Home | History | Annotate | Download | only in AST
      1 //===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the C++ related Decl classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/DeclCXX.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/ASTMutationListener.h"
     17 #include "clang/AST/CXXInheritance.h"
     18 #include "clang/AST/DeclTemplate.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/TypeLoc.h"
     22 #include "clang/Basic/IdentifierTable.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/ADT/SmallPtrSet.h"
     25 using namespace clang;
     26 
     27 //===----------------------------------------------------------------------===//
     28 // Decl Allocation/Deallocation Method Implementations
     29 //===----------------------------------------------------------------------===//
     30 
     31 void AccessSpecDecl::anchor() { }
     32 
     33 AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
     34   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(AccessSpecDecl));
     35   return new (Mem) AccessSpecDecl(EmptyShell());
     36 }
     37 
     38 CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
     39   : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
     40     Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
     41     Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
     42     HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false),
     43     HasMutableFields(false), HasOnlyCMembers(true),
     44     HasInClassInitializer(false), HasUninitializedReferenceMember(false),
     45     NeedOverloadResolutionForMoveConstructor(false),
     46     NeedOverloadResolutionForMoveAssignment(false),
     47     NeedOverloadResolutionForDestructor(false),
     48     DefaultedMoveConstructorIsDeleted(false),
     49     DefaultedMoveAssignmentIsDeleted(false),
     50     DefaultedDestructorIsDeleted(false),
     51     HasTrivialSpecialMembers(SMF_All),
     52     DeclaredNonTrivialSpecialMembers(0),
     53     HasIrrelevantDestructor(true),
     54     HasConstexprNonCopyMoveConstructor(false),
     55     DefaultedDefaultConstructorIsConstexpr(true),
     56     HasConstexprDefaultConstructor(false),
     57     HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
     58     UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
     59     ImplicitCopyConstructorHasConstParam(true),
     60     ImplicitCopyAssignmentHasConstParam(true),
     61     HasDeclaredCopyConstructorWithConstParam(false),
     62     HasDeclaredCopyAssignmentWithConstParam(false),
     63     FailedImplicitMoveConstructor(false), FailedImplicitMoveAssignment(false),
     64     IsLambda(false), NumBases(0), NumVBases(0), Bases(), VBases(),
     65     Definition(D), FirstFriend() {
     66 }
     67 
     68 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
     69   return Bases.get(Definition->getASTContext().getExternalSource());
     70 }
     71 
     72 CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
     73   return VBases.get(Definition->getASTContext().getExternalSource());
     74 }
     75 
     76 CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
     77                              SourceLocation StartLoc, SourceLocation IdLoc,
     78                              IdentifierInfo *Id, CXXRecordDecl *PrevDecl)
     79   : RecordDecl(K, TK, DC, StartLoc, IdLoc, Id, PrevDecl),
     80     DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
     81     TemplateOrInstantiation() { }
     82 
     83 CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
     84                                      DeclContext *DC, SourceLocation StartLoc,
     85                                      SourceLocation IdLoc, IdentifierInfo *Id,
     86                                      CXXRecordDecl* PrevDecl,
     87                                      bool DelayTypeCreation) {
     88   CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, StartLoc, IdLoc,
     89                                            Id, PrevDecl);
     90   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
     91 
     92   // FIXME: DelayTypeCreation seems like such a hack
     93   if (!DelayTypeCreation)
     94     C.getTypeDeclType(R, PrevDecl);
     95   return R;
     96 }
     97 
     98 CXXRecordDecl *CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
     99                                            TypeSourceInfo *Info, SourceLocation Loc,
    100                                            bool Dependent) {
    101   CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TTK_Class, DC, Loc, Loc,
    102                                            0, 0);
    103   R->IsBeingDefined = true;
    104   R->DefinitionData = new (C) struct LambdaDefinitionData(R, Info, Dependent);
    105   R->MayHaveOutOfDateDef = false;
    106   C.getTypeDeclType(R, /*PrevDecl=*/0);
    107   return R;
    108 }
    109 
    110 CXXRecordDecl *
    111 CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
    112   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXRecordDecl));
    113   CXXRecordDecl *R = new (Mem) CXXRecordDecl(CXXRecord, TTK_Struct, 0,
    114                                              SourceLocation(), SourceLocation(),
    115                                              0, 0);
    116   R->MayHaveOutOfDateDef = false;
    117   return R;
    118 }
    119 
    120 void
    121 CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
    122                         unsigned NumBases) {
    123   ASTContext &C = getASTContext();
    124 
    125   if (!data().Bases.isOffset() && data().NumBases > 0)
    126     C.Deallocate(data().getBases());
    127 
    128   if (NumBases) {
    129     // C++ [dcl.init.aggr]p1:
    130     //   An aggregate is [...] a class with [...] no base classes [...].
    131     data().Aggregate = false;
    132 
    133     // C++ [class]p4:
    134     //   A POD-struct is an aggregate class...
    135     data().PlainOldData = false;
    136   }
    137 
    138   // The set of seen virtual base types.
    139   llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
    140 
    141   // The virtual bases of this class.
    142   SmallVector<const CXXBaseSpecifier *, 8> VBases;
    143 
    144   data().Bases = new(C) CXXBaseSpecifier [NumBases];
    145   data().NumBases = NumBases;
    146   for (unsigned i = 0; i < NumBases; ++i) {
    147     data().getBases()[i] = *Bases[i];
    148     // Keep track of inherited vbases for this base class.
    149     const CXXBaseSpecifier *Base = Bases[i];
    150     QualType BaseType = Base->getType();
    151     // Skip dependent types; we can't do any checking on them now.
    152     if (BaseType->isDependentType())
    153       continue;
    154     CXXRecordDecl *BaseClassDecl
    155       = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
    156 
    157     // A class with a non-empty base class is not empty.
    158     // FIXME: Standard ref?
    159     if (!BaseClassDecl->isEmpty()) {
    160       if (!data().Empty) {
    161         // C++0x [class]p7:
    162         //   A standard-layout class is a class that:
    163         //    [...]
    164         //    -- either has no non-static data members in the most derived
    165         //       class and at most one base class with non-static data members,
    166         //       or has no base classes with non-static data members, and
    167         // If this is the second non-empty base, then neither of these two
    168         // clauses can be true.
    169         data().IsStandardLayout = false;
    170       }
    171 
    172       data().Empty = false;
    173       data().HasNoNonEmptyBases = false;
    174     }
    175 
    176     // C++ [class.virtual]p1:
    177     //   A class that declares or inherits a virtual function is called a
    178     //   polymorphic class.
    179     if (BaseClassDecl->isPolymorphic())
    180       data().Polymorphic = true;
    181 
    182     // C++0x [class]p7:
    183     //   A standard-layout class is a class that: [...]
    184     //    -- has no non-standard-layout base classes
    185     if (!BaseClassDecl->isStandardLayout())
    186       data().IsStandardLayout = false;
    187 
    188     // Record if this base is the first non-literal field or base.
    189     if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
    190       data().HasNonLiteralTypeFieldsOrBases = true;
    191 
    192     // Now go through all virtual bases of this base and add them.
    193     for (CXXRecordDecl::base_class_iterator VBase =
    194           BaseClassDecl->vbases_begin(),
    195          E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
    196       // Add this base if it's not already in the list.
    197       if (SeenVBaseTypes.insert(C.getCanonicalType(VBase->getType()))) {
    198         VBases.push_back(VBase);
    199 
    200         // C++11 [class.copy]p8:
    201         //   The implicitly-declared copy constructor for a class X will have
    202         //   the form 'X::X(const X&)' if each [...] virtual base class B of X
    203         //   has a copy constructor whose first parameter is of type
    204         //   'const B&' or 'const volatile B&' [...]
    205         if (CXXRecordDecl *VBaseDecl = VBase->getType()->getAsCXXRecordDecl())
    206           if (!VBaseDecl->hasCopyConstructorWithConstParam())
    207             data().ImplicitCopyConstructorHasConstParam = false;
    208       }
    209     }
    210 
    211     if (Base->isVirtual()) {
    212       // Add this base if it's not already in the list.
    213       if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)))
    214         VBases.push_back(Base);
    215 
    216       // C++0x [meta.unary.prop] is_empty:
    217       //    T is a class type, but not a union type, with ... no virtual base
    218       //    classes
    219       data().Empty = false;
    220 
    221       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
    222       //   A [default constructor, copy/move constructor, or copy/move assignment
    223       //   operator for a class X] is trivial [...] if:
    224       //    -- class X has [...] no virtual base classes
    225       data().HasTrivialSpecialMembers &= SMF_Destructor;
    226 
    227       // C++0x [class]p7:
    228       //   A standard-layout class is a class that: [...]
    229       //    -- has [...] no virtual base classes
    230       data().IsStandardLayout = false;
    231 
    232       // C++11 [dcl.constexpr]p4:
    233       //   In the definition of a constexpr constructor [...]
    234       //    -- the class shall not have any virtual base classes
    235       data().DefaultedDefaultConstructorIsConstexpr = false;
    236     } else {
    237       // C++ [class.ctor]p5:
    238       //   A default constructor is trivial [...] if:
    239       //    -- all the direct base classes of its class have trivial default
    240       //       constructors.
    241       if (!BaseClassDecl->hasTrivialDefaultConstructor())
    242         data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
    243 
    244       // C++0x [class.copy]p13:
    245       //   A copy/move constructor for class X is trivial if [...]
    246       //    [...]
    247       //    -- the constructor selected to copy/move each direct base class
    248       //       subobject is trivial, and
    249       if (!BaseClassDecl->hasTrivialCopyConstructor())
    250         data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
    251       // If the base class doesn't have a simple move constructor, we'll eagerly
    252       // declare it and perform overload resolution to determine which function
    253       // it actually calls. If it does have a simple move constructor, this
    254       // check is correct.
    255       if (!BaseClassDecl->hasTrivialMoveConstructor())
    256         data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
    257 
    258       // C++0x [class.copy]p27:
    259       //   A copy/move assignment operator for class X is trivial if [...]
    260       //    [...]
    261       //    -- the assignment operator selected to copy/move each direct base
    262       //       class subobject is trivial, and
    263       if (!BaseClassDecl->hasTrivialCopyAssignment())
    264         data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
    265       // If the base class doesn't have a simple move assignment, we'll eagerly
    266       // declare it and perform overload resolution to determine which function
    267       // it actually calls. If it does have a simple move assignment, this
    268       // check is correct.
    269       if (!BaseClassDecl->hasTrivialMoveAssignment())
    270         data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
    271 
    272       // C++11 [class.ctor]p6:
    273       //   If that user-written default constructor would satisfy the
    274       //   requirements of a constexpr constructor, the implicitly-defined
    275       //   default constructor is constexpr.
    276       if (!BaseClassDecl->hasConstexprDefaultConstructor())
    277         data().DefaultedDefaultConstructorIsConstexpr = false;
    278     }
    279 
    280     // C++ [class.ctor]p3:
    281     //   A destructor is trivial if all the direct base classes of its class
    282     //   have trivial destructors.
    283     if (!BaseClassDecl->hasTrivialDestructor())
    284       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
    285 
    286     if (!BaseClassDecl->hasIrrelevantDestructor())
    287       data().HasIrrelevantDestructor = false;
    288 
    289     // C++11 [class.copy]p18:
    290     //   The implicitly-declared copy assignment oeprator for a class X will
    291     //   have the form 'X& X::operator=(const X&)' if each direct base class B
    292     //   of X has a copy assignment operator whose parameter is of type 'const
    293     //   B&', 'const volatile B&', or 'B' [...]
    294     if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
    295       data().ImplicitCopyAssignmentHasConstParam = false;
    296 
    297     // C++11 [class.copy]p8:
    298     //   The implicitly-declared copy constructor for a class X will have
    299     //   the form 'X::X(const X&)' if each direct [...] base class B of X
    300     //   has a copy constructor whose first parameter is of type
    301     //   'const B&' or 'const volatile B&' [...]
    302     if (!BaseClassDecl->hasCopyConstructorWithConstParam())
    303       data().ImplicitCopyConstructorHasConstParam = false;
    304 
    305     // A class has an Objective-C object member if... or any of its bases
    306     // has an Objective-C object member.
    307     if (BaseClassDecl->hasObjectMember())
    308       setHasObjectMember(true);
    309 
    310     if (BaseClassDecl->hasVolatileMember())
    311       setHasVolatileMember(true);
    312 
    313     // Keep track of the presence of mutable fields.
    314     if (BaseClassDecl->hasMutableFields())
    315       data().HasMutableFields = true;
    316 
    317     if (BaseClassDecl->hasUninitializedReferenceMember())
    318       data().HasUninitializedReferenceMember = true;
    319 
    320     addedClassSubobject(BaseClassDecl);
    321   }
    322 
    323   if (VBases.empty())
    324     return;
    325 
    326   // Create base specifier for any direct or indirect virtual bases.
    327   data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
    328   data().NumVBases = VBases.size();
    329   for (int I = 0, E = VBases.size(); I != E; ++I) {
    330     QualType Type = VBases[I]->getType();
    331     if (!Type->isDependentType())
    332       addedClassSubobject(Type->getAsCXXRecordDecl());
    333     data().getVBases()[I] = *VBases[I];
    334   }
    335 }
    336 
    337 void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
    338   // C++11 [class.copy]p11:
    339   //   A defaulted copy/move constructor for a class X is defined as
    340   //   deleted if X has:
    341   //    -- a direct or virtual base class B that cannot be copied/moved [...]
    342   //    -- a non-static data member of class type M (or array thereof)
    343   //       that cannot be copied or moved [...]
    344   if (!Subobj->hasSimpleMoveConstructor())
    345     data().NeedOverloadResolutionForMoveConstructor = true;
    346 
    347   // C++11 [class.copy]p23:
    348   //   A defaulted copy/move assignment operator for a class X is defined as
    349   //   deleted if X has:
    350   //    -- a direct or virtual base class B that cannot be copied/moved [...]
    351   //    -- a non-static data member of class type M (or array thereof)
    352   //        that cannot be copied or moved [...]
    353   if (!Subobj->hasSimpleMoveAssignment())
    354     data().NeedOverloadResolutionForMoveAssignment = true;
    355 
    356   // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
    357   //   A defaulted [ctor or dtor] for a class X is defined as
    358   //   deleted if X has:
    359   //    -- any direct or virtual base class [...] has a type with a destructor
    360   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
    361   //    -- any non-static data member has a type with a destructor
    362   //       that is deleted or inaccessible from the defaulted [ctor or dtor].
    363   if (!Subobj->hasSimpleDestructor()) {
    364     data().NeedOverloadResolutionForMoveConstructor = true;
    365     data().NeedOverloadResolutionForDestructor = true;
    366   }
    367 }
    368 
    369 /// Callback function for CXXRecordDecl::forallBases that acknowledges
    370 /// that it saw a base class.
    371 static bool SawBase(const CXXRecordDecl *, void *) {
    372   return true;
    373 }
    374 
    375 bool CXXRecordDecl::hasAnyDependentBases() const {
    376   if (!isDependentContext())
    377     return false;
    378 
    379   return !forallBases(SawBase, 0);
    380 }
    381 
    382 bool CXXRecordDecl::isTriviallyCopyable() const {
    383   // C++0x [class]p5:
    384   //   A trivially copyable class is a class that:
    385   //   -- has no non-trivial copy constructors,
    386   if (hasNonTrivialCopyConstructor()) return false;
    387   //   -- has no non-trivial move constructors,
    388   if (hasNonTrivialMoveConstructor()) return false;
    389   //   -- has no non-trivial copy assignment operators,
    390   if (hasNonTrivialCopyAssignment()) return false;
    391   //   -- has no non-trivial move assignment operators, and
    392   if (hasNonTrivialMoveAssignment()) return false;
    393   //   -- has a trivial destructor.
    394   if (!hasTrivialDestructor()) return false;
    395 
    396   return true;
    397 }
    398 
    399 void CXXRecordDecl::markedVirtualFunctionPure() {
    400   // C++ [class.abstract]p2:
    401   //   A class is abstract if it has at least one pure virtual function.
    402   data().Abstract = true;
    403 }
    404 
    405 void CXXRecordDecl::addedMember(Decl *D) {
    406   if (!D->isImplicit() &&
    407       !isa<FieldDecl>(D) &&
    408       !isa<IndirectFieldDecl>(D) &&
    409       (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
    410         cast<TagDecl>(D)->getTagKind() == TTK_Interface))
    411     data().HasOnlyCMembers = false;
    412 
    413   // Ignore friends and invalid declarations.
    414   if (D->getFriendObjectKind() || D->isInvalidDecl())
    415     return;
    416 
    417   FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
    418   if (FunTmpl)
    419     D = FunTmpl->getTemplatedDecl();
    420 
    421   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
    422     if (Method->isVirtual()) {
    423       // C++ [dcl.init.aggr]p1:
    424       //   An aggregate is an array or a class with [...] no virtual functions.
    425       data().Aggregate = false;
    426 
    427       // C++ [class]p4:
    428       //   A POD-struct is an aggregate class...
    429       data().PlainOldData = false;
    430 
    431       // Virtual functions make the class non-empty.
    432       // FIXME: Standard ref?
    433       data().Empty = false;
    434 
    435       // C++ [class.virtual]p1:
    436       //   A class that declares or inherits a virtual function is called a
    437       //   polymorphic class.
    438       data().Polymorphic = true;
    439 
    440       // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
    441       //   A [default constructor, copy/move constructor, or copy/move
    442       //   assignment operator for a class X] is trivial [...] if:
    443       //    -- class X has no virtual functions [...]
    444       data().HasTrivialSpecialMembers &= SMF_Destructor;
    445 
    446       // C++0x [class]p7:
    447       //   A standard-layout class is a class that: [...]
    448       //    -- has no virtual functions
    449       data().IsStandardLayout = false;
    450     }
    451   }
    452 
    453   // Notify the listener if an implicit member was added after the definition
    454   // was completed.
    455   if (!isBeingDefined() && D->isImplicit())
    456     if (ASTMutationListener *L = getASTMutationListener())
    457       L->AddedCXXImplicitMember(data().Definition, D);
    458 
    459   // The kind of special member this declaration is, if any.
    460   unsigned SMKind = 0;
    461 
    462   // Handle constructors.
    463   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
    464     if (!Constructor->isImplicit()) {
    465       // Note that we have a user-declared constructor.
    466       data().UserDeclaredConstructor = true;
    467 
    468       // C++ [class]p4:
    469       //   A POD-struct is an aggregate class [...]
    470       // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
    471       // type is technically an aggregate in C++0x since it wouldn't be in 03.
    472       data().PlainOldData = false;
    473     }
    474 
    475     // Technically, "user-provided" is only defined for special member
    476     // functions, but the intent of the standard is clearly that it should apply
    477     // to all functions.
    478     bool UserProvided = Constructor->isUserProvided();
    479 
    480     if (Constructor->isDefaultConstructor()) {
    481       SMKind |= SMF_DefaultConstructor;
    482 
    483       if (UserProvided)
    484         data().UserProvidedDefaultConstructor = true;
    485       if (Constructor->isConstexpr())
    486         data().HasConstexprDefaultConstructor = true;
    487     }
    488 
    489     if (!FunTmpl) {
    490       unsigned Quals;
    491       if (Constructor->isCopyConstructor(Quals)) {
    492         SMKind |= SMF_CopyConstructor;
    493 
    494         if (Quals & Qualifiers::Const)
    495           data().HasDeclaredCopyConstructorWithConstParam = true;
    496       } else if (Constructor->isMoveConstructor())
    497         SMKind |= SMF_MoveConstructor;
    498     }
    499 
    500     // Record if we see any constexpr constructors which are neither copy
    501     // nor move constructors.
    502     if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
    503       data().HasConstexprNonCopyMoveConstructor = true;
    504 
    505     // C++ [dcl.init.aggr]p1:
    506     //   An aggregate is an array or a class with no user-declared
    507     //   constructors [...].
    508     // C++11 [dcl.init.aggr]p1:
    509     //   An aggregate is an array or a class with no user-provided
    510     //   constructors [...].
    511     if (getASTContext().getLangOpts().CPlusPlus11
    512           ? UserProvided : !Constructor->isImplicit())
    513       data().Aggregate = false;
    514   }
    515 
    516   // Handle destructors.
    517   if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
    518     SMKind |= SMF_Destructor;
    519 
    520     if (!DD->isImplicit())
    521       data().HasIrrelevantDestructor = false;
    522 
    523     // C++11 [class.dtor]p5:
    524     //   A destructor is trivial if [...] the destructor is not virtual.
    525     if (DD->isVirtual())
    526       data().HasTrivialSpecialMembers &= ~SMF_Destructor;
    527   }
    528 
    529   // Handle member functions.
    530   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
    531     if (Method->isCopyAssignmentOperator()) {
    532       SMKind |= SMF_CopyAssignment;
    533 
    534       const ReferenceType *ParamTy =
    535         Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
    536       if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
    537         data().HasDeclaredCopyAssignmentWithConstParam = true;
    538     }
    539 
    540     if (Method->isMoveAssignmentOperator())
    541       SMKind |= SMF_MoveAssignment;
    542 
    543     // Keep the list of conversion functions up-to-date.
    544     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
    545       // FIXME: We use the 'unsafe' accessor for the access specifier here,
    546       // because Sema may not have set it yet. That's really just a misdesign
    547       // in Sema. However, LLDB *will* have set the access specifier correctly,
    548       // and adds declarations after the class is technically completed,
    549       // so completeDefinition()'s overriding of the access specifiers doesn't
    550       // work.
    551       AccessSpecifier AS = Conversion->getAccessUnsafe();
    552 
    553       if (Conversion->getPrimaryTemplate()) {
    554         // We don't record specializations.
    555       } else if (FunTmpl) {
    556         if (FunTmpl->getPreviousDecl())
    557           data().Conversions.replace(FunTmpl->getPreviousDecl(),
    558                                      FunTmpl, AS);
    559         else
    560           data().Conversions.addDecl(getASTContext(), FunTmpl, AS);
    561       } else {
    562         if (Conversion->getPreviousDecl())
    563           data().Conversions.replace(Conversion->getPreviousDecl(),
    564                                      Conversion, AS);
    565         else
    566           data().Conversions.addDecl(getASTContext(), Conversion, AS);
    567       }
    568     }
    569 
    570     if (SMKind) {
    571       // If this is the first declaration of a special member, we no longer have
    572       // an implicit trivial special member.
    573       data().HasTrivialSpecialMembers &=
    574         data().DeclaredSpecialMembers | ~SMKind;
    575 
    576       if (!Method->isImplicit() && !Method->isUserProvided()) {
    577         // This method is user-declared but not user-provided. We can't work out
    578         // whether it's trivial yet (not until we get to the end of the class).
    579         // We'll handle this method in finishedDefaultedOrDeletedMember.
    580       } else if (Method->isTrivial())
    581         data().HasTrivialSpecialMembers |= SMKind;
    582       else
    583         data().DeclaredNonTrivialSpecialMembers |= SMKind;
    584 
    585       // Note when we have declared a declared special member, and suppress the
    586       // implicit declaration of this special member.
    587       data().DeclaredSpecialMembers |= SMKind;
    588 
    589       if (!Method->isImplicit()) {
    590         data().UserDeclaredSpecialMembers |= SMKind;
    591 
    592         // C++03 [class]p4:
    593         //   A POD-struct is an aggregate class that has [...] no user-defined
    594         //   copy assignment operator and no user-defined destructor.
    595         //
    596         // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
    597         // aggregates could not have any constructors, clear it even for an
    598         // explicitly defaulted or deleted constructor.
    599         // type is technically an aggregate in C++0x since it wouldn't be in 03.
    600         //
    601         // Also, a user-declared move assignment operator makes a class non-POD.
    602         // This is an extension in C++03.
    603         data().PlainOldData = false;
    604       }
    605     }
    606 
    607     return;
    608   }
    609 
    610   // Handle non-static data members.
    611   if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
    612     // C++ [class.bit]p2:
    613     //   A declaration for a bit-field that omits the identifier declares an
    614     //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
    615     //   initialized.
    616     if (Field->isUnnamedBitfield())
    617       return;
    618 
    619     // C++ [dcl.init.aggr]p1:
    620     //   An aggregate is an array or a class (clause 9) with [...] no
    621     //   private or protected non-static data members (clause 11).
    622     //
    623     // A POD must be an aggregate.
    624     if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
    625       data().Aggregate = false;
    626       data().PlainOldData = false;
    627     }
    628 
    629     // C++0x [class]p7:
    630     //   A standard-layout class is a class that:
    631     //    [...]
    632     //    -- has the same access control for all non-static data members,
    633     switch (D->getAccess()) {
    634     case AS_private:    data().HasPrivateFields = true;   break;
    635     case AS_protected:  data().HasProtectedFields = true; break;
    636     case AS_public:     data().HasPublicFields = true;    break;
    637     case AS_none:       llvm_unreachable("Invalid access specifier");
    638     };
    639     if ((data().HasPrivateFields + data().HasProtectedFields +
    640          data().HasPublicFields) > 1)
    641       data().IsStandardLayout = false;
    642 
    643     // Keep track of the presence of mutable fields.
    644     if (Field->isMutable())
    645       data().HasMutableFields = true;
    646 
    647     // C++0x [class]p9:
    648     //   A POD struct is a class that is both a trivial class and a
    649     //   standard-layout class, and has no non-static data members of type
    650     //   non-POD struct, non-POD union (or array of such types).
    651     //
    652     // Automatic Reference Counting: the presence of a member of Objective-C pointer type
    653     // that does not explicitly have no lifetime makes the class a non-POD.
    654     // However, we delay setting PlainOldData to false in this case so that
    655     // Sema has a chance to diagnostic causes where the same class will be
    656     // non-POD with Automatic Reference Counting but a POD without ARC.
    657     // In this case, the class will become a non-POD class when we complete
    658     // the definition.
    659     ASTContext &Context = getASTContext();
    660     QualType T = Context.getBaseElementType(Field->getType());
    661     if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
    662       if (!Context.getLangOpts().ObjCAutoRefCount ||
    663           T.getObjCLifetime() != Qualifiers::OCL_ExplicitNone)
    664         setHasObjectMember(true);
    665     } else if (!T.isCXX98PODType(Context))
    666       data().PlainOldData = false;
    667 
    668     if (T->isReferenceType()) {
    669       if (!Field->hasInClassInitializer())
    670         data().HasUninitializedReferenceMember = true;
    671 
    672       // C++0x [class]p7:
    673       //   A standard-layout class is a class that:
    674       //    -- has no non-static data members of type [...] reference,
    675       data().IsStandardLayout = false;
    676     }
    677 
    678     // Record if this field is the first non-literal or volatile field or base.
    679     if (!T->isLiteralType(Context) || T.isVolatileQualified())
    680       data().HasNonLiteralTypeFieldsOrBases = true;
    681 
    682     if (Field->hasInClassInitializer()) {
    683       data().HasInClassInitializer = true;
    684 
    685       // C++11 [class]p5:
    686       //   A default constructor is trivial if [...] no non-static data member
    687       //   of its class has a brace-or-equal-initializer.
    688       data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
    689 
    690       // C++11 [dcl.init.aggr]p1:
    691       //   An aggregate is a [...] class with [...] no
    692       //   brace-or-equal-initializers for non-static data members.
    693       //
    694       // This rule was removed in C++1y.
    695       if (!getASTContext().getLangOpts().CPlusPlus1y)
    696         data().Aggregate = false;
    697 
    698       // C++11 [class]p10:
    699       //   A POD struct is [...] a trivial class.
    700       data().PlainOldData = false;
    701     }
    702 
    703     // C++11 [class.copy]p23:
    704     //   A defaulted copy/move assignment operator for a class X is defined
    705     //   as deleted if X has:
    706     //    -- a non-static data member of reference type
    707     if (T->isReferenceType())
    708       data().DefaultedMoveAssignmentIsDeleted = true;
    709 
    710     if (const RecordType *RecordTy = T->getAs<RecordType>()) {
    711       CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
    712       if (FieldRec->getDefinition()) {
    713         addedClassSubobject(FieldRec);
    714 
    715         // C++11 [class.ctor]p5, C++11 [class.copy]p11:
    716         //   A defaulted [special member] for a class X is defined as
    717         //   deleted if:
    718         //    -- X is a union-like class that has a variant member with a
    719         //       non-trivial [corresponding special member]
    720         if (isUnion()) {
    721           if (FieldRec->hasNonTrivialMoveConstructor())
    722             data().DefaultedMoveConstructorIsDeleted = true;
    723           if (FieldRec->hasNonTrivialMoveAssignment())
    724             data().DefaultedMoveAssignmentIsDeleted = true;
    725           if (FieldRec->hasNonTrivialDestructor())
    726             data().DefaultedDestructorIsDeleted = true;
    727         }
    728 
    729         // C++0x [class.ctor]p5:
    730         //   A default constructor is trivial [...] if:
    731         //    -- for all the non-static data members of its class that are of
    732         //       class type (or array thereof), each such class has a trivial
    733         //       default constructor.
    734         if (!FieldRec->hasTrivialDefaultConstructor())
    735           data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
    736 
    737         // C++0x [class.copy]p13:
    738         //   A copy/move constructor for class X is trivial if [...]
    739         //    [...]
    740         //    -- for each non-static data member of X that is of class type (or
    741         //       an array thereof), the constructor selected to copy/move that
    742         //       member is trivial;
    743         if (!FieldRec->hasTrivialCopyConstructor())
    744           data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
    745         // If the field doesn't have a simple move constructor, we'll eagerly
    746         // declare the move constructor for this class and we'll decide whether
    747         // it's trivial then.
    748         if (!FieldRec->hasTrivialMoveConstructor())
    749           data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
    750 
    751         // C++0x [class.copy]p27:
    752         //   A copy/move assignment operator for class X is trivial if [...]
    753         //    [...]
    754         //    -- for each non-static data member of X that is of class type (or
    755         //       an array thereof), the assignment operator selected to
    756         //       copy/move that member is trivial;
    757         if (!FieldRec->hasTrivialCopyAssignment())
    758           data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
    759         // If the field doesn't have a simple move assignment, we'll eagerly
    760         // declare the move assignment for this class and we'll decide whether
    761         // it's trivial then.
    762         if (!FieldRec->hasTrivialMoveAssignment())
    763           data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
    764 
    765         if (!FieldRec->hasTrivialDestructor())
    766           data().HasTrivialSpecialMembers &= ~SMF_Destructor;
    767         if (!FieldRec->hasIrrelevantDestructor())
    768           data().HasIrrelevantDestructor = false;
    769         if (FieldRec->hasObjectMember())
    770           setHasObjectMember(true);
    771         if (FieldRec->hasVolatileMember())
    772           setHasVolatileMember(true);
    773 
    774         // C++0x [class]p7:
    775         //   A standard-layout class is a class that:
    776         //    -- has no non-static data members of type non-standard-layout
    777         //       class (or array of such types) [...]
    778         if (!FieldRec->isStandardLayout())
    779           data().IsStandardLayout = false;
    780 
    781         // C++0x [class]p7:
    782         //   A standard-layout class is a class that:
    783         //    [...]
    784         //    -- has no base classes of the same type as the first non-static
    785         //       data member.
    786         // We don't want to expend bits in the state of the record decl
    787         // tracking whether this is the first non-static data member so we
    788         // cheat a bit and use some of the existing state: the empty bit.
    789         // Virtual bases and virtual methods make a class non-empty, but they
    790         // also make it non-standard-layout so we needn't check here.
    791         // A non-empty base class may leave the class standard-layout, but not
    792         // if we have arrived here, and have at least on non-static data
    793         // member. If IsStandardLayout remains true, then the first non-static
    794         // data member must come through here with Empty still true, and Empty
    795         // will subsequently be set to false below.
    796         if (data().IsStandardLayout && data().Empty) {
    797           for (CXXRecordDecl::base_class_const_iterator BI = bases_begin(),
    798                                                         BE = bases_end();
    799                BI != BE; ++BI) {
    800             if (Context.hasSameUnqualifiedType(BI->getType(), T)) {
    801               data().IsStandardLayout = false;
    802               break;
    803             }
    804           }
    805         }
    806 
    807         // Keep track of the presence of mutable fields.
    808         if (FieldRec->hasMutableFields())
    809           data().HasMutableFields = true;
    810 
    811         // C++11 [class.copy]p13:
    812         //   If the implicitly-defined constructor would satisfy the
    813         //   requirements of a constexpr constructor, the implicitly-defined
    814         //   constructor is constexpr.
    815         // C++11 [dcl.constexpr]p4:
    816         //    -- every constructor involved in initializing non-static data
    817         //       members [...] shall be a constexpr constructor
    818         if (!Field->hasInClassInitializer() &&
    819             !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
    820           // The standard requires any in-class initializer to be a constant
    821           // expression. We consider this to be a defect.
    822           data().DefaultedDefaultConstructorIsConstexpr = false;
    823 
    824         // C++11 [class.copy]p8:
    825         //   The implicitly-declared copy constructor for a class X will have
    826         //   the form 'X::X(const X&)' if [...] for all the non-static data
    827         //   members of X that are of a class type M (or array thereof), each
    828         //   such class type has a copy constructor whose first parameter is
    829         //   of type 'const M&' or 'const volatile M&'.
    830         if (!FieldRec->hasCopyConstructorWithConstParam())
    831           data().ImplicitCopyConstructorHasConstParam = false;
    832 
    833         // C++11 [class.copy]p18:
    834         //   The implicitly-declared copy assignment oeprator for a class X will
    835         //   have the form 'X& X::operator=(const X&)' if [...] for all the
    836         //   non-static data members of X that are of a class type M (or array
    837         //   thereof), each such class type has a copy assignment operator whose
    838         //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
    839         if (!FieldRec->hasCopyAssignmentWithConstParam())
    840           data().ImplicitCopyAssignmentHasConstParam = false;
    841 
    842         if (FieldRec->hasUninitializedReferenceMember() &&
    843             !Field->hasInClassInitializer())
    844           data().HasUninitializedReferenceMember = true;
    845       }
    846     } else {
    847       // Base element type of field is a non-class type.
    848       if (!T->isLiteralType(Context) ||
    849           (!Field->hasInClassInitializer() && !isUnion()))
    850         data().DefaultedDefaultConstructorIsConstexpr = false;
    851 
    852       // C++11 [class.copy]p23:
    853       //   A defaulted copy/move assignment operator for a class X is defined
    854       //   as deleted if X has:
    855       //    -- a non-static data member of const non-class type (or array
    856       //       thereof)
    857       if (T.isConstQualified())
    858         data().DefaultedMoveAssignmentIsDeleted = true;
    859     }
    860 
    861     // C++0x [class]p7:
    862     //   A standard-layout class is a class that:
    863     //    [...]
    864     //    -- either has no non-static data members in the most derived
    865     //       class and at most one base class with non-static data members,
    866     //       or has no base classes with non-static data members, and
    867     // At this point we know that we have a non-static data member, so the last
    868     // clause holds.
    869     if (!data().HasNoNonEmptyBases)
    870       data().IsStandardLayout = false;
    871 
    872     // If this is not a zero-length bit-field, then the class is not empty.
    873     if (data().Empty) {
    874       if (!Field->isBitField() ||
    875           (!Field->getBitWidth()->isTypeDependent() &&
    876            !Field->getBitWidth()->isValueDependent() &&
    877            Field->getBitWidthValue(Context) != 0))
    878         data().Empty = false;
    879     }
    880   }
    881 
    882   // Handle using declarations of conversion functions.
    883   if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D))
    884     if (Shadow->getDeclName().getNameKind()
    885           == DeclarationName::CXXConversionFunctionName)
    886       data().Conversions.addDecl(getASTContext(), Shadow, Shadow->getAccess());
    887 }
    888 
    889 void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
    890   assert(!D->isImplicit() && !D->isUserProvided());
    891 
    892   // The kind of special member this declaration is, if any.
    893   unsigned SMKind = 0;
    894 
    895   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
    896     if (Constructor->isDefaultConstructor()) {
    897       SMKind |= SMF_DefaultConstructor;
    898       if (Constructor->isConstexpr())
    899         data().HasConstexprDefaultConstructor = true;
    900     }
    901     if (Constructor->isCopyConstructor())
    902       SMKind |= SMF_CopyConstructor;
    903     else if (Constructor->isMoveConstructor())
    904       SMKind |= SMF_MoveConstructor;
    905     else if (Constructor->isConstexpr())
    906       // We may now know that the constructor is constexpr.
    907       data().HasConstexprNonCopyMoveConstructor = true;
    908   } else if (isa<CXXDestructorDecl>(D))
    909     SMKind |= SMF_Destructor;
    910   else if (D->isCopyAssignmentOperator())
    911     SMKind |= SMF_CopyAssignment;
    912   else if (D->isMoveAssignmentOperator())
    913     SMKind |= SMF_MoveAssignment;
    914 
    915   // Update which trivial / non-trivial special members we have.
    916   // addedMember will have skipped this step for this member.
    917   if (D->isTrivial())
    918     data().HasTrivialSpecialMembers |= SMKind;
    919   else
    920     data().DeclaredNonTrivialSpecialMembers |= SMKind;
    921 }
    922 
    923 bool CXXRecordDecl::isCLike() const {
    924   if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
    925       !TemplateOrInstantiation.isNull())
    926     return false;
    927   if (!hasDefinition())
    928     return true;
    929 
    930   return isPOD() && data().HasOnlyCMembers;
    931 }
    932 
    933 void CXXRecordDecl::getCaptureFields(
    934        llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
    935        FieldDecl *&ThisCapture) const {
    936   Captures.clear();
    937   ThisCapture = 0;
    938 
    939   LambdaDefinitionData &Lambda = getLambdaData();
    940   RecordDecl::field_iterator Field = field_begin();
    941   for (LambdaExpr::Capture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
    942        C != CEnd; ++C, ++Field) {
    943     if (C->capturesThis())
    944       ThisCapture = *Field;
    945     else if (C->capturesVariable())
    946       Captures[C->getCapturedVar()] = *Field;
    947   }
    948 }
    949 
    950 
    951 static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
    952   QualType T;
    953   if (isa<UsingShadowDecl>(Conv))
    954     Conv = cast<UsingShadowDecl>(Conv)->getTargetDecl();
    955   if (FunctionTemplateDecl *ConvTemp = dyn_cast<FunctionTemplateDecl>(Conv))
    956     T = ConvTemp->getTemplatedDecl()->getResultType();
    957   else
    958     T = cast<CXXConversionDecl>(Conv)->getConversionType();
    959   return Context.getCanonicalType(T);
    960 }
    961 
    962 /// Collect the visible conversions of a base class.
    963 ///
    964 /// \param Record a base class of the class we're considering
    965 /// \param InVirtual whether this base class is a virtual base (or a base
    966 ///   of a virtual base)
    967 /// \param Access the access along the inheritance path to this base
    968 /// \param ParentHiddenTypes the conversions provided by the inheritors
    969 ///   of this base
    970 /// \param Output the set to which to add conversions from non-virtual bases
    971 /// \param VOutput the set to which to add conversions from virtual bases
    972 /// \param HiddenVBaseCs the set of conversions which were hidden in a
    973 ///   virtual base along some inheritance path
    974 static void CollectVisibleConversions(ASTContext &Context,
    975                                       CXXRecordDecl *Record,
    976                                       bool InVirtual,
    977                                       AccessSpecifier Access,
    978                   const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
    979                                       ASTUnresolvedSet &Output,
    980                                       UnresolvedSetImpl &VOutput,
    981                            llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
    982   // The set of types which have conversions in this class or its
    983   // subclasses.  As an optimization, we don't copy the derived set
    984   // unless it might change.
    985   const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
    986   llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
    987 
    988   // Collect the direct conversions and figure out which conversions
    989   // will be hidden in the subclasses.
    990   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
    991   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
    992   if (ConvI != ConvE) {
    993     HiddenTypesBuffer = ParentHiddenTypes;
    994     HiddenTypes = &HiddenTypesBuffer;
    995 
    996     for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
    997       CanQualType ConvType(GetConversionType(Context, I.getDecl()));
    998       bool Hidden = ParentHiddenTypes.count(ConvType);
    999       if (!Hidden)
   1000         HiddenTypesBuffer.insert(ConvType);
   1001 
   1002       // If this conversion is hidden and we're in a virtual base,
   1003       // remember that it's hidden along some inheritance path.
   1004       if (Hidden && InVirtual)
   1005         HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
   1006 
   1007       // If this conversion isn't hidden, add it to the appropriate output.
   1008       else if (!Hidden) {
   1009         AccessSpecifier IAccess
   1010           = CXXRecordDecl::MergeAccess(Access, I.getAccess());
   1011 
   1012         if (InVirtual)
   1013           VOutput.addDecl(I.getDecl(), IAccess);
   1014         else
   1015           Output.addDecl(Context, I.getDecl(), IAccess);
   1016       }
   1017     }
   1018   }
   1019 
   1020   // Collect information recursively from any base classes.
   1021   for (CXXRecordDecl::base_class_iterator
   1022          I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
   1023     const RecordType *RT = I->getType()->getAs<RecordType>();
   1024     if (!RT) continue;
   1025 
   1026     AccessSpecifier BaseAccess
   1027       = CXXRecordDecl::MergeAccess(Access, I->getAccessSpecifier());
   1028     bool BaseInVirtual = InVirtual || I->isVirtual();
   1029 
   1030     CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
   1031     CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
   1032                               *HiddenTypes, Output, VOutput, HiddenVBaseCs);
   1033   }
   1034 }
   1035 
   1036 /// Collect the visible conversions of a class.
   1037 ///
   1038 /// This would be extremely straightforward if it weren't for virtual
   1039 /// bases.  It might be worth special-casing that, really.
   1040 static void CollectVisibleConversions(ASTContext &Context,
   1041                                       CXXRecordDecl *Record,
   1042                                       ASTUnresolvedSet &Output) {
   1043   // The collection of all conversions in virtual bases that we've
   1044   // found.  These will be added to the output as long as they don't
   1045   // appear in the hidden-conversions set.
   1046   UnresolvedSet<8> VBaseCs;
   1047 
   1048   // The set of conversions in virtual bases that we've determined to
   1049   // be hidden.
   1050   llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
   1051 
   1052   // The set of types hidden by classes derived from this one.
   1053   llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
   1054 
   1055   // Go ahead and collect the direct conversions and add them to the
   1056   // hidden-types set.
   1057   CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
   1058   CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
   1059   Output.append(Context, ConvI, ConvE);
   1060   for (; ConvI != ConvE; ++ConvI)
   1061     HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
   1062 
   1063   // Recursively collect conversions from base classes.
   1064   for (CXXRecordDecl::base_class_iterator
   1065          I = Record->bases_begin(), E = Record->bases_end(); I != E; ++I) {
   1066     const RecordType *RT = I->getType()->getAs<RecordType>();
   1067     if (!RT) continue;
   1068 
   1069     CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
   1070                               I->isVirtual(), I->getAccessSpecifier(),
   1071                               HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
   1072   }
   1073 
   1074   // Add any unhidden conversions provided by virtual bases.
   1075   for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
   1076          I != E; ++I) {
   1077     if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
   1078       Output.addDecl(Context, I.getDecl(), I.getAccess());
   1079   }
   1080 }
   1081 
   1082 /// getVisibleConversionFunctions - get all conversion functions visible
   1083 /// in current class; including conversion function templates.
   1084 std::pair<CXXRecordDecl::conversion_iterator,CXXRecordDecl::conversion_iterator>
   1085 CXXRecordDecl::getVisibleConversionFunctions() {
   1086   // If root class, all conversions are visible.
   1087   if (bases_begin() == bases_end())
   1088     return std::make_pair(data().Conversions.begin(), data().Conversions.end());
   1089   // If visible conversion list is already evaluated, return it.
   1090   if (!data().ComputedVisibleConversions) {
   1091     CollectVisibleConversions(getASTContext(), this, data().VisibleConversions);
   1092     data().ComputedVisibleConversions = true;
   1093   }
   1094   return std::make_pair(data().VisibleConversions.begin(),
   1095                         data().VisibleConversions.end());
   1096 }
   1097 
   1098 void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
   1099   // This operation is O(N) but extremely rare.  Sema only uses it to
   1100   // remove UsingShadowDecls in a class that were followed by a direct
   1101   // declaration, e.g.:
   1102   //   class A : B {
   1103   //     using B::operator int;
   1104   //     operator int();
   1105   //   };
   1106   // This is uncommon by itself and even more uncommon in conjunction
   1107   // with sufficiently large numbers of directly-declared conversions
   1108   // that asymptotic behavior matters.
   1109 
   1110   ASTUnresolvedSet &Convs = data().Conversions;
   1111   for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
   1112     if (Convs[I].getDecl() == ConvDecl) {
   1113       Convs.erase(I);
   1114       assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
   1115              && "conversion was found multiple times in unresolved set");
   1116       return;
   1117     }
   1118   }
   1119 
   1120   llvm_unreachable("conversion not found in set!");
   1121 }
   1122 
   1123 CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
   1124   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
   1125     return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
   1126 
   1127   return 0;
   1128 }
   1129 
   1130 void
   1131 CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
   1132                                              TemplateSpecializationKind TSK) {
   1133   assert(TemplateOrInstantiation.isNull() &&
   1134          "Previous template or instantiation?");
   1135   assert(!isa<ClassTemplateSpecializationDecl>(this));
   1136   TemplateOrInstantiation
   1137     = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
   1138 }
   1139 
   1140 TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
   1141   if (const ClassTemplateSpecializationDecl *Spec
   1142         = dyn_cast<ClassTemplateSpecializationDecl>(this))
   1143     return Spec->getSpecializationKind();
   1144 
   1145   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
   1146     return MSInfo->getTemplateSpecializationKind();
   1147 
   1148   return TSK_Undeclared;
   1149 }
   1150 
   1151 void
   1152 CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
   1153   if (ClassTemplateSpecializationDecl *Spec
   1154       = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
   1155     Spec->setSpecializationKind(TSK);
   1156     return;
   1157   }
   1158 
   1159   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
   1160     MSInfo->setTemplateSpecializationKind(TSK);
   1161     return;
   1162   }
   1163 
   1164   llvm_unreachable("Not a class template or member class specialization");
   1165 }
   1166 
   1167 CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
   1168   ASTContext &Context = getASTContext();
   1169   QualType ClassType = Context.getTypeDeclType(this);
   1170 
   1171   DeclarationName Name
   1172     = Context.DeclarationNames.getCXXDestructorName(
   1173                                           Context.getCanonicalType(ClassType));
   1174 
   1175   DeclContext::lookup_const_result R = lookup(Name);
   1176   if (R.empty())
   1177     return 0;
   1178 
   1179   CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(R.front());
   1180   return Dtor;
   1181 }
   1182 
   1183 void CXXRecordDecl::completeDefinition() {
   1184   completeDefinition(0);
   1185 }
   1186 
   1187 void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
   1188   RecordDecl::completeDefinition();
   1189 
   1190   if (hasObjectMember() && getASTContext().getLangOpts().ObjCAutoRefCount) {
   1191     // Objective-C Automatic Reference Counting:
   1192     //   If a class has a non-static data member of Objective-C pointer
   1193     //   type (or array thereof), it is a non-POD type and its
   1194     //   default constructor (if any), copy constructor, move constructor,
   1195     //   copy assignment operator, move assignment operator, and destructor are
   1196     //   non-trivial.
   1197     struct DefinitionData &Data = data();
   1198     Data.PlainOldData = false;
   1199     Data.HasTrivialSpecialMembers = 0;
   1200     Data.HasIrrelevantDestructor = false;
   1201   }
   1202 
   1203   // If the class may be abstract (but hasn't been marked as such), check for
   1204   // any pure final overriders.
   1205   if (mayBeAbstract()) {
   1206     CXXFinalOverriderMap MyFinalOverriders;
   1207     if (!FinalOverriders) {
   1208       getFinalOverriders(MyFinalOverriders);
   1209       FinalOverriders = &MyFinalOverriders;
   1210     }
   1211 
   1212     bool Done = false;
   1213     for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
   1214                                      MEnd = FinalOverriders->end();
   1215          M != MEnd && !Done; ++M) {
   1216       for (OverridingMethods::iterator SO = M->second.begin(),
   1217                                     SOEnd = M->second.end();
   1218            SO != SOEnd && !Done; ++SO) {
   1219         assert(SO->second.size() > 0 &&
   1220                "All virtual functions have overridding virtual functions");
   1221 
   1222         // C++ [class.abstract]p4:
   1223         //   A class is abstract if it contains or inherits at least one
   1224         //   pure virtual function for which the final overrider is pure
   1225         //   virtual.
   1226         if (SO->second.front().Method->isPure()) {
   1227           data().Abstract = true;
   1228           Done = true;
   1229           break;
   1230         }
   1231       }
   1232     }
   1233   }
   1234 
   1235   // Set access bits correctly on the directly-declared conversions.
   1236   for (UnresolvedSetIterator I = data().Conversions.begin(),
   1237                              E = data().Conversions.end();
   1238        I != E; ++I)
   1239     I.setAccess((*I)->getAccess());
   1240 }
   1241 
   1242 bool CXXRecordDecl::mayBeAbstract() const {
   1243   if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
   1244       isDependentContext())
   1245     return false;
   1246 
   1247   for (CXXRecordDecl::base_class_const_iterator B = bases_begin(),
   1248                                              BEnd = bases_end();
   1249        B != BEnd; ++B) {
   1250     CXXRecordDecl *BaseDecl
   1251       = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
   1252     if (BaseDecl->isAbstract())
   1253       return true;
   1254   }
   1255 
   1256   return false;
   1257 }
   1258 
   1259 void CXXMethodDecl::anchor() { }
   1260 
   1261 bool CXXMethodDecl::isStatic() const {
   1262   const CXXMethodDecl *MD = getCanonicalDecl();
   1263 
   1264   if (MD->getStorageClass() == SC_Static)
   1265     return true;
   1266 
   1267   DeclarationName Name = getDeclName();
   1268   // [class.free]p1:
   1269   // Any allocation function for a class T is a static member
   1270   // (even if not explicitly declared static).
   1271   if (Name.getCXXOverloadedOperator() == OO_New ||
   1272       Name.getCXXOverloadedOperator() == OO_Array_New)
   1273     return true;
   1274 
   1275   // [class.free]p6 Any deallocation function for a class X is a static member
   1276   // (even if not explicitly declared static).
   1277   if (Name.getCXXOverloadedOperator() == OO_Delete ||
   1278       Name.getCXXOverloadedOperator() == OO_Array_Delete)
   1279     return true;
   1280 
   1281   return false;
   1282 }
   1283 
   1284 static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
   1285                                  const CXXMethodDecl *BaseMD) {
   1286   for (CXXMethodDecl::method_iterator I = DerivedMD->begin_overridden_methods(),
   1287          E = DerivedMD->end_overridden_methods(); I != E; ++I) {
   1288     const CXXMethodDecl *MD = *I;
   1289     if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
   1290       return true;
   1291     if (recursivelyOverrides(MD, BaseMD))
   1292       return true;
   1293   }
   1294   return false;
   1295 }
   1296 
   1297 CXXMethodDecl *
   1298 CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
   1299                                              bool MayBeBase) {
   1300   if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
   1301     return this;
   1302 
   1303   // Lookup doesn't work for destructors, so handle them separately.
   1304   if (isa<CXXDestructorDecl>(this)) {
   1305     CXXMethodDecl *MD = RD->getDestructor();
   1306     if (MD) {
   1307       if (recursivelyOverrides(MD, this))
   1308         return MD;
   1309       if (MayBeBase && recursivelyOverrides(this, MD))
   1310         return MD;
   1311     }
   1312     return NULL;
   1313   }
   1314 
   1315   lookup_const_result Candidates = RD->lookup(getDeclName());
   1316   for (NamedDecl * const * I = Candidates.begin(); I != Candidates.end(); ++I) {
   1317     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I);
   1318     if (!MD)
   1319       continue;
   1320     if (recursivelyOverrides(MD, this))
   1321       return MD;
   1322     if (MayBeBase && recursivelyOverrides(this, MD))
   1323       return MD;
   1324   }
   1325 
   1326   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
   1327          E = RD->bases_end(); I != E; ++I) {
   1328     const RecordType *RT = I->getType()->getAs<RecordType>();
   1329     if (!RT)
   1330       continue;
   1331     const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
   1332     CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
   1333     if (T)
   1334       return T;
   1335   }
   1336 
   1337   return NULL;
   1338 }
   1339 
   1340 CXXMethodDecl *
   1341 CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1342                       SourceLocation StartLoc,
   1343                       const DeclarationNameInfo &NameInfo,
   1344                       QualType T, TypeSourceInfo *TInfo,
   1345                       StorageClass SC, bool isInline,
   1346                       bool isConstexpr, SourceLocation EndLocation) {
   1347   return new (C) CXXMethodDecl(CXXMethod, RD, StartLoc, NameInfo, T, TInfo,
   1348                                SC, isInline, isConstexpr,
   1349                                EndLocation);
   1350 }
   1351 
   1352 CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1353   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXMethodDecl));
   1354   return new (Mem) CXXMethodDecl(CXXMethod, 0, SourceLocation(),
   1355                                  DeclarationNameInfo(), QualType(),
   1356                                  0, SC_None, false, false,
   1357                                  SourceLocation());
   1358 }
   1359 
   1360 bool CXXMethodDecl::isUsualDeallocationFunction() const {
   1361   if (getOverloadedOperator() != OO_Delete &&
   1362       getOverloadedOperator() != OO_Array_Delete)
   1363     return false;
   1364 
   1365   // C++ [basic.stc.dynamic.deallocation]p2:
   1366   //   A template instance is never a usual deallocation function,
   1367   //   regardless of its signature.
   1368   if (getPrimaryTemplate())
   1369     return false;
   1370 
   1371   // C++ [basic.stc.dynamic.deallocation]p2:
   1372   //   If a class T has a member deallocation function named operator delete
   1373   //   with exactly one parameter, then that function is a usual (non-placement)
   1374   //   deallocation function. [...]
   1375   if (getNumParams() == 1)
   1376     return true;
   1377 
   1378   // C++ [basic.stc.dynamic.deallocation]p2:
   1379   //   [...] If class T does not declare such an operator delete but does
   1380   //   declare a member deallocation function named operator delete with
   1381   //   exactly two parameters, the second of which has type std::size_t (18.1),
   1382   //   then this function is a usual deallocation function.
   1383   ASTContext &Context = getASTContext();
   1384   if (getNumParams() != 2 ||
   1385       !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
   1386                                       Context.getSizeType()))
   1387     return false;
   1388 
   1389   // This function is a usual deallocation function if there are no
   1390   // single-parameter deallocation functions of the same kind.
   1391   DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
   1392   for (DeclContext::lookup_const_result::iterator I = R.begin(), E = R.end();
   1393        I != E; ++I) {
   1394     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
   1395       if (FD->getNumParams() == 1)
   1396         return false;
   1397   }
   1398 
   1399   return true;
   1400 }
   1401 
   1402 bool CXXMethodDecl::isCopyAssignmentOperator() const {
   1403   // C++0x [class.copy]p17:
   1404   //  A user-declared copy assignment operator X::operator= is a non-static
   1405   //  non-template member function of class X with exactly one parameter of
   1406   //  type X, X&, const X&, volatile X& or const volatile X&.
   1407   if (/*operator=*/getOverloadedOperator() != OO_Equal ||
   1408       /*non-static*/ isStatic() ||
   1409       /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
   1410       getNumParams() != 1)
   1411     return false;
   1412 
   1413   QualType ParamType = getParamDecl(0)->getType();
   1414   if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
   1415     ParamType = Ref->getPointeeType();
   1416 
   1417   ASTContext &Context = getASTContext();
   1418   QualType ClassType
   1419     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
   1420   return Context.hasSameUnqualifiedType(ClassType, ParamType);
   1421 }
   1422 
   1423 bool CXXMethodDecl::isMoveAssignmentOperator() const {
   1424   // C++0x [class.copy]p19:
   1425   //  A user-declared move assignment operator X::operator= is a non-static
   1426   //  non-template member function of class X with exactly one parameter of type
   1427   //  X&&, const X&&, volatile X&&, or const volatile X&&.
   1428   if (getOverloadedOperator() != OO_Equal || isStatic() ||
   1429       getPrimaryTemplate() || getDescribedFunctionTemplate() ||
   1430       getNumParams() != 1)
   1431     return false;
   1432 
   1433   QualType ParamType = getParamDecl(0)->getType();
   1434   if (!isa<RValueReferenceType>(ParamType))
   1435     return false;
   1436   ParamType = ParamType->getPointeeType();
   1437 
   1438   ASTContext &Context = getASTContext();
   1439   QualType ClassType
   1440     = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
   1441   return Context.hasSameUnqualifiedType(ClassType, ParamType);
   1442 }
   1443 
   1444 void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
   1445   assert(MD->isCanonicalDecl() && "Method is not canonical!");
   1446   assert(!MD->getParent()->isDependentContext() &&
   1447          "Can't add an overridden method to a class template!");
   1448   assert(MD->isVirtual() && "Method is not virtual!");
   1449 
   1450   getASTContext().addOverriddenMethod(this, MD);
   1451 }
   1452 
   1453 CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
   1454   if (isa<CXXConstructorDecl>(this)) return 0;
   1455   return getASTContext().overridden_methods_begin(this);
   1456 }
   1457 
   1458 CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
   1459   if (isa<CXXConstructorDecl>(this)) return 0;
   1460   return getASTContext().overridden_methods_end(this);
   1461 }
   1462 
   1463 unsigned CXXMethodDecl::size_overridden_methods() const {
   1464   if (isa<CXXConstructorDecl>(this)) return 0;
   1465   return getASTContext().overridden_methods_size(this);
   1466 }
   1467 
   1468 QualType CXXMethodDecl::getThisType(ASTContext &C) const {
   1469   // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
   1470   // If the member function is declared const, the type of this is const X*,
   1471   // if the member function is declared volatile, the type of this is
   1472   // volatile X*, and if the member function is declared const volatile,
   1473   // the type of this is const volatile X*.
   1474 
   1475   assert(isInstance() && "No 'this' for static methods!");
   1476 
   1477   QualType ClassTy = C.getTypeDeclType(getParent());
   1478   ClassTy = C.getQualifiedType(ClassTy,
   1479                                Qualifiers::fromCVRMask(getTypeQualifiers()));
   1480   return C.getPointerType(ClassTy);
   1481 }
   1482 
   1483 bool CXXMethodDecl::hasInlineBody() const {
   1484   // If this function is a template instantiation, look at the template from
   1485   // which it was instantiated.
   1486   const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
   1487   if (!CheckFn)
   1488     CheckFn = this;
   1489 
   1490   const FunctionDecl *fn;
   1491   return CheckFn->hasBody(fn) && !fn->isOutOfLine();
   1492 }
   1493 
   1494 bool CXXMethodDecl::isLambdaStaticInvoker() const {
   1495   return getParent()->isLambda() &&
   1496          getIdentifier() && getIdentifier()->getName() == "__invoke";
   1497 }
   1498 
   1499 
   1500 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1501                                        TypeSourceInfo *TInfo, bool IsVirtual,
   1502                                        SourceLocation L, Expr *Init,
   1503                                        SourceLocation R,
   1504                                        SourceLocation EllipsisLoc)
   1505   : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
   1506     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
   1507     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1508 {
   1509 }
   1510 
   1511 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1512                                        FieldDecl *Member,
   1513                                        SourceLocation MemberLoc,
   1514                                        SourceLocation L, Expr *Init,
   1515                                        SourceLocation R)
   1516   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
   1517     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
   1518     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1519 {
   1520 }
   1521 
   1522 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1523                                        IndirectFieldDecl *Member,
   1524                                        SourceLocation MemberLoc,
   1525                                        SourceLocation L, Expr *Init,
   1526                                        SourceLocation R)
   1527   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
   1528     LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
   1529     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1530 {
   1531 }
   1532 
   1533 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1534                                        TypeSourceInfo *TInfo,
   1535                                        SourceLocation L, Expr *Init,
   1536                                        SourceLocation R)
   1537   : Initializee(TInfo), MemberOrEllipsisLocation(), Init(Init),
   1538     LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false),
   1539     IsWritten(false), SourceOrderOrNumArrayIndices(0)
   1540 {
   1541 }
   1542 
   1543 CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
   1544                                        FieldDecl *Member,
   1545                                        SourceLocation MemberLoc,
   1546                                        SourceLocation L, Expr *Init,
   1547                                        SourceLocation R,
   1548                                        VarDecl **Indices,
   1549                                        unsigned NumIndices)
   1550   : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
   1551     LParenLoc(L), RParenLoc(R), IsVirtual(false),
   1552     IsWritten(false), SourceOrderOrNumArrayIndices(NumIndices)
   1553 {
   1554   VarDecl **MyIndices = reinterpret_cast<VarDecl **> (this + 1);
   1555   memcpy(MyIndices, Indices, NumIndices * sizeof(VarDecl *));
   1556 }
   1557 
   1558 CXXCtorInitializer *CXXCtorInitializer::Create(ASTContext &Context,
   1559                                                FieldDecl *Member,
   1560                                                SourceLocation MemberLoc,
   1561                                                SourceLocation L, Expr *Init,
   1562                                                SourceLocation R,
   1563                                                VarDecl **Indices,
   1564                                                unsigned NumIndices) {
   1565   void *Mem = Context.Allocate(sizeof(CXXCtorInitializer) +
   1566                                sizeof(VarDecl *) * NumIndices,
   1567                                llvm::alignOf<CXXCtorInitializer>());
   1568   return new (Mem) CXXCtorInitializer(Context, Member, MemberLoc, L, Init, R,
   1569                                       Indices, NumIndices);
   1570 }
   1571 
   1572 TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
   1573   if (isBaseInitializer())
   1574     return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
   1575   else
   1576     return TypeLoc();
   1577 }
   1578 
   1579 const Type *CXXCtorInitializer::getBaseClass() const {
   1580   if (isBaseInitializer())
   1581     return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
   1582   else
   1583     return 0;
   1584 }
   1585 
   1586 SourceLocation CXXCtorInitializer::getSourceLocation() const {
   1587   if (isAnyMemberInitializer())
   1588     return getMemberLocation();
   1589 
   1590   if (isInClassMemberInitializer())
   1591     return getAnyMember()->getLocation();
   1592 
   1593   if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
   1594     return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
   1595 
   1596   return SourceLocation();
   1597 }
   1598 
   1599 SourceRange CXXCtorInitializer::getSourceRange() const {
   1600   if (isInClassMemberInitializer()) {
   1601     FieldDecl *D = getAnyMember();
   1602     if (Expr *I = D->getInClassInitializer())
   1603       return I->getSourceRange();
   1604     return SourceRange();
   1605   }
   1606 
   1607   return SourceRange(getSourceLocation(), getRParenLoc());
   1608 }
   1609 
   1610 void CXXConstructorDecl::anchor() { }
   1611 
   1612 CXXConstructorDecl *
   1613 CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1614   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConstructorDecl));
   1615   return new (Mem) CXXConstructorDecl(0, SourceLocation(),DeclarationNameInfo(),
   1616                                       QualType(), 0, false, false, false,false);
   1617 }
   1618 
   1619 CXXConstructorDecl *
   1620 CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1621                            SourceLocation StartLoc,
   1622                            const DeclarationNameInfo &NameInfo,
   1623                            QualType T, TypeSourceInfo *TInfo,
   1624                            bool isExplicit, bool isInline,
   1625                            bool isImplicitlyDeclared, bool isConstexpr) {
   1626   assert(NameInfo.getName().getNameKind()
   1627          == DeclarationName::CXXConstructorName &&
   1628          "Name must refer to a constructor");
   1629   return new (C) CXXConstructorDecl(RD, StartLoc, NameInfo, T, TInfo,
   1630                                     isExplicit, isInline, isImplicitlyDeclared,
   1631                                     isConstexpr);
   1632 }
   1633 
   1634 CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
   1635   assert(isDelegatingConstructor() && "Not a delegating constructor!");
   1636   Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
   1637   if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
   1638     return Construct->getConstructor();
   1639 
   1640   return 0;
   1641 }
   1642 
   1643 bool CXXConstructorDecl::isDefaultConstructor() const {
   1644   // C++ [class.ctor]p5:
   1645   //   A default constructor for a class X is a constructor of class
   1646   //   X that can be called without an argument.
   1647   return (getNumParams() == 0) ||
   1648          (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
   1649 }
   1650 
   1651 bool
   1652 CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
   1653   return isCopyOrMoveConstructor(TypeQuals) &&
   1654          getParamDecl(0)->getType()->isLValueReferenceType();
   1655 }
   1656 
   1657 bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
   1658   return isCopyOrMoveConstructor(TypeQuals) &&
   1659     getParamDecl(0)->getType()->isRValueReferenceType();
   1660 }
   1661 
   1662 /// \brief Determine whether this is a copy or move constructor.
   1663 bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
   1664   // C++ [class.copy]p2:
   1665   //   A non-template constructor for class X is a copy constructor
   1666   //   if its first parameter is of type X&, const X&, volatile X& or
   1667   //   const volatile X&, and either there are no other parameters
   1668   //   or else all other parameters have default arguments (8.3.6).
   1669   // C++0x [class.copy]p3:
   1670   //   A non-template constructor for class X is a move constructor if its
   1671   //   first parameter is of type X&&, const X&&, volatile X&&, or
   1672   //   const volatile X&&, and either there are no other parameters or else
   1673   //   all other parameters have default arguments.
   1674   if ((getNumParams() < 1) ||
   1675       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
   1676       (getPrimaryTemplate() != 0) ||
   1677       (getDescribedFunctionTemplate() != 0))
   1678     return false;
   1679 
   1680   const ParmVarDecl *Param = getParamDecl(0);
   1681 
   1682   // Do we have a reference type?
   1683   const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
   1684   if (!ParamRefType)
   1685     return false;
   1686 
   1687   // Is it a reference to our class type?
   1688   ASTContext &Context = getASTContext();
   1689 
   1690   CanQualType PointeeType
   1691     = Context.getCanonicalType(ParamRefType->getPointeeType());
   1692   CanQualType ClassTy
   1693     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
   1694   if (PointeeType.getUnqualifiedType() != ClassTy)
   1695     return false;
   1696 
   1697   // FIXME: other qualifiers?
   1698 
   1699   // We have a copy or move constructor.
   1700   TypeQuals = PointeeType.getCVRQualifiers();
   1701   return true;
   1702 }
   1703 
   1704 bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
   1705   // C++ [class.conv.ctor]p1:
   1706   //   A constructor declared without the function-specifier explicit
   1707   //   that can be called with a single parameter specifies a
   1708   //   conversion from the type of its first parameter to the type of
   1709   //   its class. Such a constructor is called a converting
   1710   //   constructor.
   1711   if (isExplicit() && !AllowExplicit)
   1712     return false;
   1713 
   1714   return (getNumParams() == 0 &&
   1715           getType()->getAs<FunctionProtoType>()->isVariadic()) ||
   1716          (getNumParams() == 1) ||
   1717          (getNumParams() > 1 &&
   1718           (getParamDecl(1)->hasDefaultArg() ||
   1719            getParamDecl(1)->isParameterPack()));
   1720 }
   1721 
   1722 bool CXXConstructorDecl::isSpecializationCopyingObject() const {
   1723   if ((getNumParams() < 1) ||
   1724       (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
   1725       (getPrimaryTemplate() == 0) ||
   1726       (getDescribedFunctionTemplate() != 0))
   1727     return false;
   1728 
   1729   const ParmVarDecl *Param = getParamDecl(0);
   1730 
   1731   ASTContext &Context = getASTContext();
   1732   CanQualType ParamType = Context.getCanonicalType(Param->getType());
   1733 
   1734   // Is it the same as our our class type?
   1735   CanQualType ClassTy
   1736     = Context.getCanonicalType(Context.getTagDeclType(getParent()));
   1737   if (ParamType.getUnqualifiedType() != ClassTy)
   1738     return false;
   1739 
   1740   return true;
   1741 }
   1742 
   1743 const CXXConstructorDecl *CXXConstructorDecl::getInheritedConstructor() const {
   1744   // Hack: we store the inherited constructor in the overridden method table
   1745   method_iterator It = getASTContext().overridden_methods_begin(this);
   1746   if (It == getASTContext().overridden_methods_end(this))
   1747     return 0;
   1748 
   1749   return cast<CXXConstructorDecl>(*It);
   1750 }
   1751 
   1752 void
   1753 CXXConstructorDecl::setInheritedConstructor(const CXXConstructorDecl *BaseCtor){
   1754   // Hack: we store the inherited constructor in the overridden method table
   1755   assert(getASTContext().overridden_methods_size(this) == 0 &&
   1756          "Base ctor already set.");
   1757   getASTContext().addOverriddenMethod(this, BaseCtor);
   1758 }
   1759 
   1760 void CXXDestructorDecl::anchor() { }
   1761 
   1762 CXXDestructorDecl *
   1763 CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1764   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXDestructorDecl));
   1765   return new (Mem) CXXDestructorDecl(0, SourceLocation(), DeclarationNameInfo(),
   1766                                    QualType(), 0, false, false);
   1767 }
   1768 
   1769 CXXDestructorDecl *
   1770 CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1771                           SourceLocation StartLoc,
   1772                           const DeclarationNameInfo &NameInfo,
   1773                           QualType T, TypeSourceInfo *TInfo,
   1774                           bool isInline, bool isImplicitlyDeclared) {
   1775   assert(NameInfo.getName().getNameKind()
   1776          == DeclarationName::CXXDestructorName &&
   1777          "Name must refer to a destructor");
   1778   return new (C) CXXDestructorDecl(RD, StartLoc, NameInfo, T, TInfo, isInline,
   1779                                    isImplicitlyDeclared);
   1780 }
   1781 
   1782 void CXXConversionDecl::anchor() { }
   1783 
   1784 CXXConversionDecl *
   1785 CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1786   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(CXXConversionDecl));
   1787   return new (Mem) CXXConversionDecl(0, SourceLocation(), DeclarationNameInfo(),
   1788                                      QualType(), 0, false, false, false,
   1789                                      SourceLocation());
   1790 }
   1791 
   1792 CXXConversionDecl *
   1793 CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
   1794                           SourceLocation StartLoc,
   1795                           const DeclarationNameInfo &NameInfo,
   1796                           QualType T, TypeSourceInfo *TInfo,
   1797                           bool isInline, bool isExplicit,
   1798                           bool isConstexpr, SourceLocation EndLocation) {
   1799   assert(NameInfo.getName().getNameKind()
   1800          == DeclarationName::CXXConversionFunctionName &&
   1801          "Name must refer to a conversion function");
   1802   return new (C) CXXConversionDecl(RD, StartLoc, NameInfo, T, TInfo,
   1803                                    isInline, isExplicit, isConstexpr,
   1804                                    EndLocation);
   1805 }
   1806 
   1807 bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
   1808   return isImplicit() && getParent()->isLambda() &&
   1809          getConversionType()->isBlockPointerType();
   1810 }
   1811 
   1812 void LinkageSpecDecl::anchor() { }
   1813 
   1814 LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
   1815                                          DeclContext *DC,
   1816                                          SourceLocation ExternLoc,
   1817                                          SourceLocation LangLoc,
   1818                                          LanguageIDs Lang,
   1819                                          bool HasBraces) {
   1820   return new (C) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
   1821 }
   1822 
   1823 LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1824   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(LinkageSpecDecl));
   1825   return new (Mem) LinkageSpecDecl(0, SourceLocation(), SourceLocation(),
   1826                                    lang_c, false);
   1827 }
   1828 
   1829 void UsingDirectiveDecl::anchor() { }
   1830 
   1831 UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
   1832                                                SourceLocation L,
   1833                                                SourceLocation NamespaceLoc,
   1834                                            NestedNameSpecifierLoc QualifierLoc,
   1835                                                SourceLocation IdentLoc,
   1836                                                NamedDecl *Used,
   1837                                                DeclContext *CommonAncestor) {
   1838   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
   1839     Used = NS->getOriginalNamespace();
   1840   return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
   1841                                     IdentLoc, Used, CommonAncestor);
   1842 }
   1843 
   1844 UsingDirectiveDecl *
   1845 UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1846   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDirectiveDecl));
   1847   return new (Mem) UsingDirectiveDecl(0, SourceLocation(), SourceLocation(),
   1848                                       NestedNameSpecifierLoc(),
   1849                                       SourceLocation(), 0, 0);
   1850 }
   1851 
   1852 NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
   1853   if (NamespaceAliasDecl *NA =
   1854         dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
   1855     return NA->getNamespace();
   1856   return cast_or_null<NamespaceDecl>(NominatedNamespace);
   1857 }
   1858 
   1859 void NamespaceDecl::anchor() { }
   1860 
   1861 NamespaceDecl::NamespaceDecl(DeclContext *DC, bool Inline,
   1862                              SourceLocation StartLoc,
   1863                              SourceLocation IdLoc, IdentifierInfo *Id,
   1864                              NamespaceDecl *PrevDecl)
   1865   : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
   1866     LocStart(StartLoc), RBraceLoc(), AnonOrFirstNamespaceAndInline(0, Inline)
   1867 {
   1868   setPreviousDeclaration(PrevDecl);
   1869 
   1870   if (PrevDecl)
   1871     AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
   1872 }
   1873 
   1874 NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
   1875                                      bool Inline, SourceLocation StartLoc,
   1876                                      SourceLocation IdLoc, IdentifierInfo *Id,
   1877                                      NamespaceDecl *PrevDecl) {
   1878   return new (C) NamespaceDecl(DC, Inline, StartLoc, IdLoc, Id, PrevDecl);
   1879 }
   1880 
   1881 NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1882   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceDecl));
   1883   return new (Mem) NamespaceDecl(0, false, SourceLocation(), SourceLocation(),
   1884                                  0, 0);
   1885 }
   1886 
   1887 void NamespaceAliasDecl::anchor() { }
   1888 
   1889 NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
   1890                                                SourceLocation UsingLoc,
   1891                                                SourceLocation AliasLoc,
   1892                                                IdentifierInfo *Alias,
   1893                                            NestedNameSpecifierLoc QualifierLoc,
   1894                                                SourceLocation IdentLoc,
   1895                                                NamedDecl *Namespace) {
   1896   if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
   1897     Namespace = NS->getOriginalNamespace();
   1898   return new (C) NamespaceAliasDecl(DC, UsingLoc, AliasLoc, Alias,
   1899                                     QualifierLoc, IdentLoc, Namespace);
   1900 }
   1901 
   1902 NamespaceAliasDecl *
   1903 NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1904   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(NamespaceAliasDecl));
   1905   return new (Mem) NamespaceAliasDecl(0, SourceLocation(), SourceLocation(), 0,
   1906                                       NestedNameSpecifierLoc(),
   1907                                       SourceLocation(), 0);
   1908 }
   1909 
   1910 void UsingShadowDecl::anchor() { }
   1911 
   1912 UsingShadowDecl *
   1913 UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1914   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingShadowDecl));
   1915   return new (Mem) UsingShadowDecl(0, SourceLocation(), 0, 0);
   1916 }
   1917 
   1918 UsingDecl *UsingShadowDecl::getUsingDecl() const {
   1919   const UsingShadowDecl *Shadow = this;
   1920   while (const UsingShadowDecl *NextShadow =
   1921          dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
   1922     Shadow = NextShadow;
   1923   return cast<UsingDecl>(Shadow->UsingOrNextShadow);
   1924 }
   1925 
   1926 void UsingDecl::anchor() { }
   1927 
   1928 void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
   1929   assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
   1930          "declaration already in set");
   1931   assert(S->getUsingDecl() == this);
   1932 
   1933   if (FirstUsingShadow.getPointer())
   1934     S->UsingOrNextShadow = FirstUsingShadow.getPointer();
   1935   FirstUsingShadow.setPointer(S);
   1936 }
   1937 
   1938 void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
   1939   assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
   1940          "declaration not in set");
   1941   assert(S->getUsingDecl() == this);
   1942 
   1943   // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
   1944 
   1945   if (FirstUsingShadow.getPointer() == S) {
   1946     FirstUsingShadow.setPointer(
   1947       dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
   1948     S->UsingOrNextShadow = this;
   1949     return;
   1950   }
   1951 
   1952   UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
   1953   while (Prev->UsingOrNextShadow != S)
   1954     Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
   1955   Prev->UsingOrNextShadow = S->UsingOrNextShadow;
   1956   S->UsingOrNextShadow = this;
   1957 }
   1958 
   1959 UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
   1960                              NestedNameSpecifierLoc QualifierLoc,
   1961                              const DeclarationNameInfo &NameInfo,
   1962                              bool HasTypename) {
   1963   return new (C) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
   1964 }
   1965 
   1966 UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1967   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UsingDecl));
   1968   return new (Mem) UsingDecl(0, SourceLocation(), NestedNameSpecifierLoc(),
   1969                              DeclarationNameInfo(), false);
   1970 }
   1971 
   1972 SourceRange UsingDecl::getSourceRange() const {
   1973   SourceLocation Begin = isAccessDeclaration()
   1974     ? getQualifierLoc().getBeginLoc() : UsingLocation;
   1975   return SourceRange(Begin, getNameInfo().getEndLoc());
   1976 }
   1977 
   1978 void UnresolvedUsingValueDecl::anchor() { }
   1979 
   1980 UnresolvedUsingValueDecl *
   1981 UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
   1982                                  SourceLocation UsingLoc,
   1983                                  NestedNameSpecifierLoc QualifierLoc,
   1984                                  const DeclarationNameInfo &NameInfo) {
   1985   return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
   1986                                           QualifierLoc, NameInfo);
   1987 }
   1988 
   1989 UnresolvedUsingValueDecl *
   1990 UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   1991   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(UnresolvedUsingValueDecl));
   1992   return new (Mem) UnresolvedUsingValueDecl(0, QualType(), SourceLocation(),
   1993                                             NestedNameSpecifierLoc(),
   1994                                             DeclarationNameInfo());
   1995 }
   1996 
   1997 SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
   1998   SourceLocation Begin = isAccessDeclaration()
   1999     ? getQualifierLoc().getBeginLoc() : UsingLocation;
   2000   return SourceRange(Begin, getNameInfo().getEndLoc());
   2001 }
   2002 
   2003 void UnresolvedUsingTypenameDecl::anchor() { }
   2004 
   2005 UnresolvedUsingTypenameDecl *
   2006 UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
   2007                                     SourceLocation UsingLoc,
   2008                                     SourceLocation TypenameLoc,
   2009                                     NestedNameSpecifierLoc QualifierLoc,
   2010                                     SourceLocation TargetNameLoc,
   2011                                     DeclarationName TargetName) {
   2012   return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
   2013                                              QualifierLoc, TargetNameLoc,
   2014                                              TargetName.getAsIdentifierInfo());
   2015 }
   2016 
   2017 UnresolvedUsingTypenameDecl *
   2018 UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
   2019   void *Mem = AllocateDeserializedDecl(C, ID,
   2020                                        sizeof(UnresolvedUsingTypenameDecl));
   2021   return new (Mem) UnresolvedUsingTypenameDecl(0, SourceLocation(),
   2022                                                SourceLocation(),
   2023                                                NestedNameSpecifierLoc(),
   2024                                                SourceLocation(),
   2025                                                0);
   2026 }
   2027 
   2028 void StaticAssertDecl::anchor() { }
   2029 
   2030 StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
   2031                                            SourceLocation StaticAssertLoc,
   2032                                            Expr *AssertExpr,
   2033                                            StringLiteral *Message,
   2034                                            SourceLocation RParenLoc,
   2035                                            bool Failed) {
   2036   return new (C) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
   2037                                   RParenLoc, Failed);
   2038 }
   2039 
   2040 StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
   2041                                                        unsigned ID) {
   2042   void *Mem = AllocateDeserializedDecl(C, ID, sizeof(StaticAssertDecl));
   2043   return new (Mem) StaticAssertDecl(0, SourceLocation(), 0, 0,
   2044                                     SourceLocation(), false);
   2045 }
   2046 
   2047 static const char *getAccessName(AccessSpecifier AS) {
   2048   switch (AS) {
   2049     case AS_none:
   2050       llvm_unreachable("Invalid access specifier!");
   2051     case AS_public:
   2052       return "public";
   2053     case AS_private:
   2054       return "private";
   2055     case AS_protected:
   2056       return "protected";
   2057   }
   2058   llvm_unreachable("Invalid access specifier!");
   2059 }
   2060 
   2061 const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
   2062                                            AccessSpecifier AS) {
   2063   return DB << getAccessName(AS);
   2064 }
   2065 
   2066 const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
   2067                                            AccessSpecifier AS) {
   2068   return DB << getAccessName(AS);
   2069 }
   2070