/prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.7-4.6/x86_64-linux/include/c++/4.6.x-google/tr1/ |
bessel_function.tcc | 64 * @brief Compute the gamma functions required by the Temme series 68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 82 * @param __mu The input parameter of the gamma functions. 85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f [all...] |
riemann_zeta.tcc | 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil, 69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 280 * \Gamma (1 - s) \zeta (1 - s) for s < 1 284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
/prebuilts/ndk/5/sources/cxx-stl/gnu-libstdc++/include/tr1/ |
bessel_function.tcc | 64 * @brief Compute the gamma functions required by the Temme series 68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 82 * @param __mu The input parameter of the gamma functions. 85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f [all...] |
riemann_zeta.tcc | 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil, 69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 280 * \Gamma (1 - s) \zeta (1 - s) for s < 1 284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
/prebuilts/ndk/6/sources/cxx-stl/gnu-libstdc++/include/tr1/ |
bessel_function.tcc | 64 * @brief Compute the gamma functions required by the Temme series 68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 82 * @param __mu The input parameter of the gamma functions. 85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f [all...] |
riemann_zeta.tcc | 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil, 69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 280 * \Gamma (1 - s) \zeta (1 - s) for s < 1 284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
/prebuilts/ndk/7/sources/cxx-stl/gnu-libstdc++/include/tr1/ |
bessel_function.tcc | 64 * @brief Compute the gamma functions required by the Temme series 68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 82 * @param __mu The input parameter of the gamma functions. 85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f [all...] |
riemann_zeta.tcc | 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil, 69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 280 * \Gamma (1 - s) \zeta (1 - s) for s < 1 284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
/prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.4.3/include/tr1/ |
bessel_function.tcc | 64 * @brief Compute the gamma functions required by the Temme series 68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 82 * @param __mu The input parameter of the gamma functions. 85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f [all...] |
riemann_zeta.tcc | 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil, 69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 280 * \Gamma (1 - s) \zeta (1 - s) for s < 1 284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
/prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.6/include/tr1/ |
bessel_function.tcc | 64 * @brief Compute the gamma functions required by the Temme series 68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 82 * @param __mu The input parameter of the gamma functions. 85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f [all...] |
riemann_zeta.tcc | 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil, 69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 280 * \Gamma (1 - s) \zeta (1 - s) for s < 1 284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
/prebuilts/ndk/8/sources/cxx-stl/gnu-libstdc++/4.7/include/tr1/ |
bessel_function.tcc | 64 * @brief Compute the gamma functions required by the Temme series 68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 82 * @param __mu The input parameter of the gamma functions. 85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f [all...] |
riemann_zeta.tcc | 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil, 69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 280 * \Gamma (1 - s) \zeta (1 - s) for s < 1 284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
/prebuilts/ndk/9/sources/cxx-stl/gnu-libstdc++/4.6/include/tr1/ |
bessel_function.tcc | 64 * @brief Compute the gamma functions required by the Temme series 68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 82 * @param __mu The input parameter of the gamma functions. 85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f [all...] |
riemann_zeta.tcc | 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil, 69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 280 * \Gamma (1 - s) \zeta (1 - s) for s < 1 284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
/prebuilts/ndk/9/sources/cxx-stl/gnu-libstdc++/4.7/include/tr1/ |
bessel_function.tcc | 64 * @brief Compute the gamma functions required by the Temme series 68 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 73 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 77 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 82 * @param __mu The input parameter of the gamma functions. 85 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 86 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f [all...] |
/prebuilts/ndk/9/sources/cxx-stl/gnu-libstdc++/4.8/include/tr1/ |
bessel_function.tcc | 63 * @brief Compute the gamma functions required by the Temme series 67 * [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}] 72 * [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}] 76 * The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$ 81 * @param __mu The input parameter of the gamma functions. 84 * @param __gampl The output function \f$ \Gamma(1 + \mu) \f$ 85 * @param __gammi The output function \f$ \Gamma(1 - \mu) \f [all...] |
/external/chromium_org/third_party/qcms/src/ |
transform-sse1.c | 94 /* position values from gamma tables */ 99 /* gamma * matrix */ 216 /* position values from gamma tables */ 221 /* gamma * matrix */ 241 /* load gamma values for next loop while store completes */
|
transform-sse2.c | 94 /* position values from gamma tables */ 99 /* gamma * matrix */ 210 /* position values from gamma tables */ 215 /* gamma * matrix */ 233 /* load gamma values for next loop while store completes */
|
/external/chromium_org/tools/imagediff/ |
image_diff_png.cc | 84 // Gamma constants: We assume we're on Windows which uses a gamma of 2.2. 85 const double kMaxGamma = 21474.83; // Maximum gamma accepted by png library. 192 // Deal with gamma and keep it under our control. 193 double gamma; local 194 if (png_get_gAMA(png_ptr, info_ptr, &gamma)) { 195 if (gamma <= 0.0 || gamma > kMaxGamma) { 196 gamma = kInverseGamma; 197 png_set_gAMA(png_ptr, info_ptr, gamma); [all...] |
/external/chromium_org/ui/gfx/codec/ |
png_codec.cc | 79 // Gamma constants: We assume we're on Windows which uses a gamma of 2.2. 80 const double kMaxGamma = 21474.83; // Maximum gamma accepted by png library. 252 // Deal with gamma and keep it under our control. 253 double gamma; local 254 if (png_get_gAMA(png_ptr, info_ptr, &gamma)) { 255 if (gamma <= 0.0 || gamma > kMaxGamma) { 256 gamma = kInverseGamma; 257 png_set_gAMA(png_ptr, info_ptr, gamma); [all...] |
/external/qemu/distrib/sdl-1.2.15/test/ |
testgl.c | 452 int logo, int logocursor, int slowly, int bpp, float gamma, int noframe, int fsaa, int sync, int accel ) 588 /* Set the gamma for the window */ 589 if ( gamma != 0.0 ) { 590 SDL_SetGamma(gamma, gamma, gamma); 790 float gamma = 0.0; local 820 if ( strcmp(argv[i], "-gamma") == 0 ) { 821 gamma = (float)atof(argv[++i]); 837 "Usage: %s [-twice] [-logo] [-logocursor] [-slow] [-bpp n] [-gamma n] [-noframe] [-fsaa] [-accel] [-sync] [-fullscreen]\n" [all...] |
/prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.4.3/i686-linux/include/c++/4.4.3/tr1/ |
riemann_zeta.tcc | 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil, 69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 280 * \Gamma (1 - s) \zeta (1 - s) for s < 1 284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|
/prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.6/i686-linux/include/c++/4.6.x-google/tr1/ |
riemann_zeta.tcc | 40 // (3) Gamma, Exploring Euler's Constant, Julian Havil, 69 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 106 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 148 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 243 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s) 280 * \Gamma (1 - s) \zeta (1 - s) for s < 1 284 * \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
|