Home | History | Annotate | Download | only in dex
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "compiler_internals.h"
     18 #include "local_value_numbering.h"
     19 #include "dataflow_iterator-inl.h"
     20 
     21 namespace art {
     22 
     23 /*
     24  * Main table containing data flow attributes for each bytecode. The
     25  * first kNumPackedOpcodes entries are for Dalvik bytecode
     26  * instructions, where extended opcode at the MIR level are appended
     27  * afterwards.
     28  *
     29  * TODO - many optimization flags are incomplete - they will only limit the
     30  * scope of optimizations but will not cause mis-optimizations.
     31  */
     32 const int MIRGraph::oat_data_flow_attributes_[kMirOpLast] = {
     33   // 00 NOP
     34   DF_NOP,
     35 
     36   // 01 MOVE vA, vB
     37   DF_DA | DF_UB | DF_IS_MOVE,
     38 
     39   // 02 MOVE_FROM16 vAA, vBBBB
     40   DF_DA | DF_UB | DF_IS_MOVE,
     41 
     42   // 03 MOVE_16 vAAAA, vBBBB
     43   DF_DA | DF_UB | DF_IS_MOVE,
     44 
     45   // 04 MOVE_WIDE vA, vB
     46   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
     47 
     48   // 05 MOVE_WIDE_FROM16 vAA, vBBBB
     49   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
     50 
     51   // 06 MOVE_WIDE_16 vAAAA, vBBBB
     52   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
     53 
     54   // 07 MOVE_OBJECT vA, vB
     55   DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
     56 
     57   // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
     58   DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
     59 
     60   // 09 MOVE_OBJECT_16 vAAAA, vBBBB
     61   DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
     62 
     63   // 0A MOVE_RESULT vAA
     64   DF_DA,
     65 
     66   // 0B MOVE_RESULT_WIDE vAA
     67   DF_DA | DF_A_WIDE,
     68 
     69   // 0C MOVE_RESULT_OBJECT vAA
     70   DF_DA | DF_REF_A,
     71 
     72   // 0D MOVE_EXCEPTION vAA
     73   DF_DA | DF_REF_A | DF_NON_NULL_DST,
     74 
     75   // 0E RETURN_VOID
     76   DF_NOP,
     77 
     78   // 0F RETURN vAA
     79   DF_UA,
     80 
     81   // 10 RETURN_WIDE vAA
     82   DF_UA | DF_A_WIDE,
     83 
     84   // 11 RETURN_OBJECT vAA
     85   DF_UA | DF_REF_A,
     86 
     87   // 12 CONST_4 vA, #+B
     88   DF_DA | DF_SETS_CONST,
     89 
     90   // 13 CONST_16 vAA, #+BBBB
     91   DF_DA | DF_SETS_CONST,
     92 
     93   // 14 CONST vAA, #+BBBBBBBB
     94   DF_DA | DF_SETS_CONST,
     95 
     96   // 15 CONST_HIGH16 VAA, #+BBBB0000
     97   DF_DA | DF_SETS_CONST,
     98 
     99   // 16 CONST_WIDE_16 vAA, #+BBBB
    100   DF_DA | DF_A_WIDE | DF_SETS_CONST,
    101 
    102   // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
    103   DF_DA | DF_A_WIDE | DF_SETS_CONST,
    104 
    105   // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
    106   DF_DA | DF_A_WIDE | DF_SETS_CONST,
    107 
    108   // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
    109   DF_DA | DF_A_WIDE | DF_SETS_CONST,
    110 
    111   // 1A CONST_STRING vAA, string@BBBB
    112   DF_DA | DF_REF_A | DF_NON_NULL_DST,
    113 
    114   // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
    115   DF_DA | DF_REF_A | DF_NON_NULL_DST,
    116 
    117   // 1C CONST_CLASS vAA, type@BBBB
    118   DF_DA | DF_REF_A | DF_NON_NULL_DST,
    119 
    120   // 1D MONITOR_ENTER vAA
    121   DF_UA | DF_NULL_CHK_0 | DF_REF_A,
    122 
    123   // 1E MONITOR_EXIT vAA
    124   DF_UA | DF_NULL_CHK_0 | DF_REF_A,
    125 
    126   // 1F CHK_CAST vAA, type@BBBB
    127   DF_UA | DF_REF_A | DF_UMS,
    128 
    129   // 20 INSTANCE_OF vA, vB, type@CCCC
    130   DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS,
    131 
    132   // 21 ARRAY_LENGTH vA, vB
    133   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_CORE_A | DF_REF_B,
    134 
    135   // 22 NEW_INSTANCE vAA, type@BBBB
    136   DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS,
    137 
    138   // 23 NEW_ARRAY vA, vB, type@CCCC
    139   DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS,
    140 
    141   // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
    142   DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS,
    143 
    144   // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
    145   DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS,
    146 
    147   // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
    148   DF_UA | DF_REF_A | DF_UMS,
    149 
    150   // 27 THROW vAA
    151   DF_UA | DF_REF_A | DF_UMS,
    152 
    153   // 28 GOTO
    154   DF_NOP,
    155 
    156   // 29 GOTO_16
    157   DF_NOP,
    158 
    159   // 2A GOTO_32
    160   DF_NOP,
    161 
    162   // 2B PACKED_SWITCH vAA, +BBBBBBBB
    163   DF_UA,
    164 
    165   // 2C SPARSE_SWITCH vAA, +BBBBBBBB
    166   DF_UA,
    167 
    168   // 2D CMPL_FLOAT vAA, vBB, vCC
    169   DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
    170 
    171   // 2E CMPG_FLOAT vAA, vBB, vCC
    172   DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
    173 
    174   // 2F CMPL_DOUBLE vAA, vBB, vCC
    175   DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
    176 
    177   // 30 CMPG_DOUBLE vAA, vBB, vCC
    178   DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
    179 
    180   // 31 CMP_LONG vAA, vBB, vCC
    181   DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    182 
    183   // 32 IF_EQ vA, vB, +CCCC
    184   DF_UA | DF_UB,
    185 
    186   // 33 IF_NE vA, vB, +CCCC
    187   DF_UA | DF_UB,
    188 
    189   // 34 IF_LT vA, vB, +CCCC
    190   DF_UA | DF_UB,
    191 
    192   // 35 IF_GE vA, vB, +CCCC
    193   DF_UA | DF_UB,
    194 
    195   // 36 IF_GT vA, vB, +CCCC
    196   DF_UA | DF_UB,
    197 
    198   // 37 IF_LE vA, vB, +CCCC
    199   DF_UA | DF_UB,
    200 
    201   // 38 IF_EQZ vAA, +BBBB
    202   DF_UA,
    203 
    204   // 39 IF_NEZ vAA, +BBBB
    205   DF_UA,
    206 
    207   // 3A IF_LTZ vAA, +BBBB
    208   DF_UA,
    209 
    210   // 3B IF_GEZ vAA, +BBBB
    211   DF_UA,
    212 
    213   // 3C IF_GTZ vAA, +BBBB
    214   DF_UA,
    215 
    216   // 3D IF_LEZ vAA, +BBBB
    217   DF_UA,
    218 
    219   // 3E UNUSED_3E
    220   DF_NOP,
    221 
    222   // 3F UNUSED_3F
    223   DF_NOP,
    224 
    225   // 40 UNUSED_40
    226   DF_NOP,
    227 
    228   // 41 UNUSED_41
    229   DF_NOP,
    230 
    231   // 42 UNUSED_42
    232   DF_NOP,
    233 
    234   // 43 UNUSED_43
    235   DF_NOP,
    236 
    237   // 44 AGET vAA, vBB, vCC
    238   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
    239 
    240   // 45 AGET_WIDE vAA, vBB, vCC
    241   DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
    242 
    243   // 46 AGET_OBJECT vAA, vBB, vCC
    244   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_A | DF_REF_B | DF_CORE_C,
    245 
    246   // 47 AGET_BOOLEAN vAA, vBB, vCC
    247   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
    248 
    249   // 48 AGET_BYTE vAA, vBB, vCC
    250   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
    251 
    252   // 49 AGET_CHAR vAA, vBB, vCC
    253   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
    254 
    255   // 4A AGET_SHORT vAA, vBB, vCC
    256   DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C,
    257 
    258   // 4B APUT vAA, vBB, vCC
    259   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
    260 
    261   // 4C APUT_WIDE vAA, vBB, vCC
    262   DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_2 | DF_RANGE_CHK_3 | DF_REF_B | DF_CORE_C,
    263 
    264   // 4D APUT_OBJECT vAA, vBB, vCC
    265   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_A | DF_REF_B | DF_CORE_C,
    266 
    267   // 4E APUT_BOOLEAN vAA, vBB, vCC
    268   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
    269 
    270   // 4F APUT_BYTE vAA, vBB, vCC
    271   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
    272 
    273   // 50 APUT_CHAR vAA, vBB, vCC
    274   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
    275 
    276   // 51 APUT_SHORT vAA, vBB, vCC
    277   DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C,
    278 
    279   // 52 IGET vA, vB, field@CCCC
    280   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
    281 
    282   // 53 IGET_WIDE vA, vB, field@CCCC
    283   DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
    284 
    285   // 54 IGET_OBJECT vA, vB, field@CCCC
    286   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B,
    287 
    288   // 55 IGET_BOOLEAN vA, vB, field@CCCC
    289   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
    290 
    291   // 56 IGET_BYTE vA, vB, field@CCCC
    292   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
    293 
    294   // 57 IGET_CHAR vA, vB, field@CCCC
    295   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
    296 
    297   // 58 IGET_SHORT vA, vB, field@CCCC
    298   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
    299 
    300   // 59 IPUT vA, vB, field@CCCC
    301   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
    302 
    303   // 5A IPUT_WIDE vA, vB, field@CCCC
    304   DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B,
    305 
    306   // 5B IPUT_OBJECT vA, vB, field@CCCC
    307   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B,
    308 
    309   // 5C IPUT_BOOLEAN vA, vB, field@CCCC
    310   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
    311 
    312   // 5D IPUT_BYTE vA, vB, field@CCCC
    313   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
    314 
    315   // 5E IPUT_CHAR vA, vB, field@CCCC
    316   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
    317 
    318   // 5F IPUT_SHORT vA, vB, field@CCCC
    319   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
    320 
    321   // 60 SGET vAA, field@BBBB
    322   DF_DA | DF_UMS,
    323 
    324   // 61 SGET_WIDE vAA, field@BBBB
    325   DF_DA | DF_A_WIDE | DF_UMS,
    326 
    327   // 62 SGET_OBJECT vAA, field@BBBB
    328   DF_DA | DF_REF_A | DF_UMS,
    329 
    330   // 63 SGET_BOOLEAN vAA, field@BBBB
    331   DF_DA | DF_UMS,
    332 
    333   // 64 SGET_BYTE vAA, field@BBBB
    334   DF_DA | DF_UMS,
    335 
    336   // 65 SGET_CHAR vAA, field@BBBB
    337   DF_DA | DF_UMS,
    338 
    339   // 66 SGET_SHORT vAA, field@BBBB
    340   DF_DA | DF_UMS,
    341 
    342   // 67 SPUT vAA, field@BBBB
    343   DF_UA | DF_UMS,
    344 
    345   // 68 SPUT_WIDE vAA, field@BBBB
    346   DF_UA | DF_A_WIDE | DF_UMS,
    347 
    348   // 69 SPUT_OBJECT vAA, field@BBBB
    349   DF_UA | DF_REF_A | DF_UMS,
    350 
    351   // 6A SPUT_BOOLEAN vAA, field@BBBB
    352   DF_UA | DF_UMS,
    353 
    354   // 6B SPUT_BYTE vAA, field@BBBB
    355   DF_UA | DF_UMS,
    356 
    357   // 6C SPUT_CHAR vAA, field@BBBB
    358   DF_UA | DF_UMS,
    359 
    360   // 6D SPUT_SHORT vAA, field@BBBB
    361   DF_UA | DF_UMS,
    362 
    363   // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
    364   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
    365 
    366   // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
    367   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
    368 
    369   // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
    370   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
    371 
    372   // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
    373   DF_FORMAT_35C | DF_UMS,
    374 
    375   // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
    376   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
    377 
    378   // 73 UNUSED_73
    379   DF_NOP,
    380 
    381   // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
    382   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
    383 
    384   // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
    385   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
    386 
    387   // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
    388   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
    389 
    390   // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
    391   DF_FORMAT_3RC | DF_UMS,
    392 
    393   // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
    394   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
    395 
    396   // 79 UNUSED_79
    397   DF_NOP,
    398 
    399   // 7A UNUSED_7A
    400   DF_NOP,
    401 
    402   // 7B NEG_INT vA, vB
    403   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    404 
    405   // 7C NOT_INT vA, vB
    406   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    407 
    408   // 7D NEG_LONG vA, vB
    409   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    410 
    411   // 7E NOT_LONG vA, vB
    412   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    413 
    414   // 7F NEG_FLOAT vA, vB
    415   DF_DA | DF_UB | DF_FP_A | DF_FP_B,
    416 
    417   // 80 NEG_DOUBLE vA, vB
    418   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
    419 
    420   // 81 INT_TO_LONG vA, vB
    421   DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B,
    422 
    423   // 82 INT_TO_FLOAT vA, vB
    424   DF_DA | DF_UB | DF_FP_A | DF_CORE_B,
    425 
    426   // 83 INT_TO_DOUBLE vA, vB
    427   DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B,
    428 
    429   // 84 LONG_TO_INT vA, vB
    430   DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    431 
    432   // 85 LONG_TO_FLOAT vA, vB
    433   DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
    434 
    435   // 86 LONG_TO_DOUBLE vA, vB
    436   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
    437 
    438   // 87 FLOAT_TO_INT vA, vB
    439   DF_DA | DF_UB | DF_FP_B | DF_CORE_A,
    440 
    441   // 88 FLOAT_TO_LONG vA, vB
    442   DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A,
    443 
    444   // 89 FLOAT_TO_DOUBLE vA, vB
    445   DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B,
    446 
    447   // 8A DOUBLE_TO_INT vA, vB
    448   DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
    449 
    450   // 8B DOUBLE_TO_LONG vA, vB
    451   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
    452 
    453   // 8C DOUBLE_TO_FLOAT vA, vB
    454   DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
    455 
    456   // 8D INT_TO_BYTE vA, vB
    457   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    458 
    459   // 8E INT_TO_CHAR vA, vB
    460   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    461 
    462   // 8F INT_TO_SHORT vA, vB
    463   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    464 
    465   // 90 ADD_INT vAA, vBB, vCC
    466   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    467 
    468   // 91 SUB_INT vAA, vBB, vCC
    469   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    470 
    471   // 92 MUL_INT vAA, vBB, vCC
    472   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    473 
    474   // 93 DIV_INT vAA, vBB, vCC
    475   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    476 
    477   // 94 REM_INT vAA, vBB, vCC
    478   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    479 
    480   // 95 AND_INT vAA, vBB, vCC
    481   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    482 
    483   // 96 OR_INT vAA, vBB, vCC
    484   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    485 
    486   // 97 XOR_INT vAA, vBB, vCC
    487   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    488 
    489   // 98 SHL_INT vAA, vBB, vCC
    490   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    491 
    492   // 99 SHR_INT vAA, vBB, vCC
    493   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    494 
    495   // 9A USHR_INT vAA, vBB, vCC
    496   DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    497 
    498   // 9B ADD_LONG vAA, vBB, vCC
    499   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    500 
    501   // 9C SUB_LONG vAA, vBB, vCC
    502   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    503 
    504   // 9D MUL_LONG vAA, vBB, vCC
    505   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    506 
    507   // 9E DIV_LONG vAA, vBB, vCC
    508   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    509 
    510   // 9F REM_LONG vAA, vBB, vCC
    511   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    512 
    513   // A0 AND_LONG vAA, vBB, vCC
    514   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    515 
    516   // A1 OR_LONG vAA, vBB, vCC
    517   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    518 
    519   // A2 XOR_LONG vAA, vBB, vCC
    520   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    521 
    522   // A3 SHL_LONG vAA, vBB, vCC
    523   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    524 
    525   // A4 SHR_LONG vAA, vBB, vCC
    526   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    527 
    528   // A5 USHR_LONG vAA, vBB, vCC
    529   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
    530 
    531   // A6 ADD_FLOAT vAA, vBB, vCC
    532   DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
    533 
    534   // A7 SUB_FLOAT vAA, vBB, vCC
    535   DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
    536 
    537   // A8 MUL_FLOAT vAA, vBB, vCC
    538   DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
    539 
    540   // A9 DIV_FLOAT vAA, vBB, vCC
    541   DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
    542 
    543   // AA REM_FLOAT vAA, vBB, vCC
    544   DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
    545 
    546   // AB ADD_DOUBLE vAA, vBB, vCC
    547   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
    548 
    549   // AC SUB_DOUBLE vAA, vBB, vCC
    550   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
    551 
    552   // AD MUL_DOUBLE vAA, vBB, vCC
    553   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
    554 
    555   // AE DIV_DOUBLE vAA, vBB, vCC
    556   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
    557 
    558   // AF REM_DOUBLE vAA, vBB, vCC
    559   DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
    560 
    561   // B0 ADD_INT_2ADDR vA, vB
    562   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    563 
    564   // B1 SUB_INT_2ADDR vA, vB
    565   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    566 
    567   // B2 MUL_INT_2ADDR vA, vB
    568   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    569 
    570   // B3 DIV_INT_2ADDR vA, vB
    571   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    572 
    573   // B4 REM_INT_2ADDR vA, vB
    574   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    575 
    576   // B5 AND_INT_2ADDR vA, vB
    577   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    578 
    579   // B6 OR_INT_2ADDR vA, vB
    580   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    581 
    582   // B7 XOR_INT_2ADDR vA, vB
    583   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    584 
    585   // B8 SHL_INT_2ADDR vA, vB
    586   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    587 
    588   // B9 SHR_INT_2ADDR vA, vB
    589   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    590 
    591   // BA USHR_INT_2ADDR vA, vB
    592   DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    593 
    594   // BB ADD_LONG_2ADDR vA, vB
    595   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    596 
    597   // BC SUB_LONG_2ADDR vA, vB
    598   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    599 
    600   // BD MUL_LONG_2ADDR vA, vB
    601   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    602 
    603   // BE DIV_LONG_2ADDR vA, vB
    604   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    605 
    606   // BF REM_LONG_2ADDR vA, vB
    607   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    608 
    609   // C0 AND_LONG_2ADDR vA, vB
    610   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    611 
    612   // C1 OR_LONG_2ADDR vA, vB
    613   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    614 
    615   // C2 XOR_LONG_2ADDR vA, vB
    616   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    617 
    618   // C3 SHL_LONG_2ADDR vA, vB
    619   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    620 
    621   // C4 SHR_LONG_2ADDR vA, vB
    622   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    623 
    624   // C5 USHR_LONG_2ADDR vA, vB
    625   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
    626 
    627   // C6 ADD_FLOAT_2ADDR vA, vB
    628   DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
    629 
    630   // C7 SUB_FLOAT_2ADDR vA, vB
    631   DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
    632 
    633   // C8 MUL_FLOAT_2ADDR vA, vB
    634   DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
    635 
    636   // C9 DIV_FLOAT_2ADDR vA, vB
    637   DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
    638 
    639   // CA REM_FLOAT_2ADDR vA, vB
    640   DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
    641 
    642   // CB ADD_DOUBLE_2ADDR vA, vB
    643   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
    644 
    645   // CC SUB_DOUBLE_2ADDR vA, vB
    646   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
    647 
    648   // CD MUL_DOUBLE_2ADDR vA, vB
    649   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
    650 
    651   // CE DIV_DOUBLE_2ADDR vA, vB
    652   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
    653 
    654   // CF REM_DOUBLE_2ADDR vA, vB
    655   DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
    656 
    657   // D0 ADD_INT_LIT16 vA, vB, #+CCCC
    658   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    659 
    660   // D1 RSUB_INT vA, vB, #+CCCC
    661   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    662 
    663   // D2 MUL_INT_LIT16 vA, vB, #+CCCC
    664   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    665 
    666   // D3 DIV_INT_LIT16 vA, vB, #+CCCC
    667   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    668 
    669   // D4 REM_INT_LIT16 vA, vB, #+CCCC
    670   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    671 
    672   // D5 AND_INT_LIT16 vA, vB, #+CCCC
    673   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    674 
    675   // D6 OR_INT_LIT16 vA, vB, #+CCCC
    676   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    677 
    678   // D7 XOR_INT_LIT16 vA, vB, #+CCCC
    679   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    680 
    681   // D8 ADD_INT_LIT8 vAA, vBB, #+CC
    682   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    683 
    684   // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
    685   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    686 
    687   // DA MUL_INT_LIT8 vAA, vBB, #+CC
    688   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    689 
    690   // DB DIV_INT_LIT8 vAA, vBB, #+CC
    691   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    692 
    693   // DC REM_INT_LIT8 vAA, vBB, #+CC
    694   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    695 
    696   // DD AND_INT_LIT8 vAA, vBB, #+CC
    697   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    698 
    699   // DE OR_INT_LIT8 vAA, vBB, #+CC
    700   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    701 
    702   // DF XOR_INT_LIT8 vAA, vBB, #+CC
    703   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    704 
    705   // E0 SHL_INT_LIT8 vAA, vBB, #+CC
    706   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    707 
    708   // E1 SHR_INT_LIT8 vAA, vBB, #+CC
    709   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    710 
    711   // E2 USHR_INT_LIT8 vAA, vBB, #+CC
    712   DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
    713 
    714   // E3 IGET_VOLATILE
    715   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
    716 
    717   // E4 IPUT_VOLATILE
    718   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B,
    719 
    720   // E5 SGET_VOLATILE
    721   DF_DA | DF_UMS,
    722 
    723   // E6 SPUT_VOLATILE
    724   DF_UA | DF_UMS,
    725 
    726   // E7 IGET_OBJECT_VOLATILE
    727   DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B,
    728 
    729   // E8 IGET_WIDE_VOLATILE
    730   DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B,
    731 
    732   // E9 IPUT_WIDE_VOLATILE
    733   DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B,
    734 
    735   // EA SGET_WIDE_VOLATILE
    736   DF_DA | DF_A_WIDE | DF_UMS,
    737 
    738   // EB SPUT_WIDE_VOLATILE
    739   DF_UA | DF_A_WIDE | DF_UMS,
    740 
    741   // EC BREAKPOINT
    742   DF_NOP,
    743 
    744   // ED THROW_VERIFICATION_ERROR
    745   DF_NOP | DF_UMS,
    746 
    747   // EE EXECUTE_INLINE
    748   DF_FORMAT_35C,
    749 
    750   // EF EXECUTE_INLINE_RANGE
    751   DF_FORMAT_3RC,
    752 
    753   // F0 INVOKE_OBJECT_INIT_RANGE
    754   DF_NOP | DF_NULL_CHK_0,
    755 
    756   // F1 RETURN_VOID_BARRIER
    757   DF_NOP,
    758 
    759   // F2 IGET_QUICK
    760   DF_DA | DF_UB | DF_NULL_CHK_0,
    761 
    762   // F3 IGET_WIDE_QUICK
    763   DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0,
    764 
    765   // F4 IGET_OBJECT_QUICK
    766   DF_DA | DF_UB | DF_NULL_CHK_0,
    767 
    768   // F5 IPUT_QUICK
    769   DF_UA | DF_UB | DF_NULL_CHK_1,
    770 
    771   // F6 IPUT_WIDE_QUICK
    772   DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2,
    773 
    774   // F7 IPUT_OBJECT_QUICK
    775   DF_UA | DF_UB | DF_NULL_CHK_1,
    776 
    777   // F8 INVOKE_VIRTUAL_QUICK
    778   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
    779 
    780   // F9 INVOKE_VIRTUAL_QUICK_RANGE
    781   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
    782 
    783   // FA INVOKE_SUPER_QUICK
    784   DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
    785 
    786   // FB INVOKE_SUPER_QUICK_RANGE
    787   DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
    788 
    789   // FC IPUT_OBJECT_VOLATILE
    790   DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B,
    791 
    792   // FD SGET_OBJECT_VOLATILE
    793   DF_DA | DF_REF_A | DF_UMS,
    794 
    795   // FE SPUT_OBJECT_VOLATILE
    796   DF_UA | DF_REF_A | DF_UMS,
    797 
    798   // FF UNUSED_FF
    799   DF_NOP,
    800 
    801   // Beginning of extended MIR opcodes
    802   // 100 MIR_PHI
    803   DF_DA | DF_NULL_TRANSFER_N,
    804 
    805   // 101 MIR_COPY
    806   DF_DA | DF_UB | DF_IS_MOVE,
    807 
    808   // 102 MIR_FUSED_CMPL_FLOAT
    809   DF_UA | DF_UB | DF_FP_A | DF_FP_B,
    810 
    811   // 103 MIR_FUSED_CMPG_FLOAT
    812   DF_UA | DF_UB | DF_FP_A | DF_FP_B,
    813 
    814   // 104 MIR_FUSED_CMPL_DOUBLE
    815   DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
    816 
    817   // 105 MIR_FUSED_CMPG_DOUBLE
    818   DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
    819 
    820   // 106 MIR_FUSED_CMP_LONG
    821   DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
    822 
    823   // 107 MIR_NOP
    824   DF_NOP,
    825 
    826   // 108 MIR_NULL_CHECK
    827   0,
    828 
    829   // 109 MIR_RANGE_CHECK
    830   0,
    831 
    832   // 110 MIR_DIV_ZERO_CHECK
    833   0,
    834 
    835   // 111 MIR_CHECK
    836   0,
    837 
    838   // 112 MIR_CHECKPART2
    839   0,
    840 
    841   // 113 MIR_SELECT
    842   DF_DA | DF_UB,
    843 };
    844 
    845 /* Return the base virtual register for a SSA name */
    846 int MIRGraph::SRegToVReg(int ssa_reg) const {
    847   return ssa_base_vregs_->Get(ssa_reg);
    848 }
    849 
    850 /* Any register that is used before being defined is considered live-in */
    851 void MIRGraph::HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
    852                             ArenaBitVector* live_in_v, int dalvik_reg_id) {
    853   use_v->SetBit(dalvik_reg_id);
    854   if (!def_v->IsBitSet(dalvik_reg_id)) {
    855     live_in_v->SetBit(dalvik_reg_id);
    856   }
    857 }
    858 
    859 /* Mark a reg as being defined */
    860 void MIRGraph::HandleDef(ArenaBitVector* def_v, int dalvik_reg_id) {
    861   def_v->SetBit(dalvik_reg_id);
    862 }
    863 
    864 /*
    865  * Find out live-in variables for natural loops. Variables that are live-in in
    866  * the main loop body are considered to be defined in the entry block.
    867  */
    868 bool MIRGraph::FindLocalLiveIn(BasicBlock* bb) {
    869   MIR* mir;
    870   ArenaBitVector *use_v, *def_v, *live_in_v;
    871 
    872   if (bb->data_flow_info == NULL) return false;
    873 
    874   use_v = bb->data_flow_info->use_v =
    875       new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapUse);
    876   def_v = bb->data_flow_info->def_v =
    877       new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapDef);
    878   live_in_v = bb->data_flow_info->live_in_v =
    879       new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapLiveIn);
    880 
    881   for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
    882     int df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
    883     DecodedInstruction *d_insn = &mir->dalvikInsn;
    884 
    885     if (df_attributes & DF_HAS_USES) {
    886       if (df_attributes & DF_UA) {
    887         HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA);
    888         if (df_attributes & DF_A_WIDE) {
    889           HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA+1);
    890         }
    891       }
    892       if (df_attributes & DF_UB) {
    893         HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB);
    894         if (df_attributes & DF_B_WIDE) {
    895           HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB+1);
    896         }
    897       }
    898       if (df_attributes & DF_UC) {
    899         HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC);
    900         if (df_attributes & DF_C_WIDE) {
    901           HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+1);
    902         }
    903       }
    904     }
    905     if (df_attributes & DF_FORMAT_35C) {
    906       for (unsigned int i = 0; i < d_insn->vA; i++) {
    907         HandleLiveInUse(use_v, def_v, live_in_v, d_insn->arg[i]);
    908       }
    909     }
    910     if (df_attributes & DF_FORMAT_3RC) {
    911       for (unsigned int i = 0; i < d_insn->vA; i++) {
    912         HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+i);
    913       }
    914     }
    915     if (df_attributes & DF_HAS_DEFS) {
    916       HandleDef(def_v, d_insn->vA);
    917       if (df_attributes & DF_A_WIDE) {
    918         HandleDef(def_v, d_insn->vA+1);
    919       }
    920     }
    921   }
    922   return true;
    923 }
    924 
    925 int MIRGraph::AddNewSReg(int v_reg) {
    926   // Compiler temps always have a subscript of 0
    927   int subscript = (v_reg < 0) ? 0 : ++ssa_last_defs_[v_reg];
    928   int ssa_reg = GetNumSSARegs();
    929   SetNumSSARegs(ssa_reg + 1);
    930   ssa_base_vregs_->Insert(v_reg);
    931   ssa_subscripts_->Insert(subscript);
    932   DCHECK_EQ(ssa_base_vregs_->Size(), ssa_subscripts_->Size());
    933   return ssa_reg;
    934 }
    935 
    936 /* Find out the latest SSA register for a given Dalvik register */
    937 void MIRGraph::HandleSSAUse(int* uses, int dalvik_reg, int reg_index) {
    938   DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
    939   uses[reg_index] = vreg_to_ssa_map_[dalvik_reg];
    940 }
    941 
    942 /* Setup a new SSA register for a given Dalvik register */
    943 void MIRGraph::HandleSSADef(int* defs, int dalvik_reg, int reg_index) {
    944   DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
    945   int ssa_reg = AddNewSReg(dalvik_reg);
    946   vreg_to_ssa_map_[dalvik_reg] = ssa_reg;
    947   defs[reg_index] = ssa_reg;
    948 }
    949 
    950 /* Look up new SSA names for format_35c instructions */
    951 void MIRGraph::DataFlowSSAFormat35C(MIR* mir) {
    952   DecodedInstruction *d_insn = &mir->dalvikInsn;
    953   int num_uses = d_insn->vA;
    954   int i;
    955 
    956   mir->ssa_rep->num_uses = num_uses;
    957   mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses,
    958                                                        ArenaAllocator::kAllocDFInfo));
    959   // NOTE: will be filled in during type & size inference pass
    960   mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses,
    961                                                           ArenaAllocator::kAllocDFInfo));
    962 
    963   for (i = 0; i < num_uses; i++) {
    964     HandleSSAUse(mir->ssa_rep->uses, d_insn->arg[i], i);
    965   }
    966 }
    967 
    968 /* Look up new SSA names for format_3rc instructions */
    969 void MIRGraph::DataFlowSSAFormat3RC(MIR* mir) {
    970   DecodedInstruction *d_insn = &mir->dalvikInsn;
    971   int num_uses = d_insn->vA;
    972   int i;
    973 
    974   mir->ssa_rep->num_uses = num_uses;
    975   mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses,
    976                                                        ArenaAllocator::kAllocDFInfo));
    977   // NOTE: will be filled in during type & size inference pass
    978   mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses,
    979                                                           ArenaAllocator::kAllocDFInfo));
    980 
    981   for (i = 0; i < num_uses; i++) {
    982     HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+i, i);
    983   }
    984 }
    985 
    986 /* Entry function to convert a block into SSA representation */
    987 bool MIRGraph::DoSSAConversion(BasicBlock* bb) {
    988   MIR* mir;
    989 
    990   if (bb->data_flow_info == NULL) return false;
    991 
    992   for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
    993     mir->ssa_rep =
    994         static_cast<struct SSARepresentation *>(arena_->Alloc(sizeof(SSARepresentation),
    995                                                               ArenaAllocator::kAllocDFInfo));
    996 
    997     int df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
    998 
    999       // If not a pseudo-op, note non-leaf or can throw
   1000     if (static_cast<int>(mir->dalvikInsn.opcode) <
   1001         static_cast<int>(kNumPackedOpcodes)) {
   1002       int flags = Instruction::FlagsOf(mir->dalvikInsn.opcode);
   1003 
   1004       if (flags & Instruction::kInvoke) {
   1005         attributes_ &= ~METHOD_IS_LEAF;
   1006       }
   1007     }
   1008 
   1009     int num_uses = 0;
   1010 
   1011     if (df_attributes & DF_FORMAT_35C) {
   1012       DataFlowSSAFormat35C(mir);
   1013       continue;
   1014     }
   1015 
   1016     if (df_attributes & DF_FORMAT_3RC) {
   1017       DataFlowSSAFormat3RC(mir);
   1018       continue;
   1019     }
   1020 
   1021     if (df_attributes & DF_HAS_USES) {
   1022       if (df_attributes & DF_UA) {
   1023         num_uses++;
   1024         if (df_attributes & DF_A_WIDE) {
   1025           num_uses++;
   1026         }
   1027       }
   1028       if (df_attributes & DF_UB) {
   1029         num_uses++;
   1030         if (df_attributes & DF_B_WIDE) {
   1031           num_uses++;
   1032         }
   1033       }
   1034       if (df_attributes & DF_UC) {
   1035         num_uses++;
   1036         if (df_attributes & DF_C_WIDE) {
   1037           num_uses++;
   1038         }
   1039       }
   1040     }
   1041 
   1042     if (num_uses) {
   1043       mir->ssa_rep->num_uses = num_uses;
   1044       mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses,
   1045                                                            ArenaAllocator::kAllocDFInfo));
   1046       mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses,
   1047                                                               ArenaAllocator::kAllocDFInfo));
   1048     }
   1049 
   1050     int num_defs = 0;
   1051 
   1052     if (df_attributes & DF_HAS_DEFS) {
   1053       num_defs++;
   1054       if (df_attributes & DF_A_WIDE) {
   1055         num_defs++;
   1056       }
   1057     }
   1058 
   1059     if (num_defs) {
   1060       mir->ssa_rep->num_defs = num_defs;
   1061       mir->ssa_rep->defs = static_cast<int*>(arena_->Alloc(sizeof(int) * num_defs,
   1062                                                            ArenaAllocator::kAllocDFInfo));
   1063       mir->ssa_rep->fp_def = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_defs,
   1064                                                               ArenaAllocator::kAllocDFInfo));
   1065     }
   1066 
   1067     DecodedInstruction *d_insn = &mir->dalvikInsn;
   1068 
   1069     if (df_attributes & DF_HAS_USES) {
   1070       num_uses = 0;
   1071       if (df_attributes & DF_UA) {
   1072         mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
   1073         HandleSSAUse(mir->ssa_rep->uses, d_insn->vA, num_uses++);
   1074         if (df_attributes & DF_A_WIDE) {
   1075           mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
   1076           HandleSSAUse(mir->ssa_rep->uses, d_insn->vA+1, num_uses++);
   1077         }
   1078       }
   1079       if (df_attributes & DF_UB) {
   1080         mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
   1081         HandleSSAUse(mir->ssa_rep->uses, d_insn->vB, num_uses++);
   1082         if (df_attributes & DF_B_WIDE) {
   1083           mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
   1084           HandleSSAUse(mir->ssa_rep->uses, d_insn->vB+1, num_uses++);
   1085         }
   1086       }
   1087       if (df_attributes & DF_UC) {
   1088         mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
   1089         HandleSSAUse(mir->ssa_rep->uses, d_insn->vC, num_uses++);
   1090         if (df_attributes & DF_C_WIDE) {
   1091           mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
   1092           HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+1, num_uses++);
   1093         }
   1094       }
   1095     }
   1096     if (df_attributes & DF_HAS_DEFS) {
   1097       mir->ssa_rep->fp_def[0] = df_attributes & DF_FP_A;
   1098       HandleSSADef(mir->ssa_rep->defs, d_insn->vA, 0);
   1099       if (df_attributes & DF_A_WIDE) {
   1100         mir->ssa_rep->fp_def[1] = df_attributes & DF_FP_A;
   1101         HandleSSADef(mir->ssa_rep->defs, d_insn->vA+1, 1);
   1102       }
   1103     }
   1104   }
   1105 
   1106   /*
   1107    * Take a snapshot of Dalvik->SSA mapping at the end of each block. The
   1108    * input to PHI nodes can be derived from the snapshot of all
   1109    * predecessor blocks.
   1110    */
   1111   bb->data_flow_info->vreg_to_ssa_map =
   1112       static_cast<int*>(arena_->Alloc(sizeof(int) * cu_->num_dalvik_registers,
   1113                                       ArenaAllocator::kAllocDFInfo));
   1114 
   1115   memcpy(bb->data_flow_info->vreg_to_ssa_map, vreg_to_ssa_map_,
   1116          sizeof(int) * cu_->num_dalvik_registers);
   1117   return true;
   1118 }
   1119 
   1120 /* Setup the basic data structures for SSA conversion */
   1121 void MIRGraph::CompilerInitializeSSAConversion() {
   1122   size_t num_dalvik_reg = cu_->num_dalvik_registers;
   1123 
   1124   ssa_base_vregs_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128,
   1125                                                     kGrowableArraySSAtoDalvikMap);
   1126   ssa_subscripts_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128,
   1127                                                     kGrowableArraySSAtoDalvikMap);
   1128   /*
   1129    * Initial number of SSA registers is equal to the number of Dalvik
   1130    * registers.
   1131    */
   1132   SetNumSSARegs(num_dalvik_reg);
   1133 
   1134   /*
   1135    * Initialize the SSA2Dalvik map list. For the first num_dalvik_reg elements,
   1136    * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value
   1137    * into "(0 << 16) | i"
   1138    */
   1139   for (unsigned int i = 0; i < num_dalvik_reg; i++) {
   1140     ssa_base_vregs_->Insert(i);
   1141     ssa_subscripts_->Insert(0);
   1142   }
   1143 
   1144   /*
   1145    * Initialize the DalvikToSSAMap map. There is one entry for each
   1146    * Dalvik register, and the SSA names for those are the same.
   1147    */
   1148   vreg_to_ssa_map_ =
   1149       static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg,
   1150                                       ArenaAllocator::kAllocDFInfo));
   1151   /* Keep track of the higest def for each dalvik reg */
   1152   ssa_last_defs_ =
   1153       static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg,
   1154                                       ArenaAllocator::kAllocDFInfo));
   1155 
   1156   for (unsigned int i = 0; i < num_dalvik_reg; i++) {
   1157     vreg_to_ssa_map_[i] = i;
   1158     ssa_last_defs_[i] = 0;
   1159   }
   1160 
   1161   /* Add ssa reg for Method* */
   1162   method_sreg_ = AddNewSReg(SSA_METHOD_BASEREG);
   1163 
   1164   /*
   1165    * Allocate the BasicBlockDataFlow structure for the entry and code blocks
   1166    */
   1167   GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
   1168 
   1169   while (true) {
   1170     BasicBlock* bb = iterator.Next();
   1171     if (bb == NULL) break;
   1172     if (bb->hidden == true) continue;
   1173     if (bb->block_type == kDalvikByteCode ||
   1174       bb->block_type == kEntryBlock ||
   1175       bb->block_type == kExitBlock) {
   1176       bb->data_flow_info =
   1177           static_cast<BasicBlockDataFlow*>(arena_->Alloc(sizeof(BasicBlockDataFlow),
   1178                                                          ArenaAllocator::kAllocDFInfo));
   1179       }
   1180   }
   1181 }
   1182 
   1183 /*
   1184  * This function will make a best guess at whether the invoke will
   1185  * end up using Method*.  It isn't critical to get it exactly right,
   1186  * and attempting to do would involve more complexity than it's
   1187  * worth.
   1188  */
   1189 bool MIRGraph::InvokeUsesMethodStar(MIR* mir) {
   1190   InvokeType type;
   1191   Instruction::Code opcode = mir->dalvikInsn.opcode;
   1192   switch (opcode) {
   1193     case Instruction::INVOKE_STATIC:
   1194     case Instruction::INVOKE_STATIC_RANGE:
   1195       type = kStatic;
   1196       break;
   1197     case Instruction::INVOKE_DIRECT:
   1198     case Instruction::INVOKE_DIRECT_RANGE:
   1199       type = kDirect;
   1200       break;
   1201     case Instruction::INVOKE_VIRTUAL:
   1202     case Instruction::INVOKE_VIRTUAL_RANGE:
   1203       type = kVirtual;
   1204       break;
   1205     case Instruction::INVOKE_INTERFACE:
   1206     case Instruction::INVOKE_INTERFACE_RANGE:
   1207       return false;
   1208     case Instruction::INVOKE_SUPER_RANGE:
   1209     case Instruction::INVOKE_SUPER:
   1210       type = kSuper;
   1211       break;
   1212     default:
   1213       LOG(WARNING) << "Unexpected invoke op: " << opcode;
   1214       return false;
   1215   }
   1216   DexCompilationUnit m_unit(cu_);
   1217   MethodReference target_method(cu_->dex_file, mir->dalvikInsn.vB);
   1218   int vtable_idx;
   1219   uintptr_t direct_code;
   1220   uintptr_t direct_method;
   1221   uint32_t current_offset = static_cast<uint32_t>(current_offset_);
   1222   bool fast_path =
   1223       cu_->compiler_driver->ComputeInvokeInfo(&m_unit, current_offset,
   1224                                               type, target_method,
   1225                                               vtable_idx,
   1226                                               direct_code, direct_method,
   1227                                               false) &&
   1228                                               !(cu_->enable_debug & (1 << kDebugSlowInvokePath));
   1229   return (((type == kDirect) || (type == kStatic)) &&
   1230           fast_path && ((direct_code == 0) || (direct_method == 0)));
   1231 }
   1232 
   1233 /*
   1234  * Count uses, weighting by loop nesting depth.  This code only
   1235  * counts explicitly used s_regs.  A later phase will add implicit
   1236  * counts for things such as Method*, null-checked references, etc.
   1237  */
   1238 bool MIRGraph::CountUses(struct BasicBlock* bb) {
   1239   if (bb->block_type != kDalvikByteCode) {
   1240     return false;
   1241   }
   1242   for (MIR* mir = bb->first_mir_insn; (mir != NULL); mir = mir->next) {
   1243     if (mir->ssa_rep == NULL) {
   1244       continue;
   1245     }
   1246     uint32_t weight = std::min(16U, static_cast<uint32_t>(bb->nesting_depth));
   1247     for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
   1248       int s_reg = mir->ssa_rep->uses[i];
   1249       raw_use_counts_.Increment(s_reg);
   1250       use_counts_.Put(s_reg, use_counts_.Get(s_reg) + (1 << weight));
   1251     }
   1252     if (!(cu_->disable_opt & (1 << kPromoteCompilerTemps))) {
   1253       int df_attributes = oat_data_flow_attributes_[mir->dalvikInsn.opcode];
   1254       // Implicit use of Method* ? */
   1255       if (df_attributes & DF_UMS) {
   1256         /*
   1257          * Some invokes will not use Method* - need to perform test similar
   1258          * to that found in GenInvoke() to decide whether to count refs
   1259          * for Method* on invoke-class opcodes.
   1260          * TODO: refactor for common test here, save results for GenInvoke
   1261          */
   1262         int uses_method_star = true;
   1263         if ((df_attributes & (DF_FORMAT_35C | DF_FORMAT_3RC)) &&
   1264             !(df_attributes & DF_NON_NULL_RET)) {
   1265           uses_method_star &= InvokeUsesMethodStar(mir);
   1266         }
   1267         if (uses_method_star) {
   1268           raw_use_counts_.Increment(method_sreg_);
   1269           use_counts_.Put(method_sreg_, use_counts_.Get(method_sreg_) + (1 << weight));
   1270         }
   1271       }
   1272     }
   1273   }
   1274   return false;
   1275 }
   1276 
   1277 void MIRGraph::MethodUseCount() {
   1278   // Now that we know, resize the lists.
   1279   int num_ssa_regs = GetNumSSARegs();
   1280   use_counts_.Resize(num_ssa_regs + 32);
   1281   raw_use_counts_.Resize(num_ssa_regs + 32);
   1282   // Initialize list
   1283   for (int i = 0; i < num_ssa_regs; i++) {
   1284     use_counts_.Insert(0);
   1285     raw_use_counts_.Insert(0);
   1286   }
   1287   if (cu_->disable_opt & (1 << kPromoteRegs)) {
   1288     return;
   1289   }
   1290   AllNodesIterator iter(this, false /* not iterative */);
   1291   for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
   1292     CountUses(bb);
   1293   }
   1294 }
   1295 
   1296 /* Verify if all the successor is connected with all the claimed predecessors */
   1297 bool MIRGraph::VerifyPredInfo(BasicBlock* bb) {
   1298   GrowableArray<BasicBlock*>::Iterator iter(bb->predecessors);
   1299 
   1300   while (true) {
   1301     BasicBlock *pred_bb = iter.Next();
   1302     if (!pred_bb) break;
   1303     bool found = false;
   1304     if (pred_bb->taken == bb) {
   1305         found = true;
   1306     } else if (pred_bb->fall_through == bb) {
   1307         found = true;
   1308     } else if (pred_bb->successor_block_list.block_list_type != kNotUsed) {
   1309       GrowableArray<SuccessorBlockInfo*>::Iterator iterator(pred_bb->successor_block_list.blocks);
   1310       while (true) {
   1311         SuccessorBlockInfo *successor_block_info = iterator.Next();
   1312         if (successor_block_info == NULL) break;
   1313         BasicBlock *succ_bb = successor_block_info->block;
   1314         if (succ_bb == bb) {
   1315             found = true;
   1316             break;
   1317         }
   1318       }
   1319     }
   1320     if (found == false) {
   1321       char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
   1322       GetBlockName(bb, block_name1);
   1323       GetBlockName(pred_bb, block_name2);
   1324       DumpCFG("/sdcard/cfg/", false);
   1325       LOG(FATAL) << "Successor " << block_name1 << "not found from "
   1326                  << block_name2;
   1327     }
   1328   }
   1329   return true;
   1330 }
   1331 
   1332 void MIRGraph::VerifyDataflow() {
   1333     /* Verify if all blocks are connected as claimed */
   1334   AllNodesIterator iter(this, false /* not iterative */);
   1335   for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
   1336     VerifyPredInfo(bb);
   1337   }
   1338 }
   1339 
   1340 }  // namespace art
   1341