1 // Copyright (c) 2010 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef BASE_BASICTYPES_H_ 6 #define BASE_BASICTYPES_H_ 7 8 #include <limits.h> // So we can set the bounds of our types 9 #include <stddef.h> // For size_t 10 #include <string.h> // for memcpy 11 12 #include "base/port.h" // Types that only need exist on certain systems 13 14 #ifndef COMPILER_MSVC 15 // stdint.h is part of C99 but MSVC doesn't have it. 16 #include <stdint.h> // For intptr_t. 17 #endif 18 19 typedef signed char schar; 20 typedef signed char int8; 21 typedef short int16; 22 // TODO(mbelshe) Remove these type guards. These are 23 // temporary to avoid conflicts with npapi.h. 24 #ifndef _INT32 25 #define _INT32 26 typedef int int32; 27 #endif 28 29 // The NSPR system headers define 64-bit as |long| when possible. In order to 30 // not have typedef mismatches, we do the same on LP64. 31 #if __LP64__ 32 typedef long int64; 33 #else 34 typedef long long int64; 35 #endif 36 37 // NOTE: unsigned types are DANGEROUS in loops and other arithmetical 38 // places. Use the signed types unless your variable represents a bit 39 // pattern (eg a hash value) or you really need the extra bit. Do NOT 40 // use 'unsigned' to express "this value should always be positive"; 41 // use assertions for this. 42 43 typedef unsigned char uint8; 44 typedef unsigned short uint16; 45 // TODO(mbelshe) Remove these type guards. These are 46 // temporary to avoid conflicts with npapi.h. 47 #ifndef _UINT32 48 #define _UINT32 49 typedef unsigned int uint32; 50 #endif 51 52 // See the comment above about NSPR and 64-bit. 53 #if __LP64__ 54 typedef unsigned long uint64; 55 #else 56 typedef unsigned long long uint64; 57 #endif 58 59 // A type to represent a Unicode code-point value. As of Unicode 4.0, 60 // such values require up to 21 bits. 61 // (For type-checking on pointers, make this explicitly signed, 62 // and it should always be the signed version of whatever int32 is.) 63 typedef signed int char32; 64 65 const uint8 kuint8max = (( uint8) 0xFF); 66 const uint16 kuint16max = ((uint16) 0xFFFF); 67 const uint32 kuint32max = ((uint32) 0xFFFFFFFF); 68 const uint64 kuint64max = ((uint64) GG_LONGLONG(0xFFFFFFFFFFFFFFFF)); 69 const int8 kint8min = (( int8) 0x80); 70 const int8 kint8max = (( int8) 0x7F); 71 const int16 kint16min = (( int16) 0x8000); 72 const int16 kint16max = (( int16) 0x7FFF); 73 const int32 kint32min = (( int32) 0x80000000); 74 const int32 kint32max = (( int32) 0x7FFFFFFF); 75 const int64 kint64min = (( int64) GG_LONGLONG(0x8000000000000000)); 76 const int64 kint64max = (( int64) GG_LONGLONG(0x7FFFFFFFFFFFFFFF)); 77 78 // A macro to disallow the copy constructor and operator= functions 79 // This should be used in the private: declarations for a class 80 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ 81 TypeName(const TypeName&); \ 82 void operator=(const TypeName&) 83 84 // An older, deprecated, politically incorrect name for the above. 85 #define DISALLOW_EVIL_CONSTRUCTORS(TypeName) DISALLOW_COPY_AND_ASSIGN(TypeName) 86 87 // A macro to disallow all the implicit constructors, namely the 88 // default constructor, copy constructor and operator= functions. 89 // 90 // This should be used in the private: declarations for a class 91 // that wants to prevent anyone from instantiating it. This is 92 // especially useful for classes containing only static methods. 93 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ 94 TypeName(); \ 95 DISALLOW_COPY_AND_ASSIGN(TypeName) 96 97 // The arraysize(arr) macro returns the # of elements in an array arr. 98 // The expression is a compile-time constant, and therefore can be 99 // used in defining new arrays, for example. If you use arraysize on 100 // a pointer by mistake, you will get a compile-time error. 101 // 102 // One caveat is that arraysize() doesn't accept any array of an 103 // anonymous type or a type defined inside a function. In these rare 104 // cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below. This is 105 // due to a limitation in C++'s template system. The limitation might 106 // eventually be removed, but it hasn't happened yet. 107 108 // This template function declaration is used in defining arraysize. 109 // Note that the function doesn't need an implementation, as we only 110 // use its type. 111 template <typename T, size_t N> 112 char (&ArraySizeHelper(T (&array)[N]))[N]; 113 114 // That gcc wants both of these prototypes seems mysterious. VC, for 115 // its part, can't decide which to use (another mystery). Matching of 116 // template overloads: the final frontier. 117 #ifndef _MSC_VER 118 template <typename T, size_t N> 119 char (&ArraySizeHelper(const T (&array)[N]))[N]; 120 #endif 121 122 #define arraysize(array) (sizeof(ArraySizeHelper(array))) 123 124 // ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize, 125 // but can be used on anonymous types or types defined inside 126 // functions. It's less safe than arraysize as it accepts some 127 // (although not all) pointers. Therefore, you should use arraysize 128 // whenever possible. 129 // 130 // The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type 131 // size_t. 132 // 133 // ARRAYSIZE_UNSAFE catches a few type errors. If you see a compiler error 134 // 135 // "warning: division by zero in ..." 136 // 137 // when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer. 138 // You should only use ARRAYSIZE_UNSAFE on statically allocated arrays. 139 // 140 // The following comments are on the implementation details, and can 141 // be ignored by the users. 142 // 143 // ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in 144 // the array) and sizeof(*(arr)) (the # of bytes in one array 145 // element). If the former is divisible by the latter, perhaps arr is 146 // indeed an array, in which case the division result is the # of 147 // elements in the array. Otherwise, arr cannot possibly be an array, 148 // and we generate a compiler error to prevent the code from 149 // compiling. 150 // 151 // Since the size of bool is implementation-defined, we need to cast 152 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final 153 // result has type size_t. 154 // 155 // This macro is not perfect as it wrongfully accepts certain 156 // pointers, namely where the pointer size is divisible by the pointee 157 // size. Since all our code has to go through a 32-bit compiler, 158 // where a pointer is 4 bytes, this means all pointers to a type whose 159 // size is 3 or greater than 4 will be (righteously) rejected. 160 161 #define ARRAYSIZE_UNSAFE(a) \ 162 ((sizeof(a) / sizeof(*(a))) / \ 163 static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) 164 165 166 // Use implicit_cast as a safe version of static_cast or const_cast 167 // for upcasting in the type hierarchy (i.e. casting a pointer to Foo 168 // to a pointer to SuperclassOfFoo or casting a pointer to Foo to 169 // a const pointer to Foo). 170 // When you use implicit_cast, the compiler checks that the cast is safe. 171 // Such explicit implicit_casts are necessary in surprisingly many 172 // situations where C++ demands an exact type match instead of an 173 // argument type convertable to a target type. 174 // 175 // The From type can be inferred, so the preferred syntax for using 176 // implicit_cast is the same as for static_cast etc.: 177 // 178 // implicit_cast<ToType>(expr) 179 // 180 // implicit_cast would have been part of the C++ standard library, 181 // but the proposal was submitted too late. It will probably make 182 // its way into the language in the future. 183 template<typename To, typename From> 184 inline To implicit_cast(From const &f) { 185 return f; 186 } 187 188 // The COMPILE_ASSERT macro can be used to verify that a compile time 189 // expression is true. For example, you could use it to verify the 190 // size of a static array: 191 // 192 // COMPILE_ASSERT(ARRAYSIZE_UNSAFE(content_type_names) == CONTENT_NUM_TYPES, 193 // content_type_names_incorrect_size); 194 // 195 // or to make sure a struct is smaller than a certain size: 196 // 197 // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large); 198 // 199 // The second argument to the macro is the name of the variable. If 200 // the expression is false, most compilers will issue a warning/error 201 // containing the name of the variable. 202 203 template <bool> 204 struct CompileAssert { 205 }; 206 207 #undef COMPILE_ASSERT 208 #define COMPILE_ASSERT(expr, msg) \ 209 typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1] 210 211 // Implementation details of COMPILE_ASSERT: 212 // 213 // - COMPILE_ASSERT works by defining an array type that has -1 214 // elements (and thus is invalid) when the expression is false. 215 // 216 // - The simpler definition 217 // 218 // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1] 219 // 220 // does not work, as gcc supports variable-length arrays whose sizes 221 // are determined at run-time (this is gcc's extension and not part 222 // of the C++ standard). As a result, gcc fails to reject the 223 // following code with the simple definition: 224 // 225 // int foo; 226 // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is 227 // // not a compile-time constant. 228 // 229 // - By using the type CompileAssert<(bool(expr))>, we ensures that 230 // expr is a compile-time constant. (Template arguments must be 231 // determined at compile-time.) 232 // 233 // - The outter parentheses in CompileAssert<(bool(expr))> are necessary 234 // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written 235 // 236 // CompileAssert<bool(expr)> 237 // 238 // instead, these compilers will refuse to compile 239 // 240 // COMPILE_ASSERT(5 > 0, some_message); 241 // 242 // (They seem to think the ">" in "5 > 0" marks the end of the 243 // template argument list.) 244 // 245 // - The array size is (bool(expr) ? 1 : -1), instead of simply 246 // 247 // ((expr) ? 1 : -1). 248 // 249 // This is to avoid running into a bug in MS VC 7.1, which 250 // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. 251 252 253 // MetatagId refers to metatag-id that we assign to 254 // each metatag <name, value> pair.. 255 typedef uint32 MetatagId; 256 257 // Argument type used in interfaces that can optionally take ownership 258 // of a passed in argument. If TAKE_OWNERSHIP is passed, the called 259 // object takes ownership of the argument. Otherwise it does not. 260 enum Ownership { 261 DO_NOT_TAKE_OWNERSHIP, 262 TAKE_OWNERSHIP 263 }; 264 265 // bit_cast<Dest,Source> is a template function that implements the 266 // equivalent of "*reinterpret_cast<Dest*>(&source)". We need this in 267 // very low-level functions like the protobuf library and fast math 268 // support. 269 // 270 // float f = 3.14159265358979; 271 // int i = bit_cast<int32>(f); 272 // // i = 0x40490fdb 273 // 274 // The classical address-casting method is: 275 // 276 // // WRONG 277 // float f = 3.14159265358979; // WRONG 278 // int i = * reinterpret_cast<int*>(&f); // WRONG 279 // 280 // The address-casting method actually produces undefined behavior 281 // according to ISO C++ specification section 3.10 -15 -. Roughly, this 282 // section says: if an object in memory has one type, and a program 283 // accesses it with a different type, then the result is undefined 284 // behavior for most values of "different type". 285 // 286 // This is true for any cast syntax, either *(int*)&f or 287 // *reinterpret_cast<int*>(&f). And it is particularly true for 288 // conversions betweeen integral lvalues and floating-point lvalues. 289 // 290 // The purpose of 3.10 -15- is to allow optimizing compilers to assume 291 // that expressions with different types refer to different memory. gcc 292 // 4.0.1 has an optimizer that takes advantage of this. So a 293 // non-conforming program quietly produces wildly incorrect output. 294 // 295 // The problem is not the use of reinterpret_cast. The problem is type 296 // punning: holding an object in memory of one type and reading its bits 297 // back using a different type. 298 // 299 // The C++ standard is more subtle and complex than this, but that 300 // is the basic idea. 301 // 302 // Anyways ... 303 // 304 // bit_cast<> calls memcpy() which is blessed by the standard, 305 // especially by the example in section 3.9 . Also, of course, 306 // bit_cast<> wraps up the nasty logic in one place. 307 // 308 // Fortunately memcpy() is very fast. In optimized mode, with a 309 // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline 310 // code with the minimal amount of data movement. On a 32-bit system, 311 // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8) 312 // compiles to two loads and two stores. 313 // 314 // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1. 315 // 316 // WARNING: if Dest or Source is a non-POD type, the result of the memcpy 317 // is likely to surprise you. 318 319 template <class Dest, class Source> 320 inline Dest bit_cast(const Source& source) { 321 // Compile time assertion: sizeof(Dest) == sizeof(Source) 322 // A compile error here means your Dest and Source have different sizes. 323 typedef char VerifySizesAreEqual [sizeof(Dest) == sizeof(Source) ? 1 : -1]; 324 325 Dest dest; 326 memcpy(&dest, &source, sizeof(dest)); 327 return dest; 328 } 329 330 // The following enum should be used only as a constructor argument to indicate 331 // that the variable has static storage class, and that the constructor should 332 // do nothing to its state. It indicates to the reader that it is legal to 333 // declare a static instance of the class, provided the constructor is given 334 // the base::LINKER_INITIALIZED argument. Normally, it is unsafe to declare a 335 // static variable that has a constructor or a destructor because invocation 336 // order is undefined. However, IF the type can be initialized by filling with 337 // zeroes (which the loader does for static variables), AND the destructor also 338 // does nothing to the storage, AND there are no virtual methods, then a 339 // constructor declared as 340 // explicit MyClass(base::LinkerInitialized x) {} 341 // and invoked as 342 // static MyClass my_variable_name(base::LINKER_INITIALIZED); 343 namespace base { 344 enum LinkerInitialized { LINKER_INITIALIZED }; 345 } // base 346 347 // UnaligndLoad32 is put here instead of base/port.h to 348 // avoid the circular dependency between port.h and basictypes.h 349 // ARM does not support unaligned memory access. 350 #if defined(ARCH_CPU_X86_FAMILY) 351 // x86 and x86-64 can perform unaligned loads/stores directly; 352 inline uint32 UnalignedLoad32(const void* p) { 353 return *reinterpret_cast<const uint32*>(p); 354 } 355 #else 356 #define NEED_ALIGNED_LOADS 357 // If target architecture does not support unaligned loads and stores, 358 // use memcpy version of UNALIGNED_LOAD32. 359 inline uint32 UnalignedLoad32(const void* p) { 360 uint32 t; 361 memcpy(&t, reinterpret_cast<const uint8*>(p), sizeof(t)); 362 return t; 363 } 364 365 #endif 366 #endif // BASE_BASICTYPES_H_ 367