TemplateArgument::Pack:
   1736     llvm_unreachable("Argument packs should be expanded by the caller!");
   1737   }
   1738 
   1739   llvm_unreachable("Invalid TemplateArgument Kind!");
   1740 }
   1741 
   1742 /// \brief Determine whether there is a template argument to be used for
   1743 /// deduction.
   1744 ///
   1745 /// This routine "expands" argument packs in-place, overriding its input
   1746 /// parameters so that \c Args[ArgIdx] will be the available template argument.
   1747 ///
   1748 /// \returns true if there is another template argument (which will be at
   1749 /// \c Args[ArgIdx]), false otherwise.
   1750 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
   1751                                             unsigned &ArgIdx,
   1752                                             unsigned &NumArgs) {
   1753   if (ArgIdx == NumArgs)
   1754     return false;
   1755 
   1756   const TemplateArgument &Arg = Args[ArgIdx];
   1757   if (Arg.getKind() != TemplateArgument::Pack)
   1758     return true;
   1759 
   1760   assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
   1761   Args = Arg.pack_begin();
   1762   NumArgs = Arg.pack_size();
   1763   ArgIdx = 0;
   1764   return ArgIdx < NumArgs;
   1765 }
   1766 
   1767 /// \brief Determine whether the given set of template arguments has a pack
   1768 /// expansion that is not the last template argument.
   1769 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
   1770                                       unsigned NumArgs) {
   1771   unsigned ArgIdx = 0;
   1772   while (ArgIdx < NumArgs) {
   1773     const TemplateArgument &Arg = Args[ArgIdx];
   1774 
   1775     // Unwrap argument packs.
   1776     if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
   1777       Args = Arg.pack_begin();
   1778       NumArgs = Arg.pack_size();
   1779       ArgIdx = 0;
   1780       continue;
   1781     }
   1782 
   1783     ++ArgIdx;
   1784     if (ArgIdx == NumArgs)
   1785       return false;
   1786 
   1787     if (Arg.isPackExpansion())
   1788       return true;
   1789   }
   1790 
   1791   return false;
   1792 }
   1793 
   1794 static Sema::TemplateDeductionResult
   1795 DeduceTemplateArguments(Sema &S,
   1796                         TemplateParameterList *TemplateParams,
   1797                         const TemplateArgument *Params, unsigned NumParams,
   1798                         const TemplateArgument *Args, unsigned NumArgs,
   1799                         TemplateDeductionInfo &Info,
   1800                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1801   // C++0x [temp.deduct.type]p9:
   1802   //   If the template argument list of P contains a pack expansion that is not
   1803   //   the last template argument, the entire template argument list is a
   1804   //   non-deduced context.
   1805   if (hasPackExpansionBeforeEnd(Params, NumParams))
   1806     return Sema::TDK_Success;
   1807 
   1808   // C++0x [temp.deduct.type]p9:
   1809   //   If P has a form that contains <T> or <i>, then each argument Pi of the
   1810   //   respective template argument list P is compared with the corresponding
   1811   //   argument Ai of the corresponding template argument list of A.
   1812   unsigned ArgIdx = 0, ParamIdx = 0;
   1813   for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
   1814        ++ParamIdx) {
   1815     if (!Params[ParamIdx].isPackExpansion()) {
   1816       // The simple case: deduce template arguments by matching Pi and Ai.
   1817 
   1818       // Check whether we have enough arguments.
   1819       if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1820         return Sema::TDK_Success;
   1821 
   1822       if (Args[ArgIdx].isPackExpansion()) {
   1823         // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
   1824         // but applied to pack expansions that are template arguments.
   1825         return Sema::TDK_MiscellaneousDeductionFailure;
   1826       }
   1827 
   1828       // Perform deduction for this Pi/Ai pair.
   1829       if (Sema::TemplateDeductionResult Result
   1830             = DeduceTemplateArguments(S, TemplateParams,
   1831                                       Params[ParamIdx], Args[ArgIdx],
   1832                                       Info, Deduced))
   1833         return Result;
   1834 
   1835       // Move to the next argument.
   1836       ++ArgIdx;
   1837       continue;
   1838     }
   1839 
   1840     // The parameter is a pack expansion.
   1841 
   1842     // C++0x [temp.deduct.type]p9:
   1843     //   If Pi is a pack expansion, then the pattern of Pi is compared with
   1844     //   each remaining argument in the template argument list of A. Each
   1845     //   comparison deduces template arguments for subsequent positions in the
   1846     //   template parameter packs expanded by Pi.
   1847     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
   1848 
   1849     // Compute the set of template parameter indices that correspond to
   1850     // parameter packs expanded by the pack expansion.
   1851     SmallVector<unsigned, 2> PackIndices;
   1852     {
   1853       llvm::SmallBitVector SawIndices(TemplateParams->size());
   1854       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   1855       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
   1856       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
   1857         unsigned Depth, Index;
   1858         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
   1859         if (Depth == 0 && !SawIndices[Index]) {
   1860           SawIndices[Index] = true;
   1861           PackIndices.push_back(Index);
   1862         }
   1863       }
   1864     }
   1865     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
   1866 
   1867     // FIXME: If there are no remaining arguments, we can bail out early
   1868     // and set any deduced parameter packs to an empty argument pack.
   1869     // The latter part of this is a (minor) correctness issue.
   1870 
   1871     // Save the deduced template arguments for each parameter pack expanded
   1872     // by this pack expansion, then clear out the deduction.
   1873     SmallVector<DeducedTemplateArgument, 2>
   1874       SavedPacks(PackIndices.size());
   1875     NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
   1876     PrepareArgumentPackDeduction(S, Deduced, PackIndices, SavedPacks,
   1877                                  NewlyDeducedPacks);
   1878 
   1879     // Keep track of the deduced template arguments for each parameter pack
   1880     // expanded by this pack expansion (the outer index) and for each
   1881     // template argument (the inner SmallVectors).
   1882     bool HasAnyArguments = false;
   1883     while (hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) {
   1884       HasAnyArguments = true;
   1885 
   1886       // Deduce template arguments from the pattern.
   1887       if (Sema::TemplateDeductionResult Result
   1888             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
   1889                                       Info, Deduced))
   1890         return Result;
   1891 
   1892       // Capture the deduced template arguments for each parameter pack expanded
   1893       // by this pack expansion, add them to the list of arguments we've deduced
   1894       // for that pack, then clear out the deduced argument.
   1895       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
   1896         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
   1897         if (!DeducedArg.isNull()) {
   1898           NewlyDeducedPacks[I].push_back(DeducedArg);
   1899           DeducedArg = DeducedTemplateArgument();
   1900         }
   1901       }
   1902 
   1903       ++ArgIdx;
   1904     }
   1905 
   1906     // Build argument packs for each of the parameter packs expanded by this
   1907     // pack expansion.
   1908     if (Sema::TemplateDeductionResult Result
   1909           = FinishArgumentPackDeduction(S, TemplateParams, HasAnyArguments,
   1910                                         Deduced, PackIndices, SavedPacks,
   1911                                         NewlyDeducedPacks, Info))
   1912       return Result;
   1913   }
   1914 
   1915   return Sema::TDK_Success;
   1916 }
   1917 
   1918 static Sema::TemplateDeductionResult
   1919 DeduceTemplateArguments(Sema &S,
   1920                         TemplateParameterList *TemplateParams,
   1921                         const TemplateArgumentList &ParamList,
   1922                         const TemplateArgumentList &ArgList,
   1923                         TemplateDeductionInfo &Info,
   1924                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1925   return DeduceTemplateArguments(S, TemplateParams,
   1926                                  ParamList.data(), ParamList.size(),
   1927                                  ArgList.data(), ArgList.size(),
   1928                                  Info, Deduced);
   1929 }
   1930 
   1931 /// \brief Determine whether two template arguments are the same.
   1932 static bool isSameTemplateArg(ASTContext &Context,
   1933                               const TemplateArgument &X,
   1934                               const TemplateArgument &Y) {
   1935   if (X.getKind() != Y.getKind())
   1936     return false;
   1937 
   1938   switch (X.getKind()) {
   1939     case TemplateArgument::Null:
   1940       llvm_unreachable("Comparing NULL template argument");
   1941 
   1942     case TemplateArgument::Type:
   1943       return Context.getCanonicalType(X.getAsType()) ==
   1944              Context.getCanonicalType(Y.getAsType());
   1945 
   1946     case TemplateArgument::Declaration:
   1947       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()) &&
   1948              X.isDeclForReferenceParam() == Y.isDeclForReferenceParam();
   1949 
   1950     case TemplateArgument::NullPtr:
   1951       return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
   1952 
   1953     case TemplateArgument::Template:
   1954     case TemplateArgument::TemplateExpansion:
   1955       return Context.getCanonicalTemplateName(
   1956                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
   1957              Context.getCanonicalTemplateName(
   1958                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
   1959 
   1960     case TemplateArgument::Integral:
   1961       return X.getAsIntegral() == Y.getAsIntegral();
   1962 
   1963     case TemplateArgument::Expression: {
   1964       llvm::FoldingSetNodeID XID, YID;
   1965       X.getAsExpr()->Profile(XID, Context, true);
   1966       Y.getAsExpr()->Profile(YID, Context, true);
   1967       return XID == YID;
   1968     }
   1969 
   1970     case TemplateArgument::Pack:
   1971       if (X.pack_size() != Y.pack_size())
   1972         return false;
   1973 
   1974       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
   1975                                         XPEnd = X.pack_end(),
   1976                                            YP = Y.pack_begin();
   1977            XP != XPEnd; ++XP, ++YP)
   1978         if (!isSameTemplateArg(Context, *XP, *YP))
   1979           return false;
   1980 
   1981       return true;
   1982   }
   1983 
   1984   llvm_unreachable("Invalid TemplateArgument Kind!");
   1985 }
   1986 
   1987 /// \brief Allocate a TemplateArgumentLoc where all locations have
   1988 /// been initialized to the given location.
   1989 ///
   1990 /// \param S The semantic analysis object.
   1991 ///
   1992 /// \param Arg The template argument we are producing template argument
   1993 /// location information for.
   1994 ///
   1995 /// \param NTTPType For a declaration template argument, the type of
   1996 /// the non-type template parameter that corresponds to this template
   1997 /// argument.
   1998 ///
   1999 /// \param Loc The source location to use for the resulting template
   2000 /// argument.
   2001 static TemplateArgumentLoc
   2002 getTrivialTemplateArgumentLoc(Sema &S,
   2003                               const TemplateArgument &Arg,
   2004                               QualType NTTPType,
   2005                               SourceLocation Loc) {
   2006   switch (Arg.getKind()) {
   2007   case TemplateArgument::Null:
   2008     llvm_unreachable("Can't get a NULL template argument here");
   2009 
   2010   case TemplateArgument::Type:
   2011     return TemplateArgumentLoc(Arg,
   2012                      S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
   2013 
   2014   case TemplateArgument::Declaration: {
   2015     Expr *E
   2016       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   2017           .takeAs<Expr>();
   2018     return TemplateArgumentLoc(TemplateArgument(E), E);
   2019   }
   2020 
   2021   case TemplateArgument::NullPtr: {
   2022     Expr *E
   2023       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   2024           .takeAs<Expr>();
   2025     return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
   2026                                E);
   2027   }
   2028 
   2029   case TemplateArgument::Integral: {
   2030     Expr *E
   2031       = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).takeAs<Expr>();
   2032     return TemplateArgumentLoc(TemplateArgument(E), E);
   2033   }
   2034 
   2035     case TemplateArgument::Template:
   2036     case TemplateArgument::TemplateExpansion: {
   2037       NestedNameSpecifierLocBuilder Builder;
   2038       TemplateName Template = Arg.getAsTemplate();
   2039       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
   2040         Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
   2041       else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
   2042         Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
   2043 
   2044       if (Arg.getKind() == TemplateArgument::Template)
   2045         return TemplateArgumentLoc(Arg,
   2046                                    Builder.getWithLocInContext(S.Context),
   2047                                    Loc);
   2048 
   2049 
   2050       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
   2051                                  Loc, Loc);
   2052     }
   2053 
   2054   case TemplateArgument::Expression:
   2055     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
   2056 
   2057   case TemplateArgument::Pack:
   2058     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
   2059   }
   2060 
   2061   llvm_unreachable("Invalid TemplateArgument Kind!");
   2062 }
   2063 
   2064 
   2065 /// \brief Convert the given deduced template argument and add it to the set of
   2066 /// fully-converted template arguments.
   2067 static bool
   2068 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
   2069                                DeducedTemplateArgument Arg,
   2070                                NamedDecl *Template,
   2071                                QualType NTTPType,
   2072                                unsigned ArgumentPackIndex,
   2073                                TemplateDeductionInfo &Info,
   2074                                bool InFunctionTemplate,
   2075                                SmallVectorImpl<TemplateArgument> &Output) {
   2076   if (Arg.getKind() == TemplateArgument::Pack) {
   2077     // This is a template argument pack, so check each of its arguments against
   2078     // the template parameter.
   2079     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
   2080     for (TemplateArgument::pack_iterator PA = Arg.pack_begin(),
   2081                                       PAEnd = Arg.pack_end();
   2082          PA != PAEnd; ++PA) {
   2083       // When converting the deduced template argument, append it to the
   2084       // general output list. We need to do this so that the template argument
   2085       // checking logic has all of the prior template arguments available.
   2086       DeducedTemplateArgument InnerArg(*PA);
   2087       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
   2088       if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
   2089                                          NTTPType, PackedArgsBuilder.size(),
   2090                                          Info, InFunctionTemplate, Output))
   2091         return true;
   2092 
   2093       // Move the converted template argument into our argument pack.
   2094       PackedArgsBuilder.push_back(Output.back());
   2095       Output.pop_back();
   2096     }
   2097 
   2098     // Create the resulting argument pack.
   2099     Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
   2100                                                       PackedArgsBuilder.data(),
   2101                                                      PackedArgsBuilder.size()));
   2102     return false;
   2103   }
   2104 
   2105   // Convert the deduced template argument into a template
   2106   // argument that we can check, almost as if the user had written
   2107   // the template argument explicitly.
   2108   TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
   2109                                                              Info.getLocation());
   2110 
   2111   // Check the template argument, converting it as necessary.
   2112   return S.CheckTemplateArgument(Param, ArgLoc,
   2113                                  Template,
   2114                                  Template->getLocation(),
   2115                                  Template->getSourceRange().getEnd(),
   2116                                  ArgumentPackIndex,
   2117                                  Output,
   2118                                  InFunctionTemplate
   2119                                   ? (Arg.wasDeducedFromArrayBound()
   2120                                        ? Sema::CTAK_DeducedFromArrayBound
   2121                                        : Sema::CTAK_Deduced)
   2122                                  : Sema::CTAK_Specified);
   2123 }
   2124 
   2125 /// Complete template argument deduction for a class template partial
   2126 /// specialization.
   2127 static Sema::TemplateDeductionResult
   2128 FinishTemplateArgumentDeduction(Sema &S,
   2129                                 ClassTemplatePartialSpecializationDecl *Partial,
   2130                                 const TemplateArgumentList &TemplateArgs,
   2131                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2132                                 TemplateDeductionInfo &Info) {
   2133   // Unevaluated SFINAE context.
   2134   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   2135   Sema::SFINAETrap Trap(S);
   2136 
   2137   Sema::ContextRAII SavedContext(S, Partial);
   2138 
   2139   // C++ [temp.deduct.type]p2:
   2140   //   [...] or if any template argument remains neither deduced nor
   2141   //   explicitly specified, template argument deduction fails.
   2142   SmallVector<TemplateArgument, 4> Builder;
   2143   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2144   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2145     NamedDecl *Param = PartialParams->getParam(I);
   2146     if (Deduced[I].isNull()) {
   2147       Info.Param = makeTemplateParameter(Param);
   2148       return Sema::TDK_Incomplete;
   2149     }
   2150 
   2151     // We have deduced this argument, so it still needs to be
   2152     // checked and converted.
   2153 
   2154     // First, for a non-type template parameter type that is
   2155     // initialized by a declaration, we need the type of the
   2156     // corresponding non-type template parameter.
   2157     QualType NTTPType;
   2158     if (NonTypeTemplateParmDecl *NTTP
   2159                                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2160       NTTPType = NTTP->getType();
   2161       if (NTTPType->isDependentType()) {
   2162         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2163                                           Builder.data(), Builder.size());
   2164         NTTPType = S.SubstType(NTTPType,
   2165                                MultiLevelTemplateArgumentList(TemplateArgs),
   2166                                NTTP->getLocation(),
   2167                                NTTP->getDeclName());
   2168         if (NTTPType.isNull()) {
   2169           Info.Param = makeTemplateParameter(Param);
   2170           // FIXME: These template arguments are temporary. Free them!
   2171           Info.reset(TemplateArgumentList::CreateCopy(S.Context,
   2172                                                       Builder.data(),
   2173                                                       Builder.size()));
   2174           return Sema::TDK_SubstitutionFailure;
   2175         }
   2176       }
   2177     }
   2178 
   2179     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
   2180                                        Partial, NTTPType, 0, Info, false,
   2181                                        Builder)) {
   2182       Info.Param = makeTemplateParameter(Param);
   2183       // FIXME: These template arguments are temporary. Free them!
   2184       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2185                                                   Builder.size()));
   2186       return Sema::TDK_SubstitutionFailure;
   2187     }
   2188   }
   2189 
   2190   // Form the template argument list from the deduced template arguments.
   2191   TemplateArgumentList *DeducedArgumentList
   2192     = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2193                                        Builder.size());
   2194 
   2195   Info.reset(DeducedArgumentList);
   2196 
   2197   // Substitute the deduced template arguments into the template
   2198   // arguments of the class template partial specialization, and
   2199   // verify that the instantiated template arguments are both valid
   2200   // and are equivalent to the template arguments originally provided
   2201   // to the class template.
   2202   LocalInstantiationScope InstScope(S);
   2203   ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
   2204   const TemplateArgumentLoc *PartialTemplateArgs
   2205     = Partial->getTemplateArgsAsWritten();
   2206 
   2207   // Note that we don't provide the langle and rangle locations.
   2208   TemplateArgumentListInfo InstArgs;
   2209 
   2210   if (S.Subst(PartialTemplateArgs,
   2211               Partial->getNumTemplateArgsAsWritten(),
   2212               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2213     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2214     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2215       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2216 
   2217     Decl *Param
   2218       = const_cast<NamedDecl *>(
   2219                           Partial->getTemplateParameters()->getParam(ParamIdx));
   2220     Info.Param = makeTemplateParameter(Param);
   2221     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2222     return Sema::TDK_SubstitutionFailure;
   2223   }
   2224 
   2225   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2226   if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
   2227                                   InstArgs, false, ConvertedInstArgs))
   2228     return Sema::TDK_SubstitutionFailure;
   2229 
   2230   TemplateParameterList *TemplateParams
   2231     = ClassTemplate->getTemplateParameters();
   2232   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2233     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2234     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2235       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2236       Info.FirstArg = TemplateArgs[I];
   2237       Info.SecondArg = InstArg;
   2238       return Sema::TDK_NonDeducedMismatch;
   2239     }
   2240   }
   2241 
   2242   if (Trap.hasErrorOccurred())
   2243     return Sema::TDK_SubstitutionFailure;
   2244 
   2245   return Sema::TDK_Success;
   2246 }
   2247 
   2248 /// \brief Perform template argument deduction to determine whether
   2249 /// the given template arguments match the given class template
   2250 /// partial specialization per C++ [temp.class.spec.match].
   2251 Sema::TemplateDeductionResult
   2252 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
   2253                               const TemplateArgumentList &TemplateArgs,
   2254                               TemplateDeductionInfo &Info) {
   2255   if (Partial->isInvalidDecl())
   2256     return TDK_Invalid;
   2257 
   2258   // C++ [temp.class.spec.match]p2:
   2259   //   A partial specialization matches a given actual template
   2260   //   argument list if the template arguments of the partial
   2261   //   specialization can be deduced from the actual template argument
   2262   //   list (14.8.2).
   2263 
   2264   // Unevaluated SFINAE context.
   2265   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2266   SFINAETrap Trap(*this);
   2267 
   2268   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2269   Deduced.resize(Partial->getTemplateParameters()->size());
   2270   if (TemplateDeductionResult Result
   2271         = ::DeduceTemplateArguments(*this,
   2272                                     Partial->getTemplateParameters(),
   2273                                     Partial->getTemplateArgs(),
   2274                                     TemplateArgs, Info, Deduced))
   2275     return Result;
   2276 
   2277   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2278   InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
   2279                              DeducedArgs, Info);
   2280   if (Inst)
   2281     return TDK_InstantiationDepth;
   2282 
   2283   if (Trap.hasErrorOccurred())
   2284     return Sema::TDK_SubstitutionFailure;
   2285 
   2286   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2287                                            Deduced, Info);
   2288 }
   2289 
   2290 /// Complete template argument deduction for a variable template partial
   2291 /// specialization.
   2292 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
   2293 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
   2294     Sema &S, VarTemplatePartialSpecializationDecl *Partial,
   2295     const TemplateArgumentList &TemplateArgs,
   2296     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2297     TemplateDeductionInfo &Info) {
   2298   // Unevaluated SFINAE context.
   2299   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   2300   Sema::SFINAETrap Trap(S);
   2301 
   2302   // C++ [temp.deduct.type]p2:
   2303   //   [...] or if any template argument remains neither deduced nor
   2304   //   explicitly specified, template argument deduction fails.
   2305   SmallVector<TemplateArgument, 4> Builder;
   2306   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2307   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2308     NamedDecl *Param = PartialParams->getParam(I);
   2309     if (Deduced[I].isNull()) {
   2310       Info.Param = makeTemplateParameter(Param);
   2311       return Sema::TDK_Incomplete;
   2312     }
   2313 
   2314     // We have deduced this argument, so it still needs to be
   2315     // checked and converted.
   2316 
   2317     // First, for a non-type template parameter type that is
   2318     // initialized by a declaration, we need the type of the
   2319     // corresponding non-type template parameter.
   2320     QualType NTTPType;
   2321     if (NonTypeTemplateParmDecl *NTTP =
   2322             dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2323       NTTPType = NTTP->getType();
   2324       if (NTTPType->isDependentType()) {
   2325         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2326                                           Builder.data(), Builder.size());
   2327         NTTPType =
   2328             S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
   2329                         NTTP->getLocation(), NTTP->getDeclName());
   2330         if (NTTPType.isNull()) {
   2331           Info.Param = makeTemplateParameter(Param);
   2332           // FIXME: These template arguments are temporary. Free them!
   2333           Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2334                                                       Builder.size()));
   2335           return Sema::TDK_SubstitutionFailure;
   2336         }
   2337       }
   2338     }
   2339 
   2340     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
   2341                                        0, Info, false, Builder)) {
   2342       Info.Param = makeTemplateParameter(Param);
   2343       // FIXME: These template arguments are temporary. Free them!
   2344       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2345                                                   Builder.size()));
   2346       return Sema::TDK_SubstitutionFailure;
   2347     }
   2348   }
   2349 
   2350   // Form the template argument list from the deduced template arguments.
   2351   TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
   2352       S.Context, Builder.data(), Builder.size());
   2353 
   2354   Info.reset(DeducedArgumentList);
   2355 
   2356   // Substitute the deduced template arguments into the template
   2357   // arguments of the class template partial specialization, and
   2358   // verify that the instantiated template arguments are both valid
   2359   // and are equivalent to the template arguments originally provided
   2360   // to the class template.
   2361   LocalInstantiationScope InstScope(S);
   2362   VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
   2363   const TemplateArgumentLoc *PartialTemplateArgs =
   2364       Partial->getTemplateArgsAsWritten();
   2365 
   2366   // Note that we don't provide the langle and rangle locations.
   2367   TemplateArgumentListInfo InstArgs;
   2368 
   2369   if (S.Subst(PartialTemplateArgs, Partial->getNumTemplateArgsAsWritten(),
   2370               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2371     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2372     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2373       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2374 
   2375     Decl *Param = const_cast<NamedDecl *>(
   2376         Partial->getTemplateParameters()->getParam(ParamIdx));
   2377     Info.Param = makeTemplateParameter(Param);
   2378     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2379     return Sema::TDK_SubstitutionFailure;
   2380   }
   2381   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2382   if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
   2383                                   false, ConvertedInstArgs))
   2384     return Sema::TDK_SubstitutionFailure;
   2385 
   2386   TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
   2387   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2388     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2389     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2390       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2391       Info.FirstArg = TemplateArgs[I];
   2392       Info.SecondArg = InstArg;
   2393       return Sema::TDK_NonDeducedMismatch;
   2394     }
   2395   }
   2396 
   2397   if (Trap.hasErrorOccurred())
   2398     return Sema::TDK_SubstitutionFailure;
   2399 
   2400   return Sema::TDK_Success;
   2401 }
   2402 
   2403 /// \brief Perform template argument deduction to determine whether
   2404 /// the given template arguments match the given variable template
   2405 /// partial specialization per C++ [temp.class.spec.match].
   2406 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
   2407 Sema::TemplateDeductionResult
   2408 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
   2409                               const TemplateArgumentList &TemplateArgs,
   2410                               TemplateDeductionInfo &Info) {
   2411   if (Partial->isInvalidDecl())
   2412     return TDK_Invalid;
   2413 
   2414   // C++ [temp.class.spec.match]p2:
   2415   //   A partial specialization matches a given actual template
   2416   //   argument list if the template arguments of the partial
   2417   //   specialization can be deduced from the actual template argument
   2418   //   list (14.8.2).
   2419 
   2420   // Unevaluated SFINAE context.
   2421   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2422   SFINAETrap Trap(*this);
   2423 
   2424   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2425   Deduced.resize(Partial->getTemplateParameters()->size());
   2426   if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
   2427           *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
   2428           TemplateArgs, Info, Deduced))
   2429     return Result;
   2430 
   2431   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2432   InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
   2433                              DeducedArgs, Info);
   2434   if (Inst)
   2435     return TDK_InstantiationDepth;
   2436 
   2437   if (Trap.hasErrorOccurred())
   2438     return Sema::TDK_SubstitutionFailure;
   2439 
   2440   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2441                                            Deduced, Info);
   2442 }
   2443 
   2444 /// \brief Determine whether the given type T is a simple-template-id type.
   2445 static bool isSimpleTemplateIdType(QualType T) {
   2446   if (const TemplateSpecializationType *Spec
   2447         = T->getAs<TemplateSpecializationType>())
   2448     return Spec->getTemplateName().getAsTemplateDecl() != 0;
   2449 
   2450   return false;
   2451 }
   2452 
   2453 /// \brief Substitute the explicitly-provided template arguments into the
   2454 /// given function template according to C++ [temp.arg.explicit].
   2455 ///
   2456 /// \param FunctionTemplate the function template into which the explicit
   2457 /// template arguments will be substituted.
   2458 ///
   2459 /// \param ExplicitTemplateArgs the explicitly-specified template
   2460 /// arguments.
   2461 ///
   2462 /// \param Deduced the deduced template arguments, which will be populated
   2463 /// with the converted and checked explicit template arguments.
   2464 ///
   2465 /// \param ParamTypes will be populated with the instantiated function
   2466 /// parameters.
   2467 ///
   2468 /// \param FunctionType if non-NULL, the result type of the function template
   2469 /// will also be instantiated and the pointed-to value will be updated with
   2470 /// the instantiated function type.
   2471 ///
   2472 /// \param Info if substitution fails for any reason, this object will be
   2473 /// populated with more information about the failure.
   2474 ///
   2475 /// \returns TDK_Success if substitution was successful, or some failure
   2476 /// condition.
   2477 Sema::TemplateDeductionResult
   2478 Sema::SubstituteExplicitTemplateArguments(
   2479                                       FunctionTemplateDecl *FunctionTemplate,
   2480                                TemplateArgumentListInfo &ExplicitTemplateArgs,
   2481                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2482                                  SmallVectorImpl<QualType> &ParamTypes,
   2483                                           QualType *FunctionType,
   2484                                           TemplateDeductionInfo &Info) {
   2485   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   2486   TemplateParameterList *TemplateParams
   2487     = FunctionTemplate->getTemplateParameters();
   2488 
   2489   if (ExplicitTemplateArgs.size() == 0) {
   2490     // No arguments to substitute; just copy over the parameter types and
   2491     // fill in the function type.
   2492     for (FunctionDecl::param_iterator P = Function->param_begin(),
   2493                                    PEnd = Function->param_end();
   2494          P != PEnd;
   2495          ++P)
   2496       ParamTypes.push_back((*P)->getType());
   2497 
   2498     if (FunctionType)
   2499       *FunctionType = Function->getType();
   2500     return TDK_Success;
   2501   }
   2502 
   2503   // Unevaluated SFINAE context.
   2504   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2505   SFINAETrap Trap(*this);
   2506 
   2507   // C++ [temp.arg.explicit]p3:
   2508   //   Template arguments that are present shall be specified in the
   2509   //   declaration order of their corresponding template-parameters. The
   2510   //   template argument list shall not specify more template-arguments than
   2511   //   there are corresponding template-parameters.
   2512   SmallVector<TemplateArgument, 4> Builder;
   2513 
   2514   // Enter a new template instantiation context where we check the
   2515   // explicitly-specified template arguments against this function template,
   2516   // and then substitute them into the function parameter types.
   2517   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2518   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
   2519                              FunctionTemplate, DeducedArgs,
   2520            ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
   2521                              Info);
   2522   if (Inst)
   2523     return TDK_InstantiationDepth;
   2524 
   2525   if (CheckTemplateArgumentList(FunctionTemplate,
   2526                                 SourceLocation(),
   2527                                 ExplicitTemplateArgs,
   2528                                 true,
   2529                                 Builder) || Trap.hasErrorOccurred()) {
   2530     unsigned Index = Builder.size();
   2531     if (Index >= TemplateParams->size())
   2532       Index = TemplateParams->size() - 1;
   2533     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
   2534     return TDK_InvalidExplicitArguments;
   2535   }
   2536 
   2537   // Form the template argument list from the explicitly-specified
   2538   // template arguments.
   2539   TemplateArgumentList *ExplicitArgumentList
   2540     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2541   Info.reset(ExplicitArgumentList);
   2542 
   2543   // Template argument deduction and the final substitution should be
   2544   // done in the context of the templated declaration.  Explicit
   2545   // argument substitution, on the other hand, needs to happen in the
   2546   // calling context.
   2547   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2548 
   2549   // If we deduced template arguments for a template parameter pack,
   2550   // note that the template argument pack is partially substituted and record
   2551   // the explicit template arguments. They'll be used as part of deduction
   2552   // for this template parameter pack.
   2553   for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
   2554     const TemplateArgument &Arg = Builder[I];
   2555     if (Arg.getKind() == TemplateArgument::Pack) {
   2556       CurrentInstantiationScope->SetPartiallySubstitutedPack(
   2557                                                  TemplateParams->getParam(I),
   2558                                                              Arg.pack_begin(),
   2559                                                              Arg.pack_size());
   2560       break;
   2561     }
   2562   }
   2563 
   2564   const FunctionProtoType *Proto
   2565     = Function->getType()->getAs<FunctionProtoType>();
   2566   assert(Proto && "Function template does not have a prototype?");
   2567 
   2568   // Instantiate the types of each of the function parameters given the
   2569   // explicitly-specified template arguments. If the function has a trailing
   2570   // return type, substitute it after the arguments to ensure we substitute
   2571   // in lexical order.
   2572   if (Proto->hasTrailingReturn()) {
   2573     if (SubstParmTypes(Function->getLocation(),
   2574                        Function->param_begin(), Function->getNumParams(),
   2575                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2576                        ParamTypes))
   2577       return TDK_SubstitutionFailure;
   2578   }
   2579 
   2580   // Instantiate the return type.
   2581   // FIXME: exception-specifications?
   2582   QualType ResultType;
   2583   {
   2584     // C++11 [expr.prim.general]p3:
   2585     //   If a declaration declares a member function or member function
   2586     //   template of a class X, the expression this is a prvalue of type
   2587     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
   2588     //   and the end of the function-definition, member-declarator, or
   2589     //   declarator.
   2590     unsigned ThisTypeQuals = 0;
   2591     CXXRecordDecl *ThisContext = 0;
   2592     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
   2593       ThisContext = Method->getParent();
   2594       ThisTypeQuals = Method->getTypeQualifiers();
   2595     }
   2596 
   2597     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
   2598                                getLangOpts().CPlusPlus11);
   2599 
   2600     ResultType = SubstType(Proto->getResultType(),
   2601                    MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2602                    Function->getTypeSpecStartLoc(),
   2603                    Function->getDeclName());
   2604     if (ResultType.isNull() || Trap.hasErrorOccurred())
   2605       return TDK_SubstitutionFailure;
   2606   }
   2607 
   2608   // Instantiate the types of each of the function parameters given the
   2609   // explicitly-specified template arguments if we didn't do so earlier.
   2610   if (!Proto->hasTrailingReturn() &&
   2611       SubstParmTypes(Function->getLocation(),
   2612                      Function->param_begin(), Function->getNumParams(),
   2613                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2614                      ParamTypes))
   2615     return TDK_SubstitutionFailure;
   2616 
   2617   if (FunctionType) {
   2618     *FunctionType = BuildFunctionType(ResultType, ParamTypes,
   2619                                       Function->getLocation(),
   2620                                       Function->getDeclName(),
   2621                                       Proto->getExtProtoInfo());
   2622     if (FunctionType->isNull() || Trap.hasErrorOccurred())
   2623       return TDK_SubstitutionFailure;
   2624   }
   2625 
   2626   // C++ [temp.arg.explicit]p2:
   2627   //   Trailing template arguments that can be deduced (14.8.2) may be
   2628   //   omitted from the list of explicit template-arguments. If all of the
   2629   //   template arguments can be deduced, they may all be omitted; in this
   2630   //   case, the empty template argument list <> itself may also be omitted.
   2631   //
   2632   // Take all of the explicitly-specified arguments and put them into
   2633   // the set of deduced template arguments. Explicitly-specified
   2634   // parameter packs, however, will be set to NULL since the deduction
   2635   // mechanisms handle explicitly-specified argument packs directly.
   2636   Deduced.reserve(TemplateParams->size());
   2637   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
   2638     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
   2639     if (Arg.getKind() == TemplateArgument::Pack)
   2640       Deduced.push_back(DeducedTemplateArgument());
   2641     else
   2642       Deduced.push_back(Arg);
   2643   }
   2644 
   2645   return TDK_Success;
   2646 }
   2647 
   2648 /// \brief Check whether the deduced argument type for a call to a function
   2649 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
   2650 static bool
   2651 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
   2652                               QualType DeducedA) {
   2653   ASTContext &Context = S.Context;
   2654 
   2655   QualType A = OriginalArg.OriginalArgType;
   2656   QualType OriginalParamType = OriginalArg.OriginalParamType;
   2657 
   2658   // Check for type equality (top-level cv-qualifiers are ignored).
   2659   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2660     return false;
   2661 
   2662   // Strip off references on the argument types; they aren't needed for
   2663   // the following checks.
   2664   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
   2665     DeducedA = DeducedARef->getPointeeType();
   2666   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   2667     A = ARef->getPointeeType();
   2668 
   2669   // C++ [temp.deduct.call]p4:
   2670   //   [...] However, there are three cases that allow a difference:
   2671   //     - If the original P is a reference type, the deduced A (i.e., the
   2672   //       type referred to by the reference) can be more cv-qualified than
   2673   //       the transformed A.
   2674   if (const ReferenceType *OriginalParamRef
   2675       = OriginalParamType->getAs<ReferenceType>()) {
   2676     // We don't want to keep the reference around any more.
   2677     OriginalParamType = OriginalParamRef->getPointeeType();
   2678 
   2679     Qualifiers AQuals = A.getQualifiers();
   2680     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
   2681 
   2682     // Under Objective-C++ ARC, the deduced type may have implicitly been
   2683     // given strong lifetime. If so, update the original qualifiers to
   2684     // include this strong lifetime.
   2685     if (S.getLangOpts().ObjCAutoRefCount &&
   2686         DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
   2687         AQuals.getObjCLifetime() == Qualifiers::OCL_None) {
   2688       AQuals.setObjCLifetime(Qualifiers::OCL_Strong);
   2689     }
   2690 
   2691     if (AQuals == DeducedAQuals) {
   2692       // Qualifiers match; there's nothing to do.
   2693     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
   2694       return true;
   2695     } else {
   2696       // Qualifiers are compatible, so have the argument type adopt the
   2697       // deduced argument type's qualifiers as if we had performed the
   2698       // qualification conversion.
   2699       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
   2700     }
   2701   }
   2702 
   2703   //    - The transformed A can be another pointer or pointer to member
   2704   //      type that can be converted to the deduced A via a qualification
   2705   //      conversion.
   2706   //
   2707   // Also allow conversions which merely strip [[noreturn]] from function types
   2708   // (recursively) as an extension.
   2709   // FIXME: Currently, this doesn't place nicely with qualfication conversions.
   2710   bool ObjCLifetimeConversion = false;
   2711   QualType ResultTy;
   2712   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
   2713       (S.IsQualificationConversion(A, DeducedA, false,
   2714                                    ObjCLifetimeConversion) ||
   2715        S.IsNoReturnConversion(A, DeducedA, ResultTy)))
   2716     return false;
   2717 
   2718 
   2719   //    - If P is a class and P has the form simple-template-id, then the
   2720   //      transformed A can be a derived class of the deduced A. [...]
   2721   //     [...] Likewise, if P is a pointer to a class of the form
   2722   //      simple-template-id, the transformed A can be a pointer to a
   2723   //      derived class pointed to by the deduced A.
   2724   if (const PointerType *OriginalParamPtr
   2725       = OriginalParamType->getAs<PointerType>()) {
   2726     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
   2727       if (const PointerType *APtr = A->getAs<PointerType>()) {
   2728         if (A->getPointeeType()->isRecordType()) {
   2729           OriginalParamType = OriginalParamPtr->getPointeeType();
   2730           DeducedA = DeducedAPtr->getPointeeType();
   2731           A = APtr->getPointeeType();
   2732         }
   2733       }
   2734     }
   2735   }
   2736 
   2737   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2738     return false;
   2739 
   2740   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
   2741       S.IsDerivedFrom(A, DeducedA))
   2742     return false;
   2743 
   2744   return true;
   2745 }
   2746 
   2747 /// \brief Finish template argument deduction for a function template,
   2748 /// checking the deduced template arguments for completeness and forming
   2749 /// the function template specialization.
   2750 ///
   2751 /// \param OriginalCallArgs If non-NULL, the original call arguments against
   2752 /// which the deduced argument types should be compared.
   2753 Sema::TemplateDeductionResult
   2754 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
   2755                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2756                                       unsigned NumExplicitlySpecified,
   2757                                       FunctionDecl *&Specialization,
   2758                                       TemplateDeductionInfo &Info,
   2759         SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs) {
   2760   TemplateParameterList *TemplateParams
   2761     = FunctionTemplate->getTemplateParameters();
   2762 
   2763   // Unevaluated SFINAE context.
   2764   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2765   SFINAETrap Trap(*this);
   2766 
   2767   // Enter a new template instantiation context while we instantiate the
   2768   // actual function declaration.
   2769   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2770   InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
   2771                              FunctionTemplate, DeducedArgs,
   2772               ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
   2773                              Info);
   2774   if (Inst)
   2775     return TDK_InstantiationDepth;
   2776 
   2777   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2778 
   2779   // C++ [temp.deduct.type]p2:
   2780   //   [...] or if any template argument remains neither deduced nor
   2781   //   explicitly specified, template argument deduction fails.
   2782   SmallVector<TemplateArgument, 4> Builder;
   2783   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   2784     NamedDecl *Param = TemplateParams->getParam(I);
   2785 
   2786     if (!Deduced[I].isNull()) {
   2787       if (I < NumExplicitlySpecified) {
   2788         // We have already fully type-checked and converted this
   2789         // argument, because it was explicitly-specified. Just record the
   2790         // presence of this argument.
   2791         Builder.push_back(Deduced[I]);
   2792         continue;
   2793       }
   2794 
   2795       // We have deduced this argument, so it still needs to be
   2796       // checked and converted.
   2797 
   2798       // First, for a non-type template parameter type that is
   2799       // initialized by a declaration, we need the type of the
   2800       // corresponding non-type template parameter.
   2801       QualType NTTPType;
   2802       if (NonTypeTemplateParmDecl *NTTP
   2803                                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2804         NTTPType = NTTP->getType();
   2805         if (NTTPType->isDependentType()) {
   2806           TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2807                                             Builder.data(), Builder.size());
   2808           NTTPType = SubstType(NTTPType,
   2809                                MultiLevelTemplateArgumentList(TemplateArgs),
   2810                                NTTP->getLocation(),
   2811                                NTTP->getDeclName());
   2812           if (NTTPType.isNull()) {
   2813             Info.Param = makeTemplateParameter(Param);
   2814             // FIXME: These template arguments are temporary. Free them!
   2815             Info.reset(TemplateArgumentList::CreateCopy(Context,
   2816                                                         Builder.data(),
   2817                                                         Builder.size()));
   2818             return TDK_SubstitutionFailure;
   2819           }
   2820         }
   2821       }
   2822 
   2823       if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
   2824                                          FunctionTemplate, NTTPType, 0, Info,
   2825                                          true, Builder)) {
   2826         Info.Param = makeTemplateParameter(Param);
   2827         // FIXME: These template arguments are temporary. Free them!
   2828         Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2829                                                     Builder.size()));
   2830         return TDK_SubstitutionFailure;
   2831       }
   2832 
   2833       continue;
   2834     }
   2835 
   2836     // C++0x [temp.arg.explicit]p3:
   2837     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
   2838     //    be deduced to an empty sequence of template arguments.
   2839     // FIXME: Where did the word "trailing" come from?
   2840     if (Param->isTemplateParameterPack()) {
   2841       // We may have had explicitly-specified template arguments for this
   2842       // template parameter pack. If so, our empty deduction extends the
   2843       // explicitly-specified set (C++0x [temp.arg.explicit]p9).
   2844       const TemplateArgument *ExplicitArgs;
   2845       unsigned NumExplicitArgs;
   2846       if (CurrentInstantiationScope &&
   2847           CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
   2848                                                              &NumExplicitArgs)
   2849             == Param) {
   2850         Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
   2851 
   2852         // Forget the partially-substituted pack; it's substitution is now
   2853         // complete.
   2854         CurrentInstantiationScope->ResetPartiallySubstitutedPack();
   2855       } else {
   2856         Builder.push_back(TemplateArgument::getEmptyPack());
   2857       }
   2858       continue;
   2859     }
   2860 
   2861     // Substitute into the default template argument, if available.
   2862     bool HasDefaultArg = false;
   2863     TemplateArgumentLoc DefArg
   2864       = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
   2865                                               FunctionTemplate->getLocation(),
   2866                                   FunctionTemplate->getSourceRange().getEnd(),
   2867                                                 Param,
   2868                                                 Builder, HasDefaultArg);
   2869 
   2870     // If there was no default argument, deduction is incomplete.
   2871     if (DefArg.getArgument().isNull()) {
   2872       Info.Param = makeTemplateParameter(
   2873                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2874       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2875                                                   Builder.size()));
   2876       return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
   2877     }
   2878 
   2879     // Check whether we can actually use the default argument.
   2880     if (CheckTemplateArgument(Param, DefArg,
   2881                               FunctionTemplate,
   2882                               FunctionTemplate->getLocation(),
   2883                               FunctionTemplate->getSourceRange().getEnd(),
   2884                               0, Builder,
   2885                               CTAK_Specified)) {
   2886       Info.Param = makeTemplateParameter(
   2887                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2888       // FIXME: These template arguments are temporary. Free them!
   2889       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2890                                                   Builder.size()));
   2891       return TDK_SubstitutionFailure;
   2892     }
   2893 
   2894     // If we get here, we successfully used the default template argument.
   2895   }
   2896 
   2897   // Form the template argument list from the deduced template arguments.
   2898   TemplateArgumentList *DeducedArgumentList
   2899     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2900   Info.reset(DeducedArgumentList);
   2901 
   2902   // Substitute the deduced template arguments into the function template
   2903   // declaration to produce the function template specialization.
   2904   DeclContext *Owner = FunctionTemplate->getDeclContext();
   2905   if (FunctionTemplate->getFriendObjectKind())
   2906     Owner = FunctionTemplate->getLexicalDeclContext();
   2907   Specialization = cast_or_null<FunctionDecl>(
   2908                       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
   2909                          MultiLevelTemplateArgumentList(*DeducedArgumentList)));
   2910   if (!Specialization || Specialization->isInvalidDecl())
   2911     return TDK_SubstitutionFailure;
   2912 
   2913   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
   2914          FunctionTemplate->getCanonicalDecl());
   2915 
   2916   // If the template argument list is owned by the function template
   2917   // specialization, release it.
   2918   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
   2919       !Trap.hasErrorOccurred())
   2920     Info.take();
   2921 
   2922   // There may have been an error that did not prevent us from constructing a
   2923   // declaration. Mark the declaration invalid and return with a substitution
   2924   // failure.
   2925   if (Trap.hasErrorOccurred()) {
   2926     Specialization->setInvalidDecl(true);
   2927     return TDK_SubstitutionFailure;
   2928   }
   2929 
   2930   if (OriginalCallArgs) {
   2931     // C++ [temp.deduct.call]p4:
   2932     //   In general, the deduction process attempts to find template argument
   2933     //   values that will make the deduced A identical to A (after the type A
   2934     //   is transformed as described above). [...]
   2935     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
   2936       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
   2937       unsigned ParamIdx = OriginalArg.ArgIdx;
   2938 
   2939       if (ParamIdx >= Specialization->getNumParams())
   2940         continue;
   2941 
   2942       QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
   2943       if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
   2944         return Sema::TDK_SubstitutionFailure;
   2945     }
   2946   }
   2947 
   2948   // If we suppressed any diagnostics while performing template argument
   2949   // deduction, and if we haven't already instantiated this declaration,
   2950   // keep track of these diagnostics. They'll be emitted if this specialization
   2951   // is actually used.
   2952   if (Info.diag_begin() != Info.diag_end()) {
   2953     SuppressedDiagnosticsMap::iterator
   2954       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
   2955     if (Pos == SuppressedDiagnostics.end())
   2956         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
   2957           .append(Info.diag_begin(), Info.diag_end());
   2958   }
   2959 
   2960   return TDK_Success;
   2961 }
   2962 
   2963 /// Gets the type of a function for template-argument-deducton
   2964 /// purposes when it's considered as part of an overload set.
   2965 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
   2966                                   FunctionDecl *Fn) {
   2967   // We may need to deduce the return type of the function now.
   2968   if (S.getLangOpts().CPlusPlus1y && Fn->getResultType()->isUndeducedType() &&
   2969       S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/false))
   2970     return QualType();
   2971 
   2972   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   2973     if (Method->isInstance()) {
   2974       // An instance method that's referenced in a form that doesn't
   2975       // look like a member pointer is just invalid.
   2976       if (!R.HasFormOfMemberPointer) return QualType();
   2977 
   2978       return S.Context.getMemberPointerType(Fn->getType(),
   2979                S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
   2980     }
   2981 
   2982   if (!R.IsAddressOfOperand) return Fn->getType();
   2983   return S.Context.getPointerType(Fn->getType());
   2984 }
   2985 
   2986 /// Apply the deduction rules for overload sets.
   2987 ///
   2988 /// \return the null type if this argument should be treated as an
   2989 /// undeduced context
   2990 static QualType
   2991 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
   2992                             Expr *Arg, QualType ParamType,
   2993                             bool ParamWasReference) {
   2994 
   2995   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
   2996 
   2997   OverloadExpr *Ovl = R.Expression;
   2998 
   2999   // C++0x [temp.deduct.call]p4
   3000   unsigned TDF = 0;
   3001   if (ParamWasReference)
   3002     TDF |= TDF_ParamWithReferenceType;
   3003   if (R.IsAddressOfOperand)
   3004     TDF |= TDF_IgnoreQualifiers;
   3005 
   3006   // C++0x [temp.deduct.call]p6:
   3007   //   When P is a function type, pointer to function type, or pointer
   3008   //   to member function type:
   3009 
   3010   if (!ParamType->isFunctionType() &&
   3011       !ParamType->isFunctionPointerType() &&
   3012       !ParamType->isMemberFunctionPointerType()) {
   3013     if (Ovl->hasExplicitTemplateArgs()) {
   3014       // But we can still look for an explicit specialization.
   3015       if (FunctionDecl *ExplicitSpec
   3016             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
   3017         return GetTypeOfFunction(S, R, ExplicitSpec);
   3018     }
   3019 
   3020     return QualType();
   3021   }
   3022 
   3023   // Gather the explicit template arguments, if any.
   3024   TemplateArgumentListInfo ExplicitTemplateArgs;
   3025   if (Ovl->hasExplicitTemplateArgs())
   3026     Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
   3027   QualType Match;
   3028   for (UnresolvedSetIterator I = Ovl->decls_begin(),
   3029          E = Ovl->decls_end(); I != E; ++I) {
   3030     NamedDecl *D = (*I)->getUnderlyingDecl();
   3031 
   3032     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
   3033       //   - If the argument is an overload set containing one or more
   3034       //     function templates, the parameter is treated as a
   3035       //     non-deduced context.
   3036       if (!Ovl->hasExplicitTemplateArgs())
   3037         return QualType();
   3038 
   3039       // Otherwise, see if we can resolve a function type
   3040       FunctionDecl *Specialization = 0;
   3041       TemplateDeductionInfo Info(Ovl->getNameLoc());
   3042       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
   3043                                     Specialization, Info))
   3044         continue;
   3045 
   3046       D = Specialization;
   3047     }
   3048 
   3049     FunctionDecl *Fn = cast<FunctionDecl>(D);
   3050     QualType ArgType = GetTypeOfFunction(S, R, Fn);
   3051     if (ArgType.isNull()) continue;
   3052 
   3053     // Function-to-pointer conversion.
   3054     if (!ParamWasReference && ParamType->isPointerType() &&
   3055         ArgType->isFunctionType())
   3056       ArgType = S.Context.getPointerType(ArgType);
   3057 
   3058     //   - If the argument is an overload set (not containing function
   3059     //     templates), trial argument deduction is attempted using each
   3060     //     of the members of the set. If deduction succeeds for only one
   3061     //     of the overload set members, that member is used as the
   3062     //     argument value for the deduction. If deduction succeeds for
   3063     //     more than one member of the overload set the parameter is
   3064     //     treated as a non-deduced context.
   3065 
   3066     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
   3067     //   Type deduction is done independently for each P/A pair, and
   3068     //   the deduced template argument values are then combined.
   3069     // So we do not reject deductions which were made elsewhere.
   3070     SmallVector<DeducedTemplateArgument, 8>
   3071       Deduced(TemplateParams->size());
   3072     TemplateDeductionInfo Info(Ovl->getNameLoc());
   3073     Sema::TemplateDeductionResult Result
   3074       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   3075                                            ArgType, Info, Deduced, TDF);
   3076     if (Result) continue;
   3077     if (!Match.isNull()) return QualType();
   3078     Match = ArgType;
   3079   }
   3080 
   3081   return Match;
   3082 }
   3083 
   3084 /// \brief Perform the adjustments to the parameter and argument types
   3085 /// described in C++ [temp.deduct.call].
   3086 ///
   3087 /// \returns true if the caller should not attempt to perform any template
   3088 /// argument deduction based on this P/A pair because the argument is an
   3089 /// overloaded function set that could not be resolved.
   3090 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
   3091                                           TemplateParameterList *TemplateParams,
   3092                                                       QualType &ParamType,
   3093                                                       QualType &ArgType,
   3094                                                       Expr *Arg,
   3095                                                       unsigned &TDF) {
   3096   // C++0x [temp.deduct.call]p3:
   3097   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
   3098   //   are ignored for type deduction.
   3099   if (ParamType.hasQualifiers())
   3100     ParamType = ParamType.getUnqualifiedType();
   3101   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
   3102   if (ParamRefType) {
   3103     QualType PointeeType = ParamRefType->getPointeeType();
   3104 
   3105     // If the argument has incomplete array type, try to complete its type.
   3106     if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
   3107       ArgType = Arg->getType();
   3108 
   3109     //   [C++0x] If P is an rvalue reference to a cv-unqualified
   3110     //   template parameter and the argument is an lvalue, the type
   3111     //   "lvalue reference to A" is used in place of A for type
   3112     //   deduction.
   3113     if (isa<RValueReferenceType>(ParamType)) {
   3114       if (!PointeeType.getQualifiers() &&
   3115           isa<TemplateTypeParmType>(PointeeType) &&
   3116           Arg->Classify(S.Context).isLValue() &&
   3117           Arg->getType() != S.Context.OverloadTy &&
   3118           Arg->getType() != S.Context.BoundMemberTy)
   3119         ArgType = S.Context.getLValueReferenceType(ArgType);
   3120     }
   3121 
   3122     //   [...] If P is a reference type, the type referred to by P is used
   3123     //   for type deduction.
   3124     ParamType = PointeeType;
   3125   }
   3126 
   3127   // Overload sets usually make this parameter an undeduced
   3128   // context, but there are sometimes special circumstances.
   3129   if (ArgType == S.Context.OverloadTy) {
   3130     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
   3131                                           Arg, ParamType,
   3132                                           ParamRefType != 0);
   3133     if (ArgType.isNull())
   3134       return true;
   3135   }
   3136 
   3137   if (ParamRefType) {
   3138     // C++0x [temp.deduct.call]p3:
   3139     //   [...] If P is of the form T&&, where T is a template parameter, and
   3140     //   the argument is an lvalue, the type A& is used in place of A for
   3141     //   type deduction.
   3142     if (ParamRefType->isRValueReferenceType() &&
   3143         ParamRefType->getAs<TemplateTypeParmType>() &&
   3144         Arg->isLValue())
   3145       ArgType = S.Context.getLValueReferenceType(ArgType);
   3146   } else {
   3147     // C++ [temp.deduct.call]p2:
   3148     //   If P is not a reference type:
   3149     //   - If A is an array type, the pointer type produced by the
   3150     //     array-to-pointer standard conversion (4.2) is used in place of
   3151     //     A for type deduction; otherwise,
   3152     if (ArgType->isArrayType())
   3153       ArgType = S.Context.getArrayDecayedType(ArgType);
   3154     //   - If A is a function type, the pointer type produced by the
   3155     //     function-to-pointer standard conversion (4.3) is used in place
   3156     //     of A for type deduction; otherwise,
   3157     else if (ArgType->isFunctionType())
   3158       ArgType = S.Context.getPointerType(ArgType);
   3159     else {
   3160       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
   3161       //   type are ignored for type deduction.
   3162       ArgType = ArgType.getUnqualifiedType();
   3163     }
   3164   }
   3165 
   3166   // C++0x [temp.deduct.call]p4:
   3167   //   In general, the deduction process attempts to find template argument
   3168   //   values that will make the deduced A identical to A (after the type A
   3169   //   is transformed as described above). [...]
   3170   TDF = TDF_SkipNonDependent;
   3171 
   3172   //     - If the original P is a reference type, the deduced A (i.e., the
   3173   //       type referred to by the reference) can be more cv-qualified than
   3174   //       the transformed A.
   3175   if (ParamRefType)
   3176     TDF |= TDF_ParamWithReferenceType;
   3177   //     - The transformed A can be another pointer or pointer to member
   3178   //       type that can be converted to the deduced A via a qualification
   3179   //       conversion (4.4).
   3180   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
   3181       ArgType->isObjCObjectPointerType())
   3182     TDF |= TDF_IgnoreQualifiers;
   3183   //     - If P is a class and P has the form simple-template-id, then the
   3184   //       transformed A can be a derived class of the deduced A. Likewise,
   3185   //       if P is a pointer to a class of the form simple-template-id, the
   3186   //       transformed A can be a pointer to a derived class pointed to by
   3187   //       the deduced A.
   3188   if (isSimpleTemplateIdType(ParamType) ||
   3189       (isa<PointerType>(ParamType) &&
   3190        isSimpleTemplateIdType(
   3191                               ParamType->getAs<PointerType>()->getPointeeType())))
   3192     TDF |= TDF_DerivedClass;
   3193 
   3194   return false;
   3195 }
   3196 
   3197 static bool hasDeducibleTemplateParameters(Sema &S,
   3198                                            FunctionTemplateDecl *FunctionTemplate,
   3199                                            QualType T);
   3200 
   3201 /// \brief Perform template argument deduction by matching a parameter type
   3202 ///        against a single expression, where the expression is an element of
   3203 ///        an initializer list that was originally matched against a parameter
   3204 ///        of type \c initializer_list\<ParamType\>.
   3205 static Sema::TemplateDeductionResult
   3206 DeduceTemplateArgumentByListElement(Sema &S,
   3207                                     TemplateParameterList *TemplateParams,
   3208                                     QualType ParamType, Expr *Arg,
   3209                                     TemplateDeductionInfo &Info,
   3210                               SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   3211                                     unsigned TDF) {
   3212   // Handle the case where an init list contains another init list as the
   3213   // element.
   3214   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3215     QualType X;
   3216     if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
   3217       return Sema::TDK_Success; // Just ignore this expression.
   3218 
   3219     // Recurse down into the init list.
   3220     for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3221       if (Sema::TemplateDeductionResult Result =
   3222             DeduceTemplateArgumentByListElement(S, TemplateParams, X,
   3223                                                  ILE->getInit(i),
   3224                                                  Info, Deduced, TDF))
   3225         return Result;
   3226     }
   3227     return Sema::TDK_Success;
   3228   }
   3229 
   3230   // For all other cases, just match by type.
   3231   QualType ArgType = Arg->getType();
   3232   if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
   3233                                                 ArgType, Arg, TDF)) {
   3234     Info.Expression = Arg;
   3235     return Sema::TDK_FailedOverloadResolution;
   3236   }
   3237   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   3238                                             ArgType, Info, Deduced, TDF);
   3239 }
   3240 
   3241 /// \brief Perform template argument deduction from a function call
   3242 /// (C++ [temp.deduct.call]).
   3243 ///
   3244 /// \param FunctionTemplate the function template for which we are performing
   3245 /// template argument deduction.
   3246 ///
   3247 /// \param ExplicitTemplateArgs the explicit template arguments provided
   3248 /// for this call.
   3249 ///
   3250 /// \param Args the function call arguments
   3251 ///
   3252 /// \param Specialization if template argument deduction was successful,
   3253 /// this will be set to the function template specialization produced by
   3254 /// template argument deduction.
   3255 ///
   3256 /// \param Info the argument will be updated to provide additional information
   3257 /// about template argument deduction.
   3258 ///
   3259 /// \returns the result of template argument deduction.
   3260 Sema::TemplateDeductionResult
   3261 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3262                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3263                               llvm::ArrayRef<Expr *> Args,
   3264                               FunctionDecl *&Specialization,
   3265                               TemplateDeductionInfo &Info) {
   3266   if (FunctionTemplate->isInvalidDecl())
   3267     return TDK_Invalid;
   3268 
   3269   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3270 
   3271   // C++ [temp.deduct.call]p1:
   3272   //   Template argument deduction is done by comparing each function template
   3273   //   parameter type (call it P) with the type of the corresponding argument
   3274   //   of the call (call it A) as described below.
   3275   unsigned CheckArgs = Args.size();
   3276   if (Args.size() < Function->getMinRequiredArguments())
   3277     return TDK_TooFewArguments;
   3278   else if (Args.size() > Function->getNumParams()) {
   3279     const FunctionProtoType *Proto
   3280       = Function->getType()->getAs<FunctionProtoType>();
   3281     if (Proto->isTemplateVariadic())
   3282       /* Do nothing */;
   3283     else if (Proto->isVariadic())
   3284       CheckArgs = Function->getNumParams();
   3285     else
   3286       return TDK_TooManyArguments;
   3287   }
   3288 
   3289   // The types of the parameters from which we will perform template argument
   3290   // deduction.
   3291   LocalInstantiationScope InstScope(*this);
   3292   TemplateParameterList *TemplateParams
   3293     = FunctionTemplate->getTemplateParameters();
   3294   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3295   SmallVector<QualType, 4> ParamTypes;
   3296   unsigned NumExplicitlySpecified = 0;
   3297   if (ExplicitTemplateArgs) {
   3298     TemplateDeductionResult Result =
   3299       SubstituteExplicitTemplateArguments(FunctionTemplate,
   3300                                           *ExplicitTemplateArgs,
   3301                                           Deduced,
   3302                                           ParamTypes,
   3303                                           0,
   3304                                           Info);
   3305     if (Result)
   3306       return Result;
   3307 
   3308     NumExplicitlySpecified = Deduced.size();
   3309   } else {
   3310     // Just fill in the parameter types from the function declaration.
   3311     for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   3312       ParamTypes.push_back(Function->getParamDecl(I)->getType());
   3313   }
   3314 
   3315   // Deduce template arguments from the function parameters.
   3316   Deduced.resize(TemplateParams->size());
   3317   unsigned ArgIdx = 0;
   3318   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
   3319   for (unsigned ParamIdx = 0, NumParams = ParamTypes.size();
   3320        ParamIdx != NumParams; ++ParamIdx) {
   3321     QualType OrigParamType = ParamTypes[ParamIdx];
   3322     QualType ParamType = OrigParamType;
   3323 
   3324     const PackExpansionType *ParamExpansion
   3325       = dyn_cast<PackExpansionType>(ParamType);
   3326     if (!ParamExpansion) {
   3327       // Simple case: matching a function parameter to a function argument.
   3328       if (ArgIdx >= CheckArgs)
   3329         break;
   3330 
   3331       Expr *Arg = Args[ArgIdx++];
   3332       QualType ArgType = Arg->getType();
   3333 
   3334       unsigned TDF = 0;
   3335       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3336                                                     ParamType, ArgType, Arg,
   3337                                                     TDF))
   3338         continue;
   3339 
   3340       // If we have nothing to deduce, we're done.
   3341       if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3342         continue;
   3343 
   3344       // If the argument is an initializer list ...
   3345       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3346         // ... then the parameter is an undeduced context, unless the parameter
   3347         // type is (reference to cv) std::initializer_list<P'>, in which case
   3348         // deduction is done for each element of the initializer list, and the
   3349         // result is the deduced type if it's the same for all elements.
   3350         QualType X;
   3351         // Removing references was already done.
   3352         if (!isStdInitializerList(ParamType, &X))
   3353           continue;
   3354 
   3355         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3356           if (TemplateDeductionResult Result =
   3357                 DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
   3358                                                      ILE->getInit(i),
   3359                                                      Info, Deduced, TDF))
   3360             return Result;
   3361         }
   3362         // Don't track the argument type, since an initializer list has none.
   3363         continue;
   3364       }
   3365 
   3366       // Keep track of the argument type and corresponding parameter index,
   3367       // so we can check for compatibility between the deduced A and A.
   3368       OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
   3369                                                  ArgType));
   3370 
   3371       if (TemplateDeductionResult Result
   3372             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3373                                                  ParamType, ArgType,
   3374                                                  Info, Deduced, TDF))
   3375         return Result;
   3376 
   3377       continue;
   3378     }
   3379 
   3380     // C++0x [temp.deduct.call]p1:
   3381     //   For a function parameter pack that occurs at the end of the
   3382     //   parameter-declaration-list, the type A of each remaining argument of
   3383     //   the call is compared with the type P of the declarator-id of the
   3384     //   function parameter pack. Each comparison deduces template arguments
   3385     //   for subsequent positions in the template parameter packs expanded by
   3386     //   the function parameter pack. For a function parameter pack that does
   3387     //   not occur at the end of the parameter-declaration-list, the type of
   3388     //   the parameter pack is a non-deduced context.
   3389     if (ParamIdx + 1 < NumParams)
   3390       break;
   3391 
   3392     QualType ParamPattern = ParamExpansion->getPattern();
   3393     SmallVector<unsigned, 2> PackIndices;
   3394     {
   3395       llvm::SmallBitVector SawIndices(TemplateParams->size());
   3396       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
   3397       collectUnexpandedParameterPacks(ParamPattern, Unexpanded);
   3398       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
   3399         unsigned Depth, Index;
   3400         llvm::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
   3401         if (Depth == 0 && !SawIndices[Index]) {
   3402           SawIndices[Index] = true;
   3403           PackIndices.push_back(Index);
   3404         }
   3405       }
   3406     }
   3407     assert(!PackIndices.empty() && "Pack expansion without unexpanded packs?");
   3408 
   3409     // Keep track of the deduced template arguments for each parameter pack
   3410     // expanded by this pack expansion (the outer index) and for each
   3411     // template argument (the inner SmallVectors).
   3412     NewlyDeducedPacksType NewlyDeducedPacks(PackIndices.size());
   3413     SmallVector<DeducedTemplateArgument, 2>
   3414       SavedPacks(PackIndices.size());
   3415     PrepareArgumentPackDeduction(*this, Deduced, PackIndices, SavedPacks,
   3416                                  NewlyDeducedPacks);
   3417     bool HasAnyArguments = false;
   3418     for (; ArgIdx < Args.size(); ++ArgIdx) {
   3419       HasAnyArguments = true;
   3420 
   3421       QualType OrigParamType = ParamPattern;
   3422       ParamType = OrigParamType;
   3423       Expr *Arg = Args[ArgIdx];
   3424       QualType ArgType = Arg->getType();
   3425 
   3426       unsigned TDF = 0;
   3427       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3428                                                     ParamType, ArgType, Arg,
   3429                                                     TDF)) {
   3430         // We can't actually perform any deduction for this argument, so stop
   3431         // deduction at this point.
   3432         ++ArgIdx;
   3433         break;
   3434       }
   3435 
   3436       // As above, initializer lists need special handling.
   3437       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3438         QualType X;
   3439         if (!isStdInitializerList(ParamType, &X)) {
   3440           ++ArgIdx;
   3441           break;
   3442         }
   3443 
   3444         for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
   3445           if (TemplateDeductionResult Result =
   3446                 DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
   3447                                                    ILE->getInit(i)->getType(),
   3448                                                    Info, Deduced, TDF))
   3449             return Result;
   3450         }
   3451       } else {
   3452 
   3453         // Keep track of the argument type and corresponding argument index,
   3454         // so we can check for compatibility between the deduced A and A.
   3455         if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3456           OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
   3457                                                      ArgType));
   3458 
   3459         if (TemplateDeductionResult Result
   3460             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3461                                                  ParamType, ArgType, Info,
   3462                                                  Deduced, TDF))
   3463           return Result;
   3464       }
   3465 
   3466       // Capture the deduced template arguments for each parameter pack expanded
   3467       // by this pack expansion, add them to the list of arguments we've deduced
   3468       // for that pack, then clear out the deduced argument.
   3469       for (unsigned I = 0, N = PackIndices.size(); I != N; ++I) {
   3470         DeducedTemplateArgument &DeducedArg = Deduced[PackIndices[I]];
   3471         if (!DeducedArg.isNull()) {
   3472           NewlyDeducedPacks[I].push_back(DeducedArg);
   3473           DeducedArg = DeducedTemplateArgument();
   3474         }
   3475       }
   3476     }
   3477 
   3478     // Build argument packs for each of the parameter packs expanded by this
   3479     // pack expansion.
   3480     if (Sema::TemplateDeductionResult Result
   3481           = FinishArgumentPackDeduction(*this, TemplateParams, HasAnyArguments,
   3482                                         Deduced, PackIndices, SavedPacks,
   3483                                         NewlyDeducedPacks, Info))
   3484       return Result;
   3485 
   3486     // After we've matching against a parameter pack, we're done.
   3487     break;
   3488   }
   3489 
   3490   return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3491                                          NumExplicitlySpecified,
   3492                                          Specialization, Info, &OriginalCallArgs);
   3493 }
   3494 
   3495 /// \brief Deduce template arguments when taking the address of a function
   3496 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
   3497 /// a template.
   3498 ///
   3499 /// \param FunctionTemplate the function template for which we are performing
   3500 /// template argument deduction.
   3501 ///
   3502 /// \param ExplicitTemplateArgs the explicitly-specified template
   3503 /// arguments.
   3504 ///
   3505 /// \param ArgFunctionType the function type that will be used as the
   3506 /// "argument" type (A) when performing template argument deduction from the
   3507 /// function template's function type. This type may be NULL, if there is no
   3508 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
   3509 ///
   3510 /// \param Specialization if template argument deduction was successful,
   3511 /// this will be set to the function template specialization produced by
   3512 /// template argument deduction.
   3513 ///
   3514 /// \param Info the argument will be updated to provide additional information
   3515 /// about template argument deduction.
   3516 ///
   3517 /// \returns the result of template argument deduction.
   3518 Sema::TemplateDeductionResult
   3519 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3520                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3521                               QualType ArgFunctionType,
   3522                               FunctionDecl *&Specialization,
   3523                               TemplateDeductionInfo &Info,
   3524                               bool InOverloadResolution) {
   3525   if (FunctionTemplate->isInvalidDecl())
   3526     return TDK_Invalid;
   3527 
   3528   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3529   TemplateParameterList *TemplateParams
   3530     = FunctionTemplate->getTemplateParameters();
   3531   QualType FunctionType = Function->getType();
   3532 
   3533   // Substitute any explicit template arguments.
   3534   LocalInstantiationScope InstScope(*this);
   3535   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3536   unsigned NumExplicitlySpecified = 0;
   3537   SmallVector<QualType, 4> ParamTypes;
   3538   if (ExplicitTemplateArgs) {
   3539     if (TemplateDeductionResult Result
   3540           = SubstituteExplicitTemplateArguments(FunctionTemplate,
   3541                                                 *ExplicitTemplateArgs,
   3542                                                 Deduced, ParamTypes,
   3543                                                 &FunctionType, Info))
   3544       return Result;
   3545 
   3546     NumExplicitlySpecified = Deduced.size();
   3547   }
   3548 
   3549   // Unevaluated SFINAE context.
   3550   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3551   SFINAETrap Trap(*this);
   3552 
   3553   Deduced.resize(TemplateParams->size());
   3554 
   3555   // If the function has a deduced return type, substitute it for a dependent
   3556   // type so that we treat it as a non-deduced context in what follows.
   3557   bool HasUndeducedReturnType = false;
   3558   if (getLangOpts().CPlusPlus1y && InOverloadResolution &&
   3559       Function->getResultType()->isUndeducedType()) {
   3560     FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
   3561     HasUndeducedReturnType = true;
   3562   }
   3563 
   3564   if (!ArgFunctionType.isNull()) {
   3565     unsigned TDF = TDF_TopLevelParameterTypeList;
   3566     if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
   3567     // Deduce template arguments from the function type.
   3568     if (TemplateDeductionResult Result
   3569           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3570                                                FunctionType, ArgFunctionType,
   3571                                                Info, Deduced, TDF))
   3572       return Result;
   3573   }
   3574 
   3575   if (TemplateDeductionResult Result
   3576         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3577                                           NumExplicitlySpecified,
   3578                                           Specialization, Info))
   3579     return Result;
   3580 
   3581   // If the function has a deduced return type, deduce it now, so we can check
   3582   // that the deduced function type matches the requested type.
   3583   if (HasUndeducedReturnType &&
   3584       Specialization->getResultType()->isUndeducedType() &&
   3585       DeduceReturnType(Specialization, Info.getLocation(), false))
   3586     return TDK_MiscellaneousDeductionFailure;
   3587 
   3588   // If the requested function type does not match the actual type of the
   3589   // specialization with respect to arguments of compatible pointer to function
   3590   // types, template argument deduction fails.
   3591   if (!ArgFunctionType.isNull()) {
   3592     if (InOverloadResolution && !isSameOrCompatibleFunctionType(
   3593                            Context.getCanonicalType(Specialization->getType()),
   3594                            Context.getCanonicalType(ArgFunctionType)))
   3595       return TDK_MiscellaneousDeductionFailure;
   3596     else if(!InOverloadResolution &&
   3597             !Context.hasSameType(Specialization->getType(), ArgFunctionType))
   3598       return TDK_MiscellaneousDeductionFailure;
   3599   }
   3600 
   3601   return TDK_Success;
   3602 }
   3603 
   3604 /// \brief Deduce template arguments for a templated conversion
   3605 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
   3606 /// conversion function template specialization.
   3607 Sema::TemplateDeductionResult
   3608 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3609                               QualType ToType,
   3610                               CXXConversionDecl *&Specialization,
   3611                               TemplateDeductionInfo &Info) {
   3612   if (FunctionTemplate->isInvalidDecl())
   3613     return TDK_Invalid;
   3614 
   3615   CXXConversionDecl *Conv
   3616     = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
   3617   QualType FromType = Conv->getConversionType();
   3618 
   3619   // Canonicalize the types for deduction.
   3620   QualType P = Context.getCanonicalType(FromType);
   3621   QualType A = Context.getCanonicalType(ToType);
   3622 
   3623   // C++0x [temp.deduct.conv]p2:
   3624   //   If P is a reference type, the type referred to by P is used for
   3625   //   type deduction.
   3626   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
   3627     P = PRef->getPointeeType();
   3628 
   3629   // C++0x [temp.deduct.conv]p4:
   3630   //   [...] If A is a reference type, the type referred to by A is used
   3631   //   for type deduction.
   3632   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   3633     A = ARef->getPointeeType().getUnqualifiedType();
   3634   // C++ [temp.deduct.conv]p3:
   3635   //
   3636   //   If A is not a reference type:
   3637   else {
   3638     assert(!A->isReferenceType() && "Reference types were handled above");
   3639 
   3640     //   - If P is an array type, the pointer type produced by the
   3641     //     array-to-pointer standard conversion (4.2) is used in place
   3642     //     of P for type deduction; otherwise,
   3643     if (P->isArrayType())
   3644       P = Context.getArrayDecayedType(P);
   3645     //   - If P is a function type, the pointer type produced by the
   3646     //     function-to-pointer standard conversion (4.3) is used in
   3647     //     place of P for type deduction; otherwise,
   3648     else if (P->isFunctionType())
   3649       P = Context.getPointerType(P);
   3650     //   - If P is a cv-qualified type, the top level cv-qualifiers of
   3651     //     P's type are ignored for type deduction.
   3652     else
   3653       P = P.getUnqualifiedType();
   3654 
   3655     // C++0x [temp.deduct.conv]p4:
   3656     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
   3657     //   type are ignored for type deduction. If A is a reference type, the type
   3658     //   referred to by A is used for type deduction.
   3659     A = A.getUnqualifiedType();
   3660   }
   3661 
   3662   // Unevaluated SFINAE context.
   3663   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3664   SFINAETrap Trap(*this);
   3665 
   3666   // C++ [temp.deduct.conv]p1:
   3667   //   Template argument deduction is done by comparing the return
   3668   //   type of the template conversion function (call it P) with the
   3669   //   type that is required as the result of the conversion (call it
   3670   //   A) as described in 14.8.2.4.
   3671   TemplateParameterList *TemplateParams
   3672     = FunctionTemplate->getTemplateParameters();
   3673   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3674   Deduced.resize(TemplateParams->size());
   3675 
   3676   // C++0x [temp.deduct.conv]p4:
   3677   //   In general, the deduction process attempts to find template
   3678   //   argument values that will make the deduced A identical to
   3679   //   A. However, there are two cases that allow a difference:
   3680   unsigned TDF = 0;
   3681   //     - If the original A is a reference type, A can be more
   3682   //       cv-qualified than the deduced A (i.e., the type referred to
   3683   //       by the reference)
   3684   if (ToType->isReferenceType())
   3685     TDF |= TDF_ParamWithReferenceType;
   3686   //     - The deduced A can be another pointer or pointer to member
   3687   //       type that can be converted to A via a qualification
   3688   //       conversion.
   3689   //
   3690   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
   3691   // both P and A are pointers or member pointers. In this case, we
   3692   // just ignore cv-qualifiers completely).
   3693   if ((P->isPointerType() && A->isPointerType()) ||
   3694       (P->isMemberPointerType() && A->isMemberPointerType()))
   3695     TDF |= TDF_IgnoreQualifiers;
   3696   if (TemplateDeductionResult Result
   3697         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3698                                              P, A, Info, Deduced, TDF))
   3699     return Result;
   3700 
   3701   // Finish template argument deduction.
   3702   LocalInstantiationScope InstScope(*this);
   3703   FunctionDecl *Spec = 0;
   3704   TemplateDeductionResult Result
   3705     = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 0, Spec,
   3706                                       Info);
   3707   Specialization = cast_or_null<CXXConversionDecl>(Spec);
   3708   return Result;
   3709 }
   3710 
   3711 /// \brief Deduce template arguments for a function template when there is
   3712 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
   3713 ///
   3714 /// \param FunctionTemplate the function template for which we are performing
   3715 /// template argument deduction.
   3716 ///
   3717 /// \param ExplicitTemplateArgs the explicitly-specified template
   3718 /// arguments.
   3719 ///
   3720 /// \param Specialization if template argument deduction was successful,
   3721 /// this will be set to the function template specialization produced by
   3722 /// template argument deduction.
   3723 ///
   3724 /// \param Info the argument will be updated to provide additional information
   3725 /// about template argument deduction.
   3726 ///
   3727 /// \returns the result of template argument deduction.
   3728 Sema::TemplateDeductionResult
   3729 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3730                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3731                               FunctionDecl *&Specialization,
   3732                               TemplateDeductionInfo &Info,
   3733                               bool InOverloadResolution) {
   3734   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
   3735                                  QualType(), Specialization, Info,
   3736                                  InOverloadResolution);
   3737 }
   3738 
   3739 namespace {
   3740   /// Substitute the 'auto' type specifier within a type for a given replacement
   3741   /// type.
   3742   class SubstituteAutoTransform :
   3743     public TreeTransform<SubstituteAutoTransform> {
   3744     QualType Replacement;
   3745   public:
   3746     SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) :
   3747       TreeTransform<SubstituteAutoTransform>(SemaRef), Replacement(Replacement) {
   3748     }
   3749     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
   3750       // If we're building the type pattern to deduce against, don't wrap the
   3751       // substituted type in an AutoType. Certain template deduction rules
   3752       // apply only when a template type parameter appears directly (and not if
   3753       // the parameter is found through desugaring). For instance:
   3754       //   auto &&lref = lvalue;
   3755       // must transform into "rvalue reference to T" not "rvalue reference to
   3756       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
   3757       if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
   3758         QualType Result = Replacement;
   3759         TemplateTypeParmTypeLoc NewTL =
   3760           TLB.push<TemplateTypeParmTypeLoc>(Result);
   3761         NewTL.setNameLoc(TL.getNameLoc());
   3762         return Result;
   3763       } else {
   3764         bool Dependent =
   3765           !Replacement.isNull() && Replacement->isDependentType();
   3766         QualType Result =
   3767           SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
   3768                                       TL.getTypePtr()->isDecltypeAuto(),
   3769                                       Dependent);
   3770         AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
   3771         NewTL.setNameLoc(TL.getNameLoc());
   3772         return Result;
   3773       }
   3774     }
   3775 
   3776     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   3777       // Lambdas never need to be transformed.
   3778       return E;
   3779     }
   3780 
   3781     QualType Apply(TypeLoc TL) {
   3782       // Create some scratch storage for the transformed type locations.
   3783       // FIXME: We're just going to throw this information away. Don't build it.
   3784       TypeLocBuilder TLB;
   3785       TLB.reserve(TL.getFullDataSize());
   3786       return TransformType(TLB, TL);
   3787     }
   3788   };
   3789 }
   3790 
   3791 Sema::DeduceAutoResult
   3792 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
   3793   return DeduceAutoType(Type->getTypeLoc(), Init, Result);
   3794 }
   3795 
   3796 /// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
   3797 ///
   3798 /// \param Type the type pattern using the auto type-specifier.
   3799 /// \param Init the initializer for the variable whose type is to be deduced.
   3800 /// \param Result if type deduction was successful, this will be set to the
   3801 ///        deduced type.
   3802 Sema::DeduceAutoResult
   3803 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
   3804   if (Init->getType()->isNonOverloadPlaceholderType()) {
   3805     ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
   3806     if (NonPlaceholder.isInvalid())
   3807       return DAR_FailedAlreadyDiagnosed;
   3808     Init = NonPlaceholder.take();
   3809   }
   3810 
   3811   if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
   3812     Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
   3813     assert(!Result.isNull() && "substituting DependentTy can't fail");
   3814     return DAR_Succeeded;
   3815   }
   3816 
   3817   // If this is a 'decltype(auto)' specifier, do the decltype dance.
   3818   // Since 'decltype(auto)' can only occur at the top of the type, we
   3819   // don't need to go digging for it.
   3820   if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
   3821     if (AT->isDecltypeAuto()) {
   3822       if (isa<InitListExpr>(Init)) {
   3823         Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
   3824         return DAR_FailedAlreadyDiagnosed;
   3825       }
   3826 
   3827       QualType Deduced = BuildDecltypeType(Init, Init->getLocStart());
   3828       // FIXME: Support a non-canonical deduced type for 'auto'.
   3829       Deduced = Context.getCanonicalType(Deduced);
   3830       Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
   3831       if (Result.isNull())
   3832         return DAR_FailedAlreadyDiagnosed;
   3833       return DAR_Succeeded;
   3834     }
   3835   }
   3836 
   3837   SourceLocation Loc = Init->getExprLoc();
   3838 
   3839   LocalInstantiationScope InstScope(*this);
   3840 
   3841   // Build template<class TemplParam> void Func(FuncParam);
   3842   TemplateTypeParmDecl *TemplParam =
   3843     TemplateTypeParmDecl::Create(Context, 0, SourceLocation(), Loc, 0, 0, 0,
   3844                                  false, false);
   3845   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
   3846   NamedDecl *TemplParamPtr = TemplParam;
   3847   FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
   3848                                                    Loc);
   3849 
   3850   QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
   3851   assert(!FuncParam.isNull() &&
   3852          "substituting template parameter for 'auto' failed");
   3853 
   3854   // Deduce type of TemplParam in Func(Init)
   3855   SmallVector<DeducedTemplateArgument, 1> Deduced;
   3856   Deduced.resize(1);
   3857   QualType InitType = Init->getType();
   3858   unsigned TDF = 0;
   3859 
   3860   TemplateDeductionInfo Info(Loc);
   3861 
   3862   InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
   3863   if (InitList) {
   3864     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
   3865       if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
   3866                                               TemplArg,
   3867                                               InitList->getInit(i),
   3868                                               Info, Deduced, TDF))
   3869         return DAR_Failed;
   3870     }
   3871   } else {
   3872     if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
   3873                                                   FuncParam, InitType, Init,
   3874                                                   TDF))
   3875       return DAR_Failed;
   3876 
   3877     if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
   3878                                            InitType, Info, Deduced, TDF))
   3879       return DAR_Failed;
   3880   }
   3881 
   3882   if (Deduced[0].getKind() != TemplateArgument::Type)
   3883     return DAR_Failed;
   3884 
   3885   QualType DeducedType = Deduced[0].getAsType();
   3886 
   3887   if (InitList) {
   3888     DeducedType = BuildStdInitializerList(DeducedType, Loc);
   3889     if (DeducedType.isNull())
   3890       return DAR_FailedAlreadyDiagnosed;
   3891   }
   3892 
   3893   Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
   3894   if (Result.isNull())
   3895    return DAR_FailedAlreadyDiagnosed;
   3896 
   3897   // Check that the deduced argument type is compatible with the original
   3898   // argument type per C++ [temp.deduct.call]p4.
   3899   if (!InitList && !Result.isNull() &&
   3900       CheckOriginalCallArgDeduction(*this,
   3901                                     Sema::OriginalCallArg(FuncParam,0,InitType),
   3902                                     Result)) {
   3903     Result = QualType();
   3904     return DAR_Failed;
   3905   }
   3906 
   3907   return DAR_Succeeded;
   3908 }
   3909 
   3910 QualType Sema::SubstAutoType(QualType Type, QualType Deduced) {
   3911   return SubstituteAutoTransform(*this, Deduced).TransformType(Type);
   3912 }
   3913 
   3914 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
   3915   if (isa<InitListExpr>(Init))
   3916     Diag(VDecl->getLocation(),
   3917          diag::err_auto_var_deduction_failure_from_init_list)
   3918       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
   3919   else
   3920     Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
   3921       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
   3922       << Init->getSourceRange();
   3923 }
   3924 
   3925 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
   3926                             bool Diagnose) {
   3927   assert(FD->getResultType()->isUndeducedType());
   3928 
   3929   if (FD->getTemplateInstantiationPattern())
   3930     InstantiateFunctionDefinition(Loc, FD);
   3931 
   3932   bool StillUndeduced = FD->getResultType()->isUndeducedType();
   3933   if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
   3934     Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
   3935     Diag(FD->getLocation(), diag::note_callee_decl) << FD;
   3936   }
   3937 
   3938   return StillUndeduced;
   3939 }
   3940 
   3941 static void
   3942 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   3943                            bool OnlyDeduced,
   3944                            unsigned Level,
   3945                            llvm::SmallBitVector &Deduced);
   3946 
   3947 /// \brief If this is a non-static member function,
   3948 static void
   3949 AddImplicitObjectParameterType(ASTContext &Context,
   3950                                CXXMethodDecl *Method,
   3951                                SmallVectorImpl<QualType> &ArgTypes) {
   3952   // C++11 [temp.func.order]p3:
   3953   //   [...] The new parameter is of type "reference to cv A," where cv are
   3954   //   the cv-qualifiers of the function template (if any) and A is
   3955   //   the class of which the function template is a member.
   3956   //
   3957   // The standard doesn't say explicitly, but we pick the appropriate kind of
   3958   // reference type based on [over.match.funcs]p4.
   3959   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
   3960   ArgTy = Context.getQualifiedType(ArgTy,
   3961                         Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
   3962   if (Method->getRefQualifier() == RQ_RValue)
   3963     ArgTy = Context.getRValueReferenceType(ArgTy);
   3964   else
   3965     ArgTy = Context.getLValueReferenceType(ArgTy);
   3966   ArgTypes.push_back(ArgTy);
   3967 }
   3968 
   3969 /// \brief Determine whether the function template \p FT1 is at least as
   3970 /// specialized as \p FT2.
   3971 static bool isAtLeastAsSpecializedAs(Sema &S,
   3972                                      SourceLocation Loc,
   3973                                      FunctionTemplateDecl *FT1,
   3974                                      FunctionTemplateDecl *FT2,
   3975                                      TemplatePartialOrderingContext TPOC,
   3976                                      unsigned NumCallArguments,
   3977     SmallVectorImpl<RefParamPartialOrderingComparison> *RefParamComparisons) {
   3978   FunctionDecl *FD1 = FT1->getTemplatedDecl();
   3979   FunctionDecl *FD2 = FT2->getTemplatedDecl();
   3980   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
   3981   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
   3982 
   3983   assert(Proto1 && Proto2 && "Function templates must have prototypes");
   3984   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
   3985   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3986   Deduced.resize(TemplateParams->size());
   3987 
   3988   // C++0x [temp.deduct.partial]p3:
   3989   //   The types used to determine the ordering depend on the context in which
   3990   //   the partial ordering is done:
   3991   TemplateDeductionInfo Info(Loc);
   3992   CXXMethodDecl *Method1 = 0;
   3993   CXXMethodDecl *Method2 = 0;
   3994   bool IsNonStatic2 = false;
   3995   bool IsNonStatic1 = false;
   3996   unsigned Skip2 = 0;
   3997   switch (TPOC) {
   3998   case TPOC_Call: {
   3999     //   - In the context of a function call, the function parameter types are
   4000     //     used.
   4001     Method1 = dyn_cast<CXXMethodDecl>(FD1);
   4002     Method2 = dyn_cast<CXXMethodDecl>(FD2);
   4003     IsNonStatic1 = Method1 && !Method1->isStatic();
   4004     IsNonStatic2 = Method2 && !Method2->isStatic();
   4005 
   4006     // C++11 [temp.func.order]p3:
   4007     //   [...] If only one of the function templates is a non-static
   4008     //   member, that function template is considered to have a new
   4009     //   first parameter inserted in its function parameter list. The
   4010     //   new parameter is of type "reference to cv A," where cv are
   4011     //   the cv-qualifiers of the function template (if any) and A is
   4012     //   the class of which the function template is a member.
   4013     //
   4014     // Note that we interpret this to mean "if one of the function
   4015     // templates is a non-static member and the other is a non-member";
   4016     // otherwise, the ordering rules for static functions against non-static
   4017     // functions don't make any sense.
   4018     //
   4019     // C++98/03 doesn't have this provision, so instead we drop the
   4020     // first argument of the free function, which seems to match
   4021     // existing practice.
   4022     SmallVector<QualType, 4> Args1;
   4023     unsigned Skip1 = !S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1;
   4024     if (S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2)
   4025       AddImplicitObjectParameterType(S.Context, Method1, Args1);
   4026     Args1.insert(Args1.end(),
   4027                  Proto1->arg_type_begin() + Skip1, Proto1->arg_type_end());
   4028 
   4029     SmallVector<QualType, 4> Args2;
   4030     Skip2 = !S.getLangOpts().CPlusPlus11 && IsNonStatic1 && !Method2;
   4031     if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !Method1)
   4032       AddImplicitObjectParameterType(S.Context, Method2, Args2);
   4033     Args2.insert(Args2.end(),
   4034                  Proto2->arg_type_begin() + Skip2, Proto2->arg_type_end());
   4035 
   4036     // C++ [temp.func.order]p5:
   4037     //   The presence of unused ellipsis and default arguments has no effect on
   4038     //   the partial ordering of function templates.
   4039     if (Args1.size() > NumCallArguments)
   4040       Args1.resize(NumCallArguments);
   4041     if (Args2.size() > NumCallArguments)
   4042       Args2.resize(NumCallArguments);
   4043     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
   4044                                 Args1.data(), Args1.size(), Info, Deduced,
   4045                                 TDF_None, /*PartialOrdering=*/true,
   4046                                 RefParamComparisons))
   4047         return false;
   4048 
   4049     break;
   4050   }
   4051 
   4052   case TPOC_Conversion:
   4053     //   - In the context of a call to a conversion operator, the return types
   4054     //     of the conversion function templates are used.
   4055     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   4056                                            Proto2->getResultType(),
   4057                                            Proto1->getResultType(),
   4058                                            Info, Deduced, TDF_None,
   4059                                            /*PartialOrdering=*/true,
   4060                                            RefParamComparisons))
   4061       return false;
   4062     break;
   4063 
   4064   case TPOC_Other:
   4065     //   - In other contexts (14.6.6.2) the function template's function type
   4066     //     is used.
   4067     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   4068                                            FD2->getType(), FD1->getType(),
   4069                                            Info, Deduced, TDF_None,
   4070                                            /*PartialOrdering=*/true,
   4071                                            RefParamComparisons))
   4072       return false;
   4073     break;
   4074   }
   4075 
   4076   // C++0x [temp.deduct.partial]p11:
   4077   //   In most cases, all template parameters must have values in order for
   4078   //   deduction to succeed, but for partial ordering purposes a template
   4079   //   parameter may remain without a value provided it is not used in the
   4080   //   types being used for partial ordering. [ Note: a template parameter used
   4081   //   in a non-deduced context is considered used. -end note]
   4082   unsigned ArgIdx = 0, NumArgs = Deduced.size();
   4083   for (; ArgIdx != NumArgs; ++ArgIdx)
   4084     if (Deduced[ArgIdx].isNull())
   4085       break;
   4086 
   4087   if (ArgIdx == NumArgs) {
   4088     // All template arguments were deduced. FT1 is at least as specialized
   4089     // as FT2.
   4090     return true;
   4091   }
   4092 
   4093   // Figure out which template parameters were used.
   4094   llvm::SmallBitVector UsedParameters(TemplateParams->size());
   4095   switch (TPOC) {
   4096   case TPOC_Call: {
   4097     unsigned NumParams = std::min(NumCallArguments,
   4098                                   std::min(Proto1->getNumArgs(),
   4099                                            Proto2->getNumArgs()));
   4100     if (S.getLangOpts().CPlusPlus11 && IsNonStatic2 && !IsNonStatic1)
   4101       ::MarkUsedTemplateParameters(S.Context, Method2->getThisType(S.Context),
   4102                                    false,
   4103                                    TemplateParams->getDepth(), UsedParameters);
   4104     for (unsigned I = Skip2; I < NumParams; ++I)
   4105       ::MarkUsedTemplateParameters(S.Context, Proto2->getArgType(I), false,
   4106                                    TemplateParams->getDepth(),
   4107                                    UsedParameters);
   4108     break;
   4109   }
   4110 
   4111   case TPOC_Conversion:
   4112     ::MarkUsedTemplateParameters(S.Context, Proto2->getResultType(), false,
   4113                                  TemplateParams->getDepth(),
   4114                                  UsedParameters);
   4115     break;
   4116 
   4117   case TPOC_Other:
   4118     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
   4119                                  TemplateParams->getDepth(),
   4120                                  UsedParameters);
   4121     break;
   4122   }
   4123 
   4124   for (; ArgIdx != NumArgs; ++ArgIdx)
   4125     // If this argument had no value deduced but was used in one of the types
   4126     // used for partial ordering, then deduction fails.
   4127     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
   4128       return false;
   4129 
   4130   return true;
   4131 }
   4132 
   4133 /// \brief Determine whether this a function template whose parameter-type-list
   4134 /// ends with a function parameter pack.
   4135 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
   4136   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
   4137   unsigned NumParams = Function->getNumParams();
   4138   if (NumParams == 0)
   4139     return false;
   4140 
   4141   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
   4142   if (!Last->isParameterPack())
   4143     return false;
   4144 
   4145   // Make sure that no previous parameter is a parameter pack.
   4146   while (--NumParams > 0) {
   4147     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
   4148       return false;
   4149   }
   4150 
   4151   return true;
   4152 }
   4153 
   4154 /// \brief Returns the more specialized function template according
   4155 /// to the rules of function template partial ordering (C++ [temp.func.order]).
   4156 ///
   4157 /// \param FT1 the first function template
   4158 ///
   4159 /// \param FT2 the second function template
   4160 ///
   4161 /// \param TPOC the context in which we are performing partial ordering of
   4162 /// function templates.
   4163 ///
   4164 /// \param NumCallArguments The number of arguments in a call, used only
   4165 /// when \c TPOC is \c TPOC_Call.
   4166 ///
   4167 /// \returns the more specialized function template. If neither
   4168 /// template is more specialized, returns NULL.
   4169 FunctionTemplateDecl *
   4170 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
   4171                                  FunctionTemplateDecl *FT2,
   4172                                  SourceLocation Loc,
   4173                                  TemplatePartialOrderingContext TPOC,
   4174                                  unsigned NumCallArguments) {
   4175   SmallVector<RefParamPartialOrderingComparison, 4> RefParamComparisons;
   4176   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
   4177                                           NumCallArguments, 0);
   4178   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
   4179                                           NumCallArguments,
   4180                                           &RefParamComparisons);
   4181 
   4182   if (Better1 != Better2) // We have a clear winner
   4183     return Better1? FT1 : FT2;
   4184 
   4185   if (!Better1 && !Better2) // Neither is better than the other
   4186     return 0;
   4187 
   4188   // C++0x [temp.deduct.partial]p10:
   4189   //   If for each type being considered a given template is at least as
   4190   //   specialized for all types and more specialized for some set of types and
   4191   //   the other template is not more specialized for any types or is not at
   4192   //   least as specialized for any types, then the given template is more
   4193   //   specialized than the other template. Otherwise, neither template is more
   4194   //   specialized than the other.
   4195   Better1 = false;
   4196   Better2 = false;
   4197   for (unsigned I = 0, N = RefParamComparisons.size(); I != N; ++I) {
   4198     // C++0x [temp.deduct.partial]p9:
   4199     //   If, for a given type, deduction succeeds in both directions (i.e., the
   4200     //   types are identical after the transformations above) and both P and A
   4201     //   were reference types (before being replaced with the type referred to
   4202     //   above):
   4203 
   4204     //     -- if the type from the argument template was an lvalue reference
   4205     //        and the type from the parameter template was not, the argument
   4206     //        type is considered to be more specialized than the other;
   4207     //        otherwise,
   4208     if (!RefParamComparisons[I].ArgIsRvalueRef &&
   4209         RefParamComparisons[I].ParamIsRvalueRef) {
   4210       Better2 = true;
   4211       if (Better1)
   4212         return 0;
   4213       continue;
   4214     } else if (!RefParamComparisons[I].ParamIsRvalueRef &&
   4215                RefParamComparisons[I].ArgIsRvalueRef) {
   4216       Better1 = true;
   4217       if (Better2)
   4218         return 0;
   4219       continue;
   4220     }
   4221 
   4222     //     -- if the type from the argument template is more cv-qualified than
   4223     //        the type from the parameter template (as described above), the
   4224     //        argument type is considered to be more specialized than the
   4225     //        other; otherwise,
   4226     switch (RefParamComparisons[I].Qualifiers) {
   4227     case NeitherMoreQualified:
   4228       break;
   4229 
   4230     case ParamMoreQualified:
   4231       Better1 = true;
   4232       if (Better2)
   4233         return 0;
   4234       continue;
   4235 
   4236     case ArgMoreQualified:
   4237       Better2 = true;
   4238       if (Better1)
   4239         return 0;
   4240       continue;
   4241     }
   4242 
   4243     //     -- neither type is more specialized than the other.
   4244   }
   4245 
   4246   assert(!(Better1 && Better2) && "Should have broken out in the loop above");
   4247   if (Better1)
   4248     return FT1;
   4249   else if (Better2)
   4250     return FT2;
   4251 
   4252   // FIXME: This mimics what GCC implements, but doesn't match up with the
   4253   // proposed resolution for core issue 692. This area needs to be sorted out,
   4254   // but for now we attempt to maintain compatibility.
   4255   bool Variadic1 = isVariadicFunctionTemplate(FT1);
   4256   bool Variadic2 = isVariadicFunctionTemplate(FT2);
   4257   if (Variadic1 != Variadic2)
   4258     return Variadic1? FT2 : FT1;
   4259 
   4260   return 0;
   4261 }
   4262 
   4263 /// \brief Determine if the two templates are equivalent.
   4264 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
   4265   if (T1 == T2)
   4266     return true;
   4267 
   4268   if (!T1 || !T2)
   4269     return false;
   4270 
   4271   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
   4272 }
   4273 
   4274 /// \brief Retrieve the most specialized of the given function template
   4275 /// specializations.
   4276 ///
   4277 /// \param SpecBegin the start iterator of the function template
   4278 /// specializations that we will be comparing.
   4279 ///
   4280 /// \param SpecEnd the end iterator of the function template
   4281 /// specializations, paired with \p SpecBegin.
   4282 ///
   4283 /// \param TPOC the partial ordering context to use to compare the function
   4284 /// template specializations.
   4285 ///
   4286 /// \param NumCallArguments The number of arguments in a call, used only
   4287 /// when \c TPOC is \c TPOC_Call.
   4288 ///
   4289 /// \param Loc the location where the ambiguity or no-specializations
   4290 /// diagnostic should occur.
   4291 ///
   4292 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
   4293 /// no matching candidates.
   4294 ///
   4295 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
   4296 /// occurs.
   4297 ///
   4298 /// \param CandidateDiag partial diagnostic used for each function template
   4299 /// specialization that is a candidate in the ambiguous ordering. One parameter
   4300 /// in this diagnostic should be unbound, which will correspond to the string
   4301 /// describing the template arguments for the function template specialization.
   4302 ///
   4303 /// \returns the most specialized function template specialization, if
   4304 /// found. Otherwise, returns SpecEnd.
   4305 UnresolvedSetIterator Sema::getMostSpecialized(
   4306     UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
   4307     TemplateSpecCandidateSet &FailedCandidates,
   4308     TemplatePartialOrderingContext TPOC, unsigned NumCallArguments,
   4309     SourceLocation Loc, const PartialDiagnostic &NoneDiag,
   4310     const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
   4311     bool Complain, QualType TargetType) {
   4312   if (SpecBegin == SpecEnd) {
   4313     if (Complain) {
   4314       Diag(Loc, NoneDiag);
   4315       FailedCandidates.NoteCandidates(*this, Loc);
   4316     }
   4317     return SpecEnd;
   4318   }
   4319 
   4320   if (SpecBegin + 1 == SpecEnd)
   4321     return SpecBegin;
   4322 
   4323   // Find the function template that is better than all of the templates it
   4324   // has been compared to.
   4325   UnresolvedSetIterator Best = SpecBegin;
   4326   FunctionTemplateDecl *BestTemplate
   4327     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
   4328   assert(BestTemplate && "Not a function template specialization?");
   4329   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
   4330     FunctionTemplateDecl *Challenger
   4331       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   4332     assert(Challenger && "Not a function template specialization?");
   4333     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   4334                                                   Loc, TPOC, NumCallArguments),
   4335                        Challenger)) {
   4336       Best = I;
   4337       BestTemplate = Challenger;
   4338     }
   4339   }
   4340 
   4341   // Make sure that the "best" function template is more specialized than all
   4342   // of the others.
   4343   bool Ambiguous = false;
   4344   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   4345     FunctionTemplateDecl *Challenger
   4346       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   4347     if (I != Best &&
   4348         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   4349                                                    Loc, TPOC, NumCallArguments),
   4350                         BestTemplate)) {
   4351       Ambiguous = true;
   4352       break;
   4353     }
   4354   }
   4355 
   4356   if (!Ambiguous) {
   4357     // We found an answer. Return it.
   4358     return Best;
   4359   }
   4360 
   4361   // Diagnose the ambiguity.
   4362   if (Complain) {
   4363     Diag(Loc, AmbigDiag);
   4364 
   4365     // FIXME: Can we order the candidates in some sane way?
   4366     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   4367       PartialDiagnostic PD = CandidateDiag;
   4368       PD << getTemplateArgumentBindingsText(
   4369           cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
   4370                     *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
   4371       if (!TargetType.isNull())
   4372         HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
   4373                                    TargetType);
   4374       Diag((*I)->getLocation(), PD);
   4375     }
   4376   }
   4377 
   4378   return SpecEnd;
   4379 }
   4380 
   4381 /// \brief Returns the more specialized class template partial specialization
   4382 /// according to the rules of partial ordering of class template partial
   4383 /// specializations (C++ [temp.class.order]).
   4384 ///
   4385 /// \param PS1 the first class template partial specialization
   4386 ///
   4387 /// \param PS2 the second class template partial specialization
   4388 ///
   4389 /// \returns the more specialized class template partial specialization. If
   4390 /// neither partial specialization is more specialized, returns NULL.
   4391 ClassTemplatePartialSpecializationDecl *
   4392 Sema::getMoreSpecializedPartialSpecialization(
   4393                                   ClassTemplatePartialSpecializationDecl *PS1,
   4394                                   ClassTemplatePartialSpecializationDecl *PS2,
   4395                                               SourceLocation Loc) {
   4396   // C++ [temp.class.order]p1:
   4397   //   For two class template partial specializations, the first is at least as
   4398   //   specialized as the second if, given the following rewrite to two
   4399   //   function templates, the first function template is at least as
   4400   //   specialized as the second according to the ordering rules for function
   4401   //   templates (14.6.6.2):
   4402   //     - the first function template has the same template parameters as the
   4403   //       first partial specialization and has a single function parameter
   4404   //       whose type is a class template specialization with the template
   4405   //       arguments of the first partial specialization, and
   4406   //     - the second function template has the same template parameters as the
   4407   //       second partial specialization and has a single function parameter
   4408   //       whose type is a class template specialization with the template
   4409   //       arguments of the second partial specialization.
   4410   //
   4411   // Rather than synthesize function templates, we merely perform the
   4412   // equivalent partial ordering by performing deduction directly on
   4413   // the template arguments of the class template partial
   4414   // specializations. This computation is slightly simpler than the
   4415   // general problem of function template partial ordering, because
   4416   // class template partial specializations are more constrained. We
   4417   // know that every template parameter is deducible from the class
   4418   // template partial specialization's template arguments, for
   4419   // example.
   4420   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4421   TemplateDeductionInfo Info(Loc);
   4422 
   4423   QualType PT1 = PS1->getInjectedSpecializationType();
   4424   QualType PT2 = PS2->getInjectedSpecializationType();
   4425 
   4426   // Determine whether PS1 is at least as specialized as PS2
   4427   Deduced.resize(PS2->getTemplateParameters()->size());
   4428   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4429                                             PS2->getTemplateParameters(),
   4430                                             PT2, PT1, Info, Deduced, TDF_None,
   4431                                             /*PartialOrdering=*/true,
   4432                                             /*RefParamComparisons=*/0);
   4433   if (Better1) {
   4434     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
   4435     InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2, DeducedArgs,
   4436                                Info);
   4437     Better1 = !::FinishTemplateArgumentDeduction(
   4438         *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
   4439   }
   4440 
   4441   // Determine whether PS2 is at least as specialized as PS1
   4442   Deduced.clear();
   4443   Deduced.resize(PS1->getTemplateParameters()->size());
   4444   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
   4445       *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
   4446       /*PartialOrdering=*/true,
   4447       /*RefParamComparisons=*/0);
   4448   if (Better2) {
   4449     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
   4450                                                  Deduced.end());
   4451     InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1, DeducedArgs,
   4452                                Info);
   4453     Better2 = !::FinishTemplateArgumentDeduction(
   4454         *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
   4455   }
   4456 
   4457   if (Better1 == Better2)
   4458     return 0;
   4459 
   4460   return Better1 ? PS1 : PS2;
   4461 }
   4462 
   4463 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version.
   4464 VarTemplatePartialSpecializationDecl *
   4465 Sema::getMoreSpecializedPartialSpecialization(
   4466     VarTemplatePartialSpecializationDecl *PS1,
   4467     VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
   4468   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4469   TemplateDeductionInfo Info(Loc);
   4470 
   4471   assert(PS1->getSpecializedTemplate() == PS1->getSpecializedTemplate() &&
   4472          "the partial specializations being compared should specialize"
   4473          " the same template.");
   4474   TemplateName Name(PS1->getSpecializedTemplate());
   4475   TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
   4476   QualType PT1 = Context.getTemplateSpecializationType(
   4477       CanonTemplate, PS1->getTemplateArgs().data(),
   4478       PS1->getTemplateArgs().size());
   4479   QualType PT2 = Context.getTemplateSpecializationType(
   4480       CanonTemplate, PS2->getTemplateArgs().data(),
   4481       PS2->getTemplateArgs().size());
   4482 
   4483   // Determine whether PS1 is at least as specialized as PS2
   4484   Deduced.resize(PS2->getTemplateParameters()->size());
   4485   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
   4486       *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
   4487       /*PartialOrdering=*/true,
   4488       /*RefParamComparisons=*/0);
   4489   if (Better1) {
   4490     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
   4491                                                  Deduced.end());
   4492     InstantiatingTemplate Inst(*this, PS2->getLocation(), PS2,
   4493                                DeducedArgs, Info);
   4494     Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
   4495                                                  PS1->getTemplateArgs(),
   4496                                                  Deduced, Info);
   4497   }
   4498 
   4499   // Determine whether PS2 is at least as specialized as PS1
   4500   Deduced.clear();
   4501   Deduced.resize(PS1->getTemplateParameters()->size());
   4502   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4503                                             PS1->getTemplateParameters(),
   4504                                             PT1, PT2, Info, Deduced, TDF_None,
   4505                                             /*PartialOrdering=*/true,
   4506                                             /*RefParamComparisons=*/0);
   4507   if (Better2) {
   4508     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
   4509     InstantiatingTemplate Inst(*this, PS1->getLocation(), PS1,
   4510                                DeducedArgs, Info);
   4511     Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
   4512                                                  PS2->getTemplateArgs(),
   4513                                                  Deduced, Info);
   4514   }
   4515 
   4516   if (Better1 == Better2)
   4517     return 0;
   4518 
   4519   return Better1? PS1 : PS2;
   4520 }
   4521 
   4522 static void
   4523 MarkUsedTemplateParameters(ASTContext &Ctx,
   4524                            const TemplateArgument &TemplateArg,
   4525                            bool OnlyDeduced,
   4526                            unsigned Depth,
   4527                            llvm::SmallBitVector &Used);
   4528 
   4529 /// \brief Mark the template parameters that are used by the given
   4530 /// expression.
   4531 static void
   4532 MarkUsedTemplateParameters(ASTContext &Ctx,
   4533                            const Expr *E,
   4534                            bool OnlyDeduced,
   4535                            unsigned Depth,
   4536                            llvm::SmallBitVector &Used) {
   4537   // We can deduce from a pack expansion.
   4538   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
   4539     E = Expansion->getPattern();
   4540 
   4541   // Skip through any implicit casts we added while type-checking, and any
   4542   // substitutions performed by template alias expansion.
   4543   while (1) {
   4544     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   4545       E = ICE->getSubExpr();
   4546     else if (const SubstNonTypeTemplateParmExpr *Subst =
   4547                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
   4548       E = Subst->getReplacement();
   4549     else
   4550       break;
   4551   }
   4552 
   4553   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
   4554   // find other occurrences of template parameters.
   4555   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   4556   if (!DRE)
   4557     return;
   4558 
   4559   const NonTypeTemplateParmDecl *NTTP
   4560     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
   4561   if (!NTTP)
   4562     return;
   4563 
   4564   if (NTTP->getDepth() == Depth)
   4565     Used[NTTP->getIndex()] = true;
   4566 }
   4567 
   4568 /// \brief Mark the template parameters that are used by the given
   4569 /// nested name specifier.
   4570 static void
   4571 MarkUsedTemplateParameters(ASTContext &Ctx,
   4572                            NestedNameSpecifier *NNS,
   4573                            bool OnlyDeduced,
   4574                            unsigned Depth,
   4575                            llvm::SmallBitVector &Used) {
   4576   if (!NNS)
   4577     return;
   4578 
   4579   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
   4580                              Used);
   4581   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
   4582                              OnlyDeduced, Depth, Used);
   4583 }
   4584 
   4585 /// \brief Mark the template parameters that are used by the given
   4586 /// template name.
   4587 static void
   4588 MarkUsedTemplateParameters(ASTContext &Ctx,
   4589                            TemplateName Name,
   4590                            bool OnlyDeduced,
   4591                            unsigned Depth,
   4592                            llvm::SmallBitVector &Used) {
   4593   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   4594     if (TemplateTemplateParmDecl *TTP
   4595           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
   4596       if (TTP->getDepth() == Depth)
   4597         Used[TTP->getIndex()] = true;
   4598     }
   4599     return;
   4600   }
   4601 
   4602   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
   4603     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
   4604                                Depth, Used);
   4605   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
   4606     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
   4607                                Depth, Used);
   4608 }
   4609 
   4610 /// \brief Mark the template parameters that are used by the given
   4611 /// type.
   4612 static void
   4613 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   4614                            bool OnlyDeduced,
   4615                            unsigned Depth,
   4616                            llvm::SmallBitVector &Used) {
   4617   if (T.isNull())
   4618     return;
   4619 
   4620   // Non-dependent types have nothing deducible
   4621   if (!T->isDependentType())
   4622     return;
   4623 
   4624   T = Ctx.getCanonicalType(T);
   4625   switch (T->getTypeClass()) {
   4626   case Type::Pointer:
   4627     MarkUsedTemplateParameters(Ctx,
   4628                                cast<PointerType>(T)->getPointeeType(),
   4629                                OnlyDeduced,
   4630                                Depth,
   4631                                Used);
   4632     break;
   4633 
   4634   case Type::BlockPointer:
   4635     MarkUsedTemplateParameters(Ctx,
   4636                                cast<BlockPointerType>(T)->getPointeeType(),
   4637                                OnlyDeduced,
   4638                                Depth,
   4639                                Used);
   4640     break;
   4641 
   4642   case Type::LValueReference:
   4643   case Type::RValueReference:
   4644     MarkUsedTemplateParameters(Ctx,
   4645                                cast<ReferenceType>(T)->getPointeeType(),
   4646                                OnlyDeduced,
   4647                                Depth,
   4648                                Used);
   4649     break;
   4650 
   4651   case Type::MemberPointer: {
   4652     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
   4653     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
   4654                                Depth, Used);
   4655     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
   4656                                OnlyDeduced, Depth, Used);
   4657     break;
   4658   }
   4659 
   4660   case Type::DependentSizedArray:
   4661     MarkUsedTemplateParameters(Ctx,
   4662                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
   4663                                OnlyDeduced, Depth, Used);
   4664     // Fall through to check the element type
   4665 
   4666   case Type::ConstantArray:
   4667   case Type::IncompleteArray:
   4668     MarkUsedTemplateParameters(Ctx,
   4669                                cast<ArrayType>(T)->getElementType(),
   4670                                OnlyDeduced, Depth, Used);
   4671     break;
   4672 
   4673   case Type::Vector:
   4674   case Type::ExtVector:
   4675     MarkUsedTemplateParameters(Ctx,
   4676                                cast<VectorType>(T)->getElementType(),
   4677                                OnlyDeduced, Depth, Used);
   4678     break;
   4679 
   4680   case Type::DependentSizedExtVector: {
   4681     const DependentSizedExtVectorType *VecType
   4682       = cast<DependentSizedExtVectorType>(T);
   4683     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
   4684                                Depth, Used);
   4685     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
   4686                                Depth, Used);
   4687     break;
   4688   }
   4689 
   4690   case Type::FunctionProto: {
   4691     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   4692     MarkUsedTemplateParameters(Ctx, Proto->getResultType(), OnlyDeduced,
   4693                                Depth, Used);
   4694     for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
   4695       MarkUsedTemplateParameters(Ctx, Proto->getArgType(I), OnlyDeduced,
   4696                                  Depth, Used);
   4697     break;
   4698   }
   4699 
   4700   case Type::TemplateTypeParm: {
   4701     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
   4702     if (TTP->getDepth() == Depth)
   4703       Used[TTP->getIndex()] = true;
   4704     break;
   4705   }
   4706 
   4707   case Type::SubstTemplateTypeParmPack: {
   4708     const SubstTemplateTypeParmPackType *Subst
   4709       = cast<SubstTemplateTypeParmPackType>(T);
   4710     MarkUsedTemplateParameters(Ctx,
   4711                                QualType(Subst->getReplacedParameter(), 0),
   4712                                OnlyDeduced, Depth, Used);
   4713     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
   4714                                OnlyDeduced, Depth, Used);
   4715     break;
   4716   }
   4717 
   4718   case Type::InjectedClassName:
   4719     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
   4720     // fall through
   4721 
   4722   case Type::TemplateSpecialization: {
   4723     const TemplateSpecializationType *Spec
   4724       = cast<TemplateSpecializationType>(T);
   4725     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
   4726                                Depth, Used);
   4727 
   4728     // C++0x [temp.deduct.type]p9:
   4729     //   If the template argument list of P contains a pack expansion that is not
   4730     //   the last template argument, the entire template argument list is a
   4731     //   non-deduced context.
   4732     if (OnlyDeduced &&
   4733         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4734       break;
   4735 
   4736     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4737       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4738                                  Used);
   4739     break;
   4740   }
   4741 
   4742   case Type::Complex:
   4743     if (!OnlyDeduced)
   4744       MarkUsedTemplateParameters(Ctx,
   4745                                  cast<ComplexType>(T)->getElementType(),
   4746                                  OnlyDeduced, Depth, Used);
   4747     break;
   4748 
   4749   case Type::Atomic:
   4750     if (!OnlyDeduced)
   4751       MarkUsedTemplateParameters(Ctx,
   4752                                  cast<AtomicType>(T)->getValueType(),
   4753                                  OnlyDeduced, Depth, Used);
   4754     break;
   4755 
   4756   case Type::DependentName:
   4757     if (!OnlyDeduced)
   4758       MarkUsedTemplateParameters(Ctx,
   4759                                  cast<DependentNameType>(T)->getQualifier(),
   4760                                  OnlyDeduced, Depth, Used);
   4761     break;
   4762 
   4763   case Type::DependentTemplateSpecialization: {
   4764     const DependentTemplateSpecializationType *Spec
   4765       = cast<DependentTemplateSpecializationType>(T);
   4766     if (!OnlyDeduced)
   4767       MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
   4768                                  OnlyDeduced, Depth, Used);
   4769 
   4770     // C++0x [temp.deduct.type]p9:
   4771     //   If the template argument list of P contains a pack expansion that is not
   4772     //   the last template argument, the entire template argument list is a
   4773     //   non-deduced context.
   4774     if (OnlyDeduced &&
   4775         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4776       break;
   4777 
   4778     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4779       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4780                                  Used);
   4781     break;
   4782   }
   4783 
   4784   case Type::TypeOf:
   4785     if (!OnlyDeduced)
   4786       MarkUsedTemplateParameters(Ctx,
   4787                                  cast<TypeOfType>(T)->getUnderlyingType(),
   4788                                  OnlyDeduced, Depth, Used);
   4789     break;
   4790 
   4791   case Type::TypeOfExpr:
   4792     if (!OnlyDeduced)
   4793       MarkUsedTemplateParameters(Ctx,
   4794                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
   4795                                  OnlyDeduced, Depth, Used);
   4796     break;
   4797 
   4798   case Type::Decltype:
   4799     if (!OnlyDeduced)
   4800       MarkUsedTemplateParameters(Ctx,
   4801                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
   4802                                  OnlyDeduced, Depth, Used);
   4803     break;
   4804 
   4805   case Type::UnaryTransform:
   4806     if (!OnlyDeduced)
   4807       MarkUsedTemplateParameters(Ctx,
   4808                                cast<UnaryTransformType>(T)->getUnderlyingType(),
   4809                                  OnlyDeduced, Depth, Used);
   4810     break;
   4811 
   4812   case Type::PackExpansion:
   4813     MarkUsedTemplateParameters(Ctx,
   4814                                cast<PackExpansionType>(T)->getPattern(),
   4815                                OnlyDeduced, Depth, Used);
   4816     break;
   4817 
   4818   case Type::Auto:
   4819     MarkUsedTemplateParameters(Ctx,
   4820                                cast<AutoType>(T)->getDeducedType(),
   4821                                OnlyDeduced, Depth, Used);
   4822 
   4823   // None of these types have any template parameters in them.
   4824   case Type::Builtin:
   4825   case Type::VariableArray:
   4826   case Type::FunctionNoProto:
   4827   case Type::Record:
   4828   case Type::Enum:
   4829   case Type::ObjCInterface:
   4830   case Type::ObjCObject:
   4831   case Type::ObjCObjectPointer:
   4832   case Type::UnresolvedUsing:
   4833 #define TYPE(Class, Base)
   4834 #define ABSTRACT_TYPE(Class, Base)
   4835 #define DEPENDENT_TYPE(Class, Base)
   4836 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   4837 #include "clang/AST/TypeNodes.def"
   4838     break;
   4839   }
   4840 }
   4841 
   4842 /// \brief Mark the template parameters that are used by this
   4843 /// template argument.
   4844 static void
   4845 MarkUsedTemplateParameters(ASTContext &Ctx,
   4846                            const TemplateArgument &TemplateArg,
   4847                            bool OnlyDeduced,
   4848                            unsigned Depth,
   4849                            llvm::SmallBitVector &Used) {
   4850   switch (TemplateArg.getKind()) {
   4851   case TemplateArgument::Null:
   4852   case TemplateArgument::Integral:
   4853   case TemplateArgument::Declaration:
   4854     break;
   4855 
   4856   case TemplateArgument::NullPtr:
   4857     MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
   4858                                Depth, Used);
   4859     break;
   4860 
   4861   case TemplateArgument::Type:
   4862     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
   4863                                Depth, Used);
   4864     break;
   4865 
   4866   case TemplateArgument::Template:
   4867   case TemplateArgument::TemplateExpansion:
   4868     MarkUsedTemplateParameters(Ctx,
   4869                                TemplateArg.getAsTemplateOrTemplatePattern(),
   4870                                OnlyDeduced, Depth, Used);
   4871     break;
   4872 
   4873   case TemplateArgument::Expression:
   4874     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
   4875                                Depth, Used);
   4876     break;
   4877 
   4878   case TemplateArgument::Pack:
   4879     for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
   4880                                       PEnd = TemplateArg.pack_end();
   4881          P != PEnd; ++P)
   4882       MarkUsedTemplateParameters(Ctx, *P, OnlyDeduced, Depth, Used);
   4883     break;
   4884   }
   4885 }
   4886 
   4887 /// \brief Mark which template parameters can be deduced from a given
   4888 /// template argument list.
   4889 ///
   4890 /// \param TemplateArgs the template argument list from which template
   4891 /// parameters will be deduced.
   4892 ///
   4893 /// \param Used a bit vector whose elements will be set to \c true
   4894 /// to indicate when the corresponding template parameter will be
   4895 /// deduced.
   4896 void
   4897 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
   4898                                  bool OnlyDeduced, unsigned Depth,
   4899                                  llvm::SmallBitVector &Used) {
   4900   // C++0x [temp.deduct.type]p9:
   4901   //   If the template argument list of P contains a pack expansion that is not
   4902   //   the last template argument, the entire template argument list is a
   4903   //   non-deduced context.
   4904   if (OnlyDeduced &&
   4905       hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
   4906     return;
   4907 
   4908   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   4909     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
   4910                                  Depth, Used);
   4911 }
   4912 
   4913 /// \brief Marks all of the template parameters that will be deduced by a
   4914 /// call to the given function template.
   4915 void
   4916 Sema::MarkDeducedTemplateParameters(ASTContext &Ctx,
   4917                                     const FunctionTemplateDecl *FunctionTemplate,
   4918                                     llvm::SmallBitVector &Deduced) {
   4919   TemplateParameterList *TemplateParams
   4920     = FunctionTemplate->getTemplateParameters();
   4921   Deduced.clear();
   4922   Deduced.resize(TemplateParams->size());
   4923 
   4924   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   4925   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   4926     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
   4927                                  true, TemplateParams->getDepth(), Deduced);
   4928 }
   4929 
   4930 bool hasDeducibleTemplateParameters(Sema &S,
   4931                                     FunctionTemplateDecl *FunctionTemplate,
   4932                                     QualType T) {
   4933   if (!T->isDependentType())
   4934     return false;
   4935 
   4936   TemplateParameterList *TemplateParams
   4937     = FunctionTemplate->getTemplateParameters();
   4938   llvm::SmallBitVector Deduced(TemplateParams->size());
   4939   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
   4940                                Deduced);
   4941 
   4942   return Deduced.any();
   4943 }
   4944