HomeSort by relevance Sort by last modified time
    Searched full:gamma (Results 176 - 200 of 803) sorted by null

1 2 3 4 5 6 78 91011>>

  /prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.7-4.6/x86_64-linux/include/c++/4.6.x-google/tr1/
bessel_function.tcc 64 * @brief Compute the gamma functions required by the Temme series
68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
82 * @param __mu The input parameter of the gamma functions.
85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f
    [all...]
riemann_zeta.tcc 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil,
69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
280 * \Gamma (1 - s) \zeta (1 - s) for s < 1
284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
  /prebuilts/ndk/5/sources/cxx-stl/gnu-libstdc++/include/tr1/
bessel_function.tcc 64 * @brief Compute the gamma functions required by the Temme series
68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
82 * @param __mu The input parameter of the gamma functions.
85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f
    [all...]
riemann_zeta.tcc 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil,
69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
280 * \Gamma (1 - s) \zeta (1 - s) for s < 1
284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
  /prebuilts/ndk/6/sources/cxx-stl/gnu-libstdc++/include/tr1/
bessel_function.tcc 64 * @brief Compute the gamma functions required by the Temme series
68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
82 * @param __mu The input parameter of the gamma functions.
85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f
    [all...]
riemann_zeta.tcc 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil,
69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
280 * \Gamma (1 - s) \zeta (1 - s) for s < 1
284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
  /prebuilts/ndk/7/sources/cxx-stl/gnu-libstdc++/include/tr1/
bessel_function.tcc 64 * @brief Compute the gamma functions required by the Temme series
68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
82 * @param __mu The input parameter of the gamma functions.
85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f
    [all...]
riemann_zeta.tcc 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil,
69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
280 * \Gamma (1 - s) \zeta (1 - s) for s < 1
284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
  /prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.4.3/include/tr1/
bessel_function.tcc 64 * @brief Compute the gamma functions required by the Temme series
68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
82 * @param __mu The input parameter of the gamma functions.
85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f
    [all...]
riemann_zeta.tcc 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil,
69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
280 * \Gamma (1 - s) \zeta (1 - s) for s < 1
284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
  /prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.6/include/tr1/
bessel_function.tcc 64 * @brief Compute the gamma functions required by the Temme series
68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
82 * @param __mu The input parameter of the gamma functions.
85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f
    [all...]
riemann_zeta.tcc 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil,
69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
280 * \Gamma (1 - s) \zeta (1 - s) for s < 1
284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
  /prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.7/include/tr1/
bessel_function.tcc 64 * @brief Compute the gamma functions required by the Temme series
68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
82 * @param __mu The input parameter of the gamma functions.
85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f
    [all...]
riemann_zeta.tcc 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil,
69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
280 * \Gamma (1 - s) \zeta (1 - s) for s < 1
284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
  /prebuilts/ndk/9/sources/cxx-stl/gnu-libstdc++/4.6/include/tr1/
bessel_function.tcc 64 * @brief Compute the gamma functions required by the Temme series
68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
82 * @param __mu The input parameter of the gamma functions.
85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f
    [all...]
riemann_zeta.tcc 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil,
69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
280 * \Gamma (1 - s) \zeta (1 - s) for s < 1
284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
  /prebuilts/ndk/9/sources/cxx-stl/gnu-libstdc++/4.7/include/tr1/
bessel_function.tcc 64 * @brief Compute the gamma functions required by the Temme series
68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
82 * @param __mu The input parameter of the gamma functions.
85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f
    [all...]
  /prebuilts/ndk/9/sources/cxx-stl/gnu-libstdc++/4.8/include/tr1/
bessel_function.tcc 63 * @brief Compute the gamma functions required by the Temme series
67 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
72 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
76 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
81 * @param __mu The input parameter of the gamma functions.
84 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
85 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f
    [all...]
  /external/chromium_org/third_party/qcms/src/
transform-sse1.c 94 /* position values from gamma tables */
99 /* gamma * matrix */
216 /* position values from gamma tables */
221 /* gamma * matrix */
241 /* load gamma values for next loop while store completes */
transform-sse2.c 94 /* position values from gamma tables */
99 /* gamma * matrix */
210 /* position values from gamma tables */
215 /* gamma * matrix */
233 /* load gamma values for next loop while store completes */
  /external/chromium_org/tools/imagediff/
image_diff_png.cc 84 // Gamma constants: We assume we're on Windows which uses a gamma of 2.2.
85 const double kMaxGamma = 21474.83; // Maximum gamma accepted by png library.
192 // Deal with gamma and keep it under our control.
193 double gamma; local
194 if (png_get_gAMA(png_ptr, info_ptr, &gamma)) {
195 if (gamma <= 0.0 || gamma > kMaxGamma) {
196 gamma = kInverseGamma;
197 png_set_gAMA(png_ptr, info_ptr, gamma);
    [all...]
  /external/chromium_org/ui/gfx/codec/
png_codec.cc 79 // Gamma constants: We assume we're on Windows which uses a gamma of 2.2.
80 const double kMaxGamma = 21474.83; // Maximum gamma accepted by png library.
252 // Deal with gamma and keep it under our control.
253 double gamma; local
254 if (png_get_gAMA(png_ptr, info_ptr, &gamma)) {
255 if (gamma <= 0.0 || gamma > kMaxGamma) {
256 gamma = kInverseGamma;
257 png_set_gAMA(png_ptr, info_ptr, gamma);
    [all...]
  /external/qemu/distrib/sdl-1.2.15/test/
testgl.c 452 int logo, int logocursor, int slowly, int bpp, float gamma, int noframe, int fsaa, int sync, int accel )
588 /* Set the gamma for the window */
589 if ( gamma != 0.0 ) {
590 SDL_SetGamma(gamma, gamma, gamma);
790 float gamma = 0.0; local
820 if ( strcmp(argv[i], "-gamma") == 0 ) {
821 gamma = (float)atof(argv[++i]);
837 "Usage: %s [-twice] [-logo] [-logocursor] [-slow] [-bpp n] [-gamma n] [-noframe] [-fsaa] [-accel] [-sync] [-fullscreen]\n"
    [all...]
  /prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.4.3/i686-linux/include/c++/4.4.3/tr1/
riemann_zeta.tcc 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil,
69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
280 * \Gamma (1 - s) \zeta (1 - s) for s < 1
284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
  /prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.6/i686-linux/include/c++/4.6.x-google/tr1/
riemann_zeta.tcc 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil,
69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
280 * \Gamma (1 - s) \zeta (1 - s) for s < 1
284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)

Completed in 609 milliseconds

1 2 3 4 5 6 78 91011>>