Home | History | Annotate | Download | only in cctest
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include <stdlib.h>
     29 
     30 #include "v8.h"
     31 #include "cctest.h"
     32 
     33 using namespace v8::internal;
     34 
     35 #if 0
     36 static void VerifyRegionMarking(Address page_start) {
     37 #ifdef ENABLE_CARDMARKING_WRITE_BARRIER
     38   Page* p = Page::FromAddress(page_start);
     39 
     40   p->SetRegionMarks(Page::kAllRegionsCleanMarks);
     41 
     42   for (Address addr = p->ObjectAreaStart();
     43        addr < p->ObjectAreaEnd();
     44        addr += kPointerSize) {
     45     CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr));
     46   }
     47 
     48   for (Address addr = p->ObjectAreaStart();
     49        addr < p->ObjectAreaEnd();
     50        addr += kPointerSize) {
     51     Page::FromAddress(addr)->MarkRegionDirty(addr);
     52   }
     53 
     54   for (Address addr = p->ObjectAreaStart();
     55        addr < p->ObjectAreaEnd();
     56        addr += kPointerSize) {
     57     CHECK(Page::FromAddress(addr)->IsRegionDirty(addr));
     58   }
     59 #endif
     60 }
     61 #endif
     62 
     63 
     64 // TODO(gc) you can no longer allocate pages like this. Details are hidden.
     65 #if 0
     66 TEST(Page) {
     67   byte* mem = NewArray<byte>(2*Page::kPageSize);
     68   CHECK(mem != NULL);
     69 
     70   Address start = reinterpret_cast<Address>(mem);
     71   Address page_start = RoundUp(start, Page::kPageSize);
     72 
     73   Page* p = Page::FromAddress(page_start);
     74   // Initialized Page has heap pointer, normally set by memory_allocator.
     75   p->heap_ = HEAP;
     76   CHECK(p->address() == page_start);
     77   CHECK(p->is_valid());
     78 
     79   p->opaque_header = 0;
     80   p->SetIsLargeObjectPage(false);
     81   CHECK(!p->next_page()->is_valid());
     82 
     83   CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset);
     84   CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize);
     85 
     86   CHECK(p->Offset(page_start + Page::kObjectStartOffset) ==
     87         Page::kObjectStartOffset);
     88   CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize);
     89 
     90   CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart());
     91   CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd());
     92 
     93   // test region marking
     94   VerifyRegionMarking(page_start);
     95 
     96   DeleteArray(mem);
     97 }
     98 #endif
     99 
    100 
    101 namespace v8 {
    102 namespace internal {
    103 
    104 // Temporarily sets a given allocator in an isolate.
    105 class TestMemoryAllocatorScope {
    106  public:
    107   TestMemoryAllocatorScope(Isolate* isolate, MemoryAllocator* allocator)
    108       : isolate_(isolate),
    109         old_allocator_(isolate->memory_allocator_) {
    110     isolate->memory_allocator_ = allocator;
    111   }
    112 
    113   ~TestMemoryAllocatorScope() {
    114     isolate_->memory_allocator_ = old_allocator_;
    115   }
    116 
    117  private:
    118   Isolate* isolate_;
    119   MemoryAllocator* old_allocator_;
    120 
    121   DISALLOW_COPY_AND_ASSIGN(TestMemoryAllocatorScope);
    122 };
    123 
    124 
    125 // Temporarily sets a given code range in an isolate.
    126 class TestCodeRangeScope {
    127  public:
    128   TestCodeRangeScope(Isolate* isolate, CodeRange* code_range)
    129       : isolate_(isolate),
    130         old_code_range_(isolate->code_range_) {
    131     isolate->code_range_ = code_range;
    132   }
    133 
    134   ~TestCodeRangeScope() {
    135     isolate_->code_range_ = old_code_range_;
    136   }
    137 
    138  private:
    139   Isolate* isolate_;
    140   CodeRange* old_code_range_;
    141 
    142   DISALLOW_COPY_AND_ASSIGN(TestCodeRangeScope);
    143 };
    144 
    145 } }  // namespace v8::internal
    146 
    147 
    148 static void VerifyMemoryChunk(Isolate* isolate,
    149                               Heap* heap,
    150                               CodeRange* code_range,
    151                               size_t reserve_area_size,
    152                               size_t commit_area_size,
    153                               size_t second_commit_area_size,
    154                               Executability executable) {
    155   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
    156   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
    157                                 heap->MaxExecutableSize()));
    158   TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator);
    159   TestCodeRangeScope test_code_range_scope(isolate, code_range);
    160 
    161   size_t header_size = (executable == EXECUTABLE)
    162                        ? MemoryAllocator::CodePageGuardStartOffset()
    163                        : MemoryChunk::kObjectStartOffset;
    164   size_t guard_size = (executable == EXECUTABLE)
    165                        ? MemoryAllocator::CodePageGuardSize()
    166                        : 0;
    167 
    168   MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(reserve_area_size,
    169                                                               commit_area_size,
    170                                                               executable,
    171                                                               NULL);
    172   size_t alignment = code_range->exists() ?
    173                      MemoryChunk::kAlignment : OS::CommitPageSize();
    174   size_t reserved_size = ((executable == EXECUTABLE))
    175       ? RoundUp(header_size + guard_size + reserve_area_size + guard_size,
    176                 alignment)
    177       : RoundUp(header_size + reserve_area_size, OS::CommitPageSize());
    178   CHECK(memory_chunk->size() == reserved_size);
    179   CHECK(memory_chunk->area_start() < memory_chunk->address() +
    180                                      memory_chunk->size());
    181   CHECK(memory_chunk->area_end() <= memory_chunk->address() +
    182                                     memory_chunk->size());
    183   CHECK(static_cast<size_t>(memory_chunk->area_size()) == commit_area_size);
    184 
    185   Address area_start = memory_chunk->area_start();
    186 
    187   memory_chunk->CommitArea(second_commit_area_size);
    188   CHECK(area_start == memory_chunk->area_start());
    189   CHECK(memory_chunk->area_start() < memory_chunk->address() +
    190                                      memory_chunk->size());
    191   CHECK(memory_chunk->area_end() <= memory_chunk->address() +
    192                                     memory_chunk->size());
    193   CHECK(static_cast<size_t>(memory_chunk->area_size()) ==
    194       second_commit_area_size);
    195 
    196   memory_allocator->Free(memory_chunk);
    197   memory_allocator->TearDown();
    198   delete memory_allocator;
    199 }
    200 
    201 
    202 static unsigned int Pseudorandom() {
    203   static uint32_t lo = 2345;
    204   lo = 18273 * (lo & 0xFFFFF) + (lo >> 16);
    205   return lo & 0xFFFFF;
    206 }
    207 
    208 
    209 TEST(MemoryChunk) {
    210   OS::SetUp();
    211   Isolate* isolate = Isolate::Current();
    212   isolate->InitializeLoggingAndCounters();
    213   Heap* heap = isolate->heap();
    214   CHECK(heap->ConfigureHeapDefault());
    215 
    216   size_t reserve_area_size = 1 * MB;
    217   size_t initial_commit_area_size, second_commit_area_size;
    218 
    219   for (int i = 0; i < 100; i++) {
    220     initial_commit_area_size = Pseudorandom();
    221     second_commit_area_size = Pseudorandom();
    222 
    223     // With CodeRange.
    224     CodeRange* code_range = new CodeRange(isolate);
    225     const int code_range_size = 32 * MB;
    226     if (!code_range->SetUp(code_range_size)) return;
    227 
    228     VerifyMemoryChunk(isolate,
    229                       heap,
    230                       code_range,
    231                       reserve_area_size,
    232                       initial_commit_area_size,
    233                       second_commit_area_size,
    234                       EXECUTABLE);
    235 
    236     VerifyMemoryChunk(isolate,
    237                       heap,
    238                       code_range,
    239                       reserve_area_size,
    240                       initial_commit_area_size,
    241                       second_commit_area_size,
    242                       NOT_EXECUTABLE);
    243     delete code_range;
    244 
    245     // Without CodeRange.
    246     code_range = NULL;
    247     VerifyMemoryChunk(isolate,
    248                       heap,
    249                       code_range,
    250                       reserve_area_size,
    251                       initial_commit_area_size,
    252                       second_commit_area_size,
    253                       EXECUTABLE);
    254 
    255     VerifyMemoryChunk(isolate,
    256                       heap,
    257                       code_range,
    258                       reserve_area_size,
    259                       initial_commit_area_size,
    260                       second_commit_area_size,
    261                       NOT_EXECUTABLE);
    262   }
    263 }
    264 
    265 
    266 TEST(MemoryAllocator) {
    267   OS::SetUp();
    268   Isolate* isolate = Isolate::Current();
    269   isolate->InitializeLoggingAndCounters();
    270   Heap* heap = isolate->heap();
    271   CHECK(isolate->heap()->ConfigureHeapDefault());
    272 
    273   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
    274   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
    275                                 heap->MaxExecutableSize()));
    276 
    277   int total_pages = 0;
    278   OldSpace faked_space(heap,
    279                        heap->MaxReserved(),
    280                        OLD_POINTER_SPACE,
    281                        NOT_EXECUTABLE);
    282   Page* first_page = memory_allocator->AllocatePage(
    283       faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
    284 
    285   first_page->InsertAfter(faked_space.anchor()->prev_page());
    286   CHECK(first_page->is_valid());
    287   CHECK(first_page->next_page() == faked_space.anchor());
    288   total_pages++;
    289 
    290   for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
    291     CHECK(p->owner() == &faked_space);
    292   }
    293 
    294   // Again, we should get n or n - 1 pages.
    295   Page* other = memory_allocator->AllocatePage(
    296       faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE);
    297   CHECK(other->is_valid());
    298   total_pages++;
    299   other->InsertAfter(first_page);
    300   int page_count = 0;
    301   for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) {
    302     CHECK(p->owner() == &faked_space);
    303     page_count++;
    304   }
    305   CHECK(total_pages == page_count);
    306 
    307   Page* second_page = first_page->next_page();
    308   CHECK(second_page->is_valid());
    309   memory_allocator->Free(first_page);
    310   memory_allocator->Free(second_page);
    311   memory_allocator->TearDown();
    312   delete memory_allocator;
    313 }
    314 
    315 
    316 TEST(NewSpace) {
    317   OS::SetUp();
    318   Isolate* isolate = Isolate::Current();
    319   isolate->InitializeLoggingAndCounters();
    320   Heap* heap = isolate->heap();
    321   CHECK(heap->ConfigureHeapDefault());
    322   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
    323   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
    324                                 heap->MaxExecutableSize()));
    325   TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
    326 
    327   NewSpace new_space(heap);
    328 
    329   CHECK(new_space.SetUp(HEAP->ReservedSemiSpaceSize(),
    330                         HEAP->ReservedSemiSpaceSize()));
    331   CHECK(new_space.HasBeenSetUp());
    332 
    333   while (new_space.Available() >= Page::kMaxNonCodeHeapObjectSize) {
    334     Object* obj =
    335         new_space.AllocateRaw(Page::kMaxNonCodeHeapObjectSize)->
    336         ToObjectUnchecked();
    337     CHECK(new_space.Contains(HeapObject::cast(obj)));
    338   }
    339 
    340   new_space.TearDown();
    341   memory_allocator->TearDown();
    342   delete memory_allocator;
    343 }
    344 
    345 
    346 TEST(OldSpace) {
    347   OS::SetUp();
    348   Isolate* isolate = Isolate::Current();
    349   isolate->InitializeLoggingAndCounters();
    350   Heap* heap = isolate->heap();
    351   CHECK(heap->ConfigureHeapDefault());
    352   MemoryAllocator* memory_allocator = new MemoryAllocator(isolate);
    353   CHECK(memory_allocator->SetUp(heap->MaxReserved(),
    354                                 heap->MaxExecutableSize()));
    355   TestMemoryAllocatorScope test_scope(isolate, memory_allocator);
    356 
    357   OldSpace* s = new OldSpace(heap,
    358                              heap->MaxOldGenerationSize(),
    359                              OLD_POINTER_SPACE,
    360                              NOT_EXECUTABLE);
    361   CHECK(s != NULL);
    362 
    363   CHECK(s->SetUp());
    364 
    365   while (s->Available() > 0) {
    366     s->AllocateRaw(Page::kMaxNonCodeHeapObjectSize)->ToObjectUnchecked();
    367   }
    368 
    369   s->TearDown();
    370   delete s;
    371   memory_allocator->TearDown();
    372   delete memory_allocator;
    373 }
    374 
    375 
    376 TEST(LargeObjectSpace) {
    377   v8::V8::Initialize();
    378 
    379   LargeObjectSpace* lo = HEAP->lo_space();
    380   CHECK(lo != NULL);
    381 
    382   int lo_size = Page::kPageSize;
    383 
    384   Object* obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE)->ToObjectUnchecked();
    385   CHECK(obj->IsHeapObject());
    386 
    387   HeapObject* ho = HeapObject::cast(obj);
    388 
    389   CHECK(lo->Contains(HeapObject::cast(obj)));
    390 
    391   CHECK(lo->FindObject(ho->address()) == obj);
    392 
    393   CHECK(lo->Contains(ho));
    394 
    395   while (true) {
    396     intptr_t available = lo->Available();
    397     { MaybeObject* maybe_obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE);
    398       if (!maybe_obj->ToObject(&obj)) break;
    399     }
    400     CHECK(lo->Available() < available);
    401   };
    402 
    403   CHECK(!lo->IsEmpty());
    404 
    405   CHECK(lo->AllocateRaw(lo_size, NOT_EXECUTABLE)->IsFailure());
    406 }
    407