HomeSort by relevance Sort by last modified time
    Searched full:alpha (Results 176 - 200 of 5075) sorted by null

1 2 3 4 5 6 78 91011>>

  /external/qemu/distrib/sdl-1.2.15/src/video/
SDL_RLEaccel.c 25 * RLE encoding for software colorkey and alpha-channel acceleration
30 * decoder. Added per-surface alpha blitter. Added per-pixel alpha
49 * binary transparency and for per-surface alpha blending, and for surfaces
50 * with per-pixel alpha. The details differ, however:
62 * Encoding of surfaces with per-pixel alpha:
69 * partially transparent (translucent) pixels (where 1 <= alpha <= 254),
73 * the alpha value occupying the highest 8 bits. The <skip> and <run>
78 * and the hole filled with the 5 most significant bits of the alpha value.
121 * Various colorkey blit methods, for opaque and per-surface alpha
847 unsigned alpha; local
1293 unsigned alpha = dfmt->Amask ? 255 : 0; local
    [all...]
  /external/chromium_org/third_party/skia/include/core/
SkColor.h 20 /** 8-bit type for an alpha value. 0xFF is 100% opaque, 0x00 is 100% transparent.
57 of 0xFF for alpha (fully opaque)
61 /** return the alpha byte from a SkColor value */
111 @param color the argb color to convert. Note: the alpha component is ignored.
119 /** Convert HSV components to an ARGB color. The alpha component is passed through unchanged.
124 @param alpha the alpha component of the returned argb color.
128 SK_API SkColor SkHSVToColor(U8CPU alpha, const SkScalar hsv[3]);
130 /** Convert HSV components to an ARGB color. The alpha component set to 0xFF.
155 components by the color's alpha, and by arranging the bytes in a configuratio
    [all...]
  /external/chromium_org/third_party/skia/src/effects/
SkEmbossMask.cpp 95 uint8_t* alpha = mask->fImage; local
96 uint8_t* multiply = (uint8_t*)alpha + planeSize;
108 if (alpha[x]) {
109 int nx = alpha[x + neq_to_one(x, maxx)] - alpha[x - nonzero_to_one(x)];
110 int ny = alpha[x + next_row] - alpha[x - prev_row];
155 // ((uint8_t*)alpha)[x] = alpha[x] * multiply[x] >> 8;
158 alpha += rowBytes
    [all...]
  /external/chromium_org/third_party/skia/src/gpu/
GrSWMaskHelper.cpp 41 bool antiAlias, uint8_t alpha) {
48 paint.setColor(SkColorSetARGB(alpha, alpha, alpha, alpha));
59 bool antiAlias, uint8_t alpha) {
80 paint.setColor(SkColorSetARGB(alpha, alpha, alpha, alpha));
    [all...]
  /external/eigen/Eigen/src/Core/products/
SelfadjointProduct.h 27 static void run(Index size, Scalar* mat, Index stride, const Scalar* vec, Scalar alpha)
35 += (alpha * cj(vec[i])) * ConjRhsType(OtherMap(vec+(UpLo==Lower ? i : 0),UpLo==Lower ? size-i : (i+1)));
43 static void run(Index size, Scalar* mat, Index stride, const Scalar* vec, Scalar alpha)
45 selfadjoint_rank1_update<Scalar,Index,ColMajor,UpLo==Lower?Upper:Lower,ConjRhs,ConjLhs>::run(size,mat,stride,vec,alpha);
55 static void run(MatrixType& mat, const OtherType& other, typename MatrixType::Scalar alpha)
64 Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived());
88 static void run(MatrixType& mat, const OtherType& other, typename MatrixType::Scalar alpha)
97 Scalar actualAlpha = alpha * OtherBlasTraits::extractScalarFactor(other.derived());
116 ::rankUpdate(const MatrixBase<DerivedU>& u, Scalar alpha)
118 selfadjoint_product_selector<MatrixType,DerivedU,UpLo>::run(_expression().const_cast_derived(), u.derived(), alpha); local
    [all...]
  /external/freetype/src/sfnt/
pngshim.c 40 multiply_alpha( int alpha,
43 int temp = ( alpha * color ) + 0x80;
64 unsigned int alpha = base[3]; local
67 if ( alpha == 0 )
77 if ( alpha != 0xFF )
79 red = multiply_alpha( alpha, red );
80 green = multiply_alpha( alpha, green );
81 blue = multiply_alpha( alpha, blue );
87 base[3] = alpha;
260 /* transform transparency to alpha */
    [all...]
  /external/oprofile/events/
Makefile.am 2 alpha/ev4/events alpha/ev4/unit_masks \
3 alpha/ev5/events alpha/ev5/unit_masks \
4 alpha/ev67/events alpha/ev67/unit_masks \
5 alpha/ev6/events alpha/ev6/unit_masks \
6 alpha/pca56/events alpha/pca56/unit_masks
    [all...]
  /external/oprofile/libop/
op_cpu_type.c 39 { "Alpha EV4", "alpha/ev4", CPU_AXP_EV4, 2 },
40 { "Alpha EV5", "alpha/ev5", CPU_AXP_EV5, 3 },
41 { "Alpha PCA56", "alpha/pca56", CPU_AXP_PCA56, 3 },
42 { "Alpha EV6", "alpha/ev6", CPU_AXP_EV6, 2 },
43 { "Alpha EV67", "alpha/ev67", CPU_AXP_EV67, 20 }
    [all...]
  /external/skia/include/core/
SkColor.h 20 /** 8-bit type for an alpha value. 0xFF is 100% opaque, 0x00 is 100% transparent.
57 of 0xFF for alpha (fully opaque)
61 /** return the alpha byte from a SkColor value */
111 @param color the argb color to convert. Note: the alpha component is ignored.
119 /** Convert HSV components to an ARGB color. The alpha component is passed through unchanged.
124 @param alpha the alpha component of the returned argb color.
128 SK_API SkColor SkHSVToColor(U8CPU alpha, const SkScalar hsv[3]);
130 /** Convert HSV components to an ARGB color. The alpha component set to 0xFF.
155 components by the color's alpha, and by arranging the bytes in a configuratio
    [all...]
  /external/skia/src/effects/
SkEmbossMask.cpp 95 uint8_t* alpha = mask->fImage; local
96 uint8_t* multiply = (uint8_t*)alpha + planeSize;
108 if (alpha[x]) {
109 int nx = alpha[x + neq_to_one(x, maxx)] - alpha[x - nonzero_to_one(x)];
110 int ny = alpha[x + next_row] - alpha[x - prev_row];
155 // ((uint8_t*)alpha)[x] = alpha[x] * multiply[x] >> 8;
158 alpha += rowBytes
    [all...]
  /external/skia/src/gpu/
GrSWMaskHelper.cpp 41 bool antiAlias, uint8_t alpha) {
48 paint.setColor(SkColorSetARGB(alpha, alpha, alpha, alpha));
59 bool antiAlias, uint8_t alpha) {
80 paint.setColor(SkColorSetARGB(alpha, alpha, alpha, alpha));
    [all...]
  /external/pixman/test/
alphamap.c 151 pixman_image_t *src, *dst, *orig_dst, *alpha, *orig_alpha; local
169 alpha = make_image (saf);
170 pixman_image_set_alpha_map (src, alpha, soff, soff);
171 pixman_image_unref (alpha);
183 alpha = make_image (daf);
185 pixman_image_composite (PIXMAN_OP_SRC, orig_alpha, NULL, alpha,
189 pixman_image_set_alpha_map (dst, alpha, doff, doff);
192 pixman_image_unref (alpha);
228 printf ("\nWrong alpha value at (%d, %d). Should be 0x%x; got 0x%x. Source was 0x%x, original dest was 0x%x\n",
231 printf ("src: %s, alpha: %s, origin %d %d\ndst: %s, alpha: %s, origin: %d %d\n\n"
    [all...]
  /external/webrtc/src/common_audio/signal_processing/
levinson_durbin.c 34 // Prediction gain Alpha in high precision and with scale factor
80 // Alpha = R[0] * (1-K^2)
93 // Calculate Alpha in Q31
98 // Normalize Alpha and put it in hi and low format
131 // K = -temp1W32 / Alpha
133 temp3W32 = WebRtcSpl_DivW32HiLow(temp2W32, Alpha_hi, Alpha_low); // abs(temp1W32)/Alpha
141 // Use the Alpha shifts from earlier to de-normalize
204 // Alpha = Alpha * (1-K^2)
217 // Calculate Alpha = Alpha * (1-K^2) in Q3
    [all...]
  /prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.4.3/i686-linux/include/c++/4.4.3/tr1/
poly_laguerre.tcc 59 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
66 * degree @f$ \alpha @f$, and argument x.
115 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
116 * _1F_1(-n; \alpha + 1; x)
118 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
155 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
160 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]
  /prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.6/i686-linux/include/c++/4.6.x-google/tr1/
poly_laguerre.tcc 58 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
65 * degree @f$ \alpha @f$, and argument x.
114 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
115 * _1F_1(-n; \alpha + 1; x)
117 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
154 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
159 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]
  /prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.7-4.6/x86_64-linux/include/c++/4.6.x-google/tr1/
poly_laguerre.tcc 58 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
65 * degree @f$ \alpha @f$, and argument x.
114 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
115 * _1F_1(-n; \alpha + 1; x)
117 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
154 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
159 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]
  /prebuilts/ndk/5/sources/cxx-stl/gnu-libstdc++/include/tr1/
poly_laguerre.tcc 59 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
66 * degree @f$ \alpha @f$, and argument x.
115 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
116 * _1F_1(-n; \alpha + 1; x)
118 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
155 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
160 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]
  /prebuilts/ndk/6/sources/cxx-stl/gnu-libstdc++/include/tr1/
poly_laguerre.tcc 59 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
66 * degree @f$ \alpha @f$, and argument x.
115 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
116 * _1F_1(-n; \alpha + 1; x)
118 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
155 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
160 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]
  /prebuilts/ndk/7/sources/cxx-stl/gnu-libstdc++/include/tr1/
poly_laguerre.tcc 59 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
66 * degree @f$ \alpha @f$, and argument x.
115 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
116 * _1F_1(-n; \alpha + 1; x)
118 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
155 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
160 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]
  /prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.4.3/include/tr1/
poly_laguerre.tcc 59 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
66 * degree @f$ \alpha @f$, and argument x.
115 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
116 * _1F_1(-n; \alpha + 1; x)
118 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
155 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
160 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]
  /prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.6/include/tr1/
poly_laguerre.tcc 58 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
65 * degree @f$ \alpha @f$, and argument x.
114 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
115 * _1F_1(-n; \alpha + 1; x)
117 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
154 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
159 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]
  /prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.7/include/tr1/
poly_laguerre.tcc 58 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
65 * degree @f$ \alpha @f$, and argument x.
114 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
115 * _1F_1(-n; \alpha + 1; x)
117 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
154 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
159 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]
  /prebuilts/ndk/9/sources/cxx-stl/gnu-libstdc++/4.6/include/tr1/
poly_laguerre.tcc 58 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
65 * degree @f$ \alpha @f$, and argument x.
114 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
115 * _1F_1(-n; \alpha + 1; x)
117 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
154 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
159 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]
  /prebuilts/ndk/9/sources/cxx-stl/gnu-libstdc++/4.7/include/tr1/
poly_laguerre.tcc 58 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
65 * degree @f$ \alpha @f$, and argument x.
114 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
115 * _1F_1(-n; \alpha + 1; x)
117 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
154 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
159 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]
  /prebuilts/ndk/9/sources/cxx-stl/gnu-libstdc++/4.8/include/tr1/
poly_laguerre.tcc 57 * of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
64 * degree @f$ \alpha @f$, and argument x.
112 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
113 * _1F_1(-n; \alpha + 1; x)
115 * where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
151 * of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
156 * L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!
    [all...]

Completed in 532 milliseconds

1 2 3 4 5 6 78 91011>>