HomeSort by relevance Sort by last modified time
    Searched full:matrix (Results 176 - 200 of 3296) sorted by null

1 2 3 4 5 6 78 91011>>

  /external/jmonkeyengine/engine/src/core/com/jme3/math/
Matrix3f.java 42 * <code>Matrix3f</code> defines a 3x3 matrix. Matrix data is maintained
44 * are used for matrix operations as well as generating a matrix from a given
63 * initial values for the matrix is that of the identity matrix.
71 * constructs a matrix with the given values.
74 * 0x0 in the matrix.
76 * 0x1 in the matrix.
78 * 0x2 in the matrix
    [all...]
  /external/chromium_org/third_party/WebKit/PerformanceTests/SVG/resources/
Bamboo.svg 41 <rect fill="#FFFFFF" height="865.797119" id="rect603" style="fill:#ffffff;" transform="matrix(0.793800,0.000000,0.000000,0.793800,57.50731,131.7872)" width="984.17961" x="-213.198728" y="158.284015"/>
42 <path d="M 207.9386 999.5614 L 217.0939 1003.789 C 218.6776 991.6568 217.2464 979.5881 215.7434 967.4323 C 215.1788 962.8691 216.3766 957.3378 212.3193 953.1559 C 207.6761 948.3703 192.9226 940.8834 183.5249 939.3192 C 179.5348 938.6546 175.3813 939.3285 171.318 939.2676 C 162.2147 939.1307 152.9375 938.6665 143.8525 938.2589 C 134.3998 937.8345 127.2237 941.2402 119.4387 943.6668 C 110.3125 946.5111 100.3625 948.5065 90.44743 950.3336 C 73.69495 953.4214 55.89887 954.2804 38.56816 956.0078 C 18.95781 957.9634 -0.139847 960.4053 -19.41452 963.2047 C 4.427042 952.1667 36.86377 944.0718 66.03358 938.439 C 76.55141 936.4073 87.60928 935.3986 98.07669 933.3034 C 104.0124 932.1164 109.0003 929.9434 114.8612 928.7115 C 124.5763 926.6696 136.3925 927.4728 145.3783 924.3115 L 100.4693 904.9148 L 87.3957 895.5643 L 71.06745 891.8052 L 87.3957 889.6686 L 130.1198 893.0278 C 126.9628 888.3183 111.9528 888.9347 104.1802 888.8223 C 76.98015 888.4291 50.39659 884.2844 23.30956 883.7273 L 23.30956 882.0362 L 67.55952 878.0691 L 119.4387 879.4997 L 84.34397 866.0714 L 43.14574 848.216 C 71.90663 853.5461 102.8602 857.2367 127.0681 868.0727 C 133.2997 870.8621 139.0689 873.9735 145.3555 876.7222 C 147.156 877.5094 150.4488 879.0516 152.9543 878.2763 C 155.1408 877.599 155.4781 875.6172 155.8289 874.414 C 156.9764 870.4706 158.2963 866.5432 159.3248 862.5896 C 161.7767 853.1648 165.9286 843.6038 171.9832 834.688 C 175.4698 829.5524 180.8805 824.7533 183.5249 819.4689 L 166.7404 825.3874 C 174.2538 817.7982 184.2237 810.1827 193.9266 803.4043 C 198.7637 800.0248 205.2851 796.3756 201.5041 791.7532 C 197.8283 787.2602 181.7564 792.0931 175.8955 793.396 C 151.5947 798.8014 124.8693 803.8981 99.6025 807.6318 C 104.3815 803.9268 111.3028 801.6541 117.9129 799.0575 C 130.843 793.9786 144.7726 789.2252 159.111 785.472 C 167.3232 783.3227 181.0835 781.5032 186.8955 777.4481 C 191.4334 774.2809 183.3874 770.3045 178.9305 768.8138 C 166.7557 764.741 151.758 768.0275 139.2749 769.5841 C 146.4296 765.1384 154.6495 762.5267 165.2145 763.6655 L 162.1628 759.438 L 175.8955 764.5111 C 175.8833 752.0322 160.4676 746.2448 147.5313 737.3577 C 141.0831 732.9272 140.9961 728.3403 131.6456 724.7723 L 131.6456 734.0729 C 122.9681 727.1812 119.6386 716.2479 104.1802 712.9352 L 105.616 730.6909 L 98.07669 770.4296 C 92.00069 767.0222 93.00927 761.337 91.17518 756.9015 C 85.87588 744.087 78.86611 730.3687 78.28176 717.1628 C 78.14433 714.0623 78.02693 710.8798 79.49636 707.8622 C 80.65138 705.4906 83.80075 702.1728 80.81163 699.8418 C 77.53703 697.2883 71.57246 700.6703 69.08386 701.9826 C 61.1662 706.1585 51.67075 711.3136 47.86828 717.1628 C 44.81503 721.857 53.49409 726.8311 57.19279 730.6909 C 64.02412 737.8168 67.53046 744.5817 67.55952 752.674 L 40.28017 733.2282 L 30.16678 727.6766 L 27.88714 735.7639 L 26.80989 753.5195 L 23.71087 760.4315 L 20.25784 752.674 L 14.1544 721.3903 L 3.720569 729.8453 L -14.32731 744.2189 L -60.10615 774.6571 L -92.65575 795.7947 L -75.52297 774.6571 L -50.40474 748.4465 L -11.78521 725.6178 L -75.87134 750.1375 L -36.19897 722.2358 L -114.0178 729.8453 C -108.3264 726.3069 -99.91761 723.9961 -92.65575 721.5679 C -76.4655 716.1532 -59.36916 710.9568 -40.77656 708.6257 C -31.27655 707.4344 -22.541 709.7477 -13.31107 708.969 C -3.177839 708.1142 9.260963 701.0542 15.68025 696.8707 L -10.25936 700.087 L -95.70749 712.0897 L -75.87134 704.9258 L -45.35413 694.4643 L -25.51796 688.4156 L -81.97477 682.9215 L -123.1729 678.2695 L -97.23342 674.7243 L -27.04381 674.8875 L -63.65942 660.0658 L -106.3885 639.3763 C -83.70443 640.9769 -59.5309 648.3454 -39.25069 653.9647 C -32.99161 655.6996 -21.17689 661.6664 -13.97025 660.3347 C -11.44952 659.868 -9.262972 658.8288 -7.117614 657.9943 C -3.885848 656.7362 1.228843 655.3919 2.914922 653.2874 C 6.27944 649.0878 -11.41443 644.0841 -16.36279 642.5241 C -17.72386 642.0955 -31.75719 638.0945 -28.8367 637.5526 C -24.90761 636.8237 -18.50663 638.568 -14.83693 639.2664 C -3.746982 641.3768 7.52149 644.0993 18.73199 645.8698 C 23.57048 646.6341 28.04277 645.6043 32.46473 644.5694 C 41.94794 642.3508 55.44718 640.7748 62.98185 636.8398 L -17.88865 633.4578 C -10.33564 629.6175 4.446882 630.4799 14.1544 629.385 C 37.05756 626.802 59.30465 623.1172 82.81804 626.517 C 97.78989 628.6824 108.2907 634.7928 124.0163 635.9943 C 120.8029 627.486 110.9015 622.2675 104.1954 614.8567 C 101.5846 611.9701 102.9564 608.5492 100.3334 605.6297 C 97.95916 602.9858 93.13291 601.8663 89.5487 599.8557 C 85.40906 597.5331 87.59707 592.7645 82.18938 591.3626 C 71.55416 588.6046 57.52694 588.3196 46.19746 586.3065 C 27.56671 582.9972 9.935406 578.1119 -8.733496 574.8854 C -16.9655 573.4624 -25.02357 571.7604 -33.14726 570.1582 C -35.94721 569.6052 -41.50896 568.9855 -43.16453 567.4492 C -44.79566 565.9357 -37.28233 565.863 -36.18677 565.8436 C -27.9578 565.7007 -19.93178 565.918 -11.78521 566.547 C 18.77775 568.9069 44.69449 576.5528 72.13704 583.573 L 45.50777 563.2809 L 21.78371 537.9157 L 72.13704 574.2724 C 72.13704 558.3693 76.9511 545.0729 87.70545 530.3062 C 93.18172 522.7871 100.4815 514.5071 111.8094 509.1685 C 109.3955 515.1522 105.4328 520.8796 103.3882 526.9241 C 100.2862 536.1004 98.95248 544.9884 93.8974 553.9803 C 89.567 561.682 77.98116 571.8881 80.24546 580.1411 C 81.1763 583.5282 86.24824 586.1543 90.07666 588.646 C 97.18871 593.2735 104.2137 596.9886 107.2319 603.0196 C 112.5922 596.1321 102.8618 586.7047 99.6025 580.191 L 107.2319 584.4185 L 115.8545 583.0615 L 114.086 587.1021 L 113.5107 596.2556 L 127.3976 625.8482 L 137.7491 636.8398 C 136.7405 628.0339 146.1336 626.8299 159.111 624.1682 C 165.7913 622.7976 172.0398 620.9316 178.9473 619.8823 C 182.6689 619.3167 196.8518 616.7286 199.6456 619.0884 C 200.9243 620.1673 196.7464 621.4102 195.6036 621.7839 C 190.3011 623.5163 184.4526 624.6992 179.1655 626.4384 C 177.5313 626.9761 174.5025 628.0753 176.0939 629.3275 C 178.3949 631.1402 184.6556 631.8403 188.1024 632.7645 C 191.4029 633.6506 200.9486 637.6853 204.658 636.4247 C 207.899 635.323 206.7714 629.434 207.3694 627.5392 C 210.1419 618.7671 211.9546 608.5458 210.8576 599.6376 C 210.5463 597.0968 208.4314 594.5857 209.0112 592.028 C 210.2458 586.5703 213.9046 581.619 214.0269 575.9634 C 214.2205 566.8937 212.7253 557.9263 212.5315 548.9073 C 212.3698 541.3535 213.5294 533.6011 212.2155 526.0786 C 211.1719 520.1068 208.1583 514.294 206.8782 508.323 C 205.1309 500.169 205.3721 491.8247 201.8123 483.8034 C 199.4229 478.4184 191.1159 474.6677 188.1024 469.4298 L 194.2059 472.3891 L 200.3094 474.5028 L 198.7834 456.7472 L 184.6325 470.2753 L 168.2662 496.486 L 165.2145 496.486 C 165.2145 479.9648 169.786 464.3974 181.5702 449.1377 C 184.2862 445.6204 187.933 441.9695 189.0331 438.1596 C 189.3155 437.1772 189.9487 434.9822 187.869 434.3912 C 185.9708 433.851 183.3036 435.1031 181.9349 435.6612 C 177.2337 437.5788 172.9233 439.7805 168.2662 441.7336 C 148.7536 449.9164 134.824 461.8321 114.8612 469.4298 C 122.3212 456.6661 132.9289 445.3219 149.9987 435.6096 C 156.8086 431.7347 164.1754 428.2267 171.1363 424.4523 C 174.0111 422.8932 178.4101 420.5799 178.8405 418.2116 C 179.2403 416.01 173.5381 416.6407 171.295 416.869 C 163.7176 417.6376 149.0878 418.3706 143.1537 421.1041 C 138.7255 423.1452 137.3615 426.8434 135.3764 429.6911 C 129.958 437.468 125.7955 446.0753 122.4904 454.2107 C 119.3792 450.7568 119.1488 446.98 118.038 443.2192 C 114.1516 430.0665 118.1143 417.3831 120.9646 404.3259 L 99.6025 413.4624 L 54.52708 435.7254 L 24.83542 452.5197 C 42.08832 429.1525 72.37052 407.9405 111.8094 395.0254 L 100.8598 392.3899 L 105.7503 390.1815 L 126.6988 391.0312 L 130.8781 387.5528 L 108.7577 388.6908 L 75.18878 389.3258 L 44.6716 393.3344 L 68.67647 383.6533 L 66.58755 374.7332 L 55.35259 351.0591 L 16.33943 383.1883 L -5.681778 396.7164 L 5.409698 380.6518 L 24.83542 357.8231 C -0.387039 361.529 -22.92247 370.3197 -45.35413 377.2698 C -39.81679 370.6249 -30.58076 364.5584 -20.93579 359.6198 C -10.4272 354.2391 -0.564036 350.6719 3.473389 342.6041 L -20.94037 349.1246 L -46.88 355.9943 L -77.39719 367.9692 C -63.14871 354.0184 -38.11851 341.8727 -13.31107 334.0247 C -3.035934 330.7746 6.786026 327.385 18.73199 326.5395 L -5.681778 325.694 L -34.67311 324.0029 C -30.49378 321.6558 -24.88931 320.7486 -19.41452 319.6215 C -6.122756 316.8829 10.47861 313.1805 24.83542 314.0328 C 31.72011 314.442 39.12205 317.9787 45.55659 317.7859 C 49.24608 317.676 52.26889 315.2807 55.45938 314.4014 C 60.51009 313.0088 66.65308 312.7924 72.13704 313.3699 C 81.65691 314.3726 90.61975 316.9751 99.6025 318.8969 C 102.6467 319.548 107.3859 321.1333 110.7612 320.588 C 113.59 320.1305 114.3667 317.6972 115.1235 316.3807 C 117.5452 312.1659 119.3243 307.8961 121.961 303.7108 C 127.7547 294.5083 134.3083 284.6946 144.8886 276.8204 C 153.0565 270.7429 165.1901 265.6783 171.318 258.8991 L 99.6025 265.6631 C 109.2185 258.4822 126.1693 254.7054 140.8008 251.6582 C 146.239 250.5252 156.7079 250.1109 160.7224 247.7173 C 162.9395 246.3957 161.284 244.2625 160.3974 242.8249 C 158.3421 239.4892 152.0997 230.8119 143.6618 231.763 C 137.1326 232.4988 130.7377 236.2493 125.5421 238.3957 C 113.8357 243.2319 98.34519 249.7778 84.34397 252.135 C 91.97628 245.989 104.206 241.9275 114.8612 237.5411 C 117.8869 236.2955 126.4043 233.7923 126.4043 231.3353 C 126.4043 228.9173 111.9422 227.7589 108.7577 227.2558 C 95.02801 225.0869 71.06599 222.9631 70.61125 213.2418 L 107.2319 218.0463 L 131.6456 220.8514 L 113.3354 208.1688 C 122.9223 209.2619 116.3656 202.8399 115.8026 200.3418 C 115.4485 198.7753 116.2497 197.0572 116.3869 195.4862 L 127.0681 211.5508 L 129.6681 198.8754 L 131.107 195.5169 L 137.7491 198.0228 C 137.952 192.8327 161.5204 194.2918 168.2662 194.5689 C 170.9395 194.6788 175.3905 194.4631 177.249 195.8118 C 178.8206 196.9516 175.1845 198.4133 175.7124 199.7771 C 176.7393 202.4211 182.942 203.1301 184.2313 205.6323 C 185.0568 207.2337 182.176 208.6264 181.6847 210.1344 C 181.0988 211.9321 181.857 213.9668 182.0372 215.7784 C 182.176 217.1835 184.9881 223.0516 181.535 223.6997 C 177.5709 224.4438 177.4489 216.8057 177.368 215.7796 C 177.2063 213.7722 176.5593 211.8304 175.8955 209.8598 C 173.9119 211.4474 171.6109 224.067 166.7404 218.3149 L 158.8501 218.8137 L 158.4794 223.3921 L 166.9205 232.9327 L 173.0101 246.2647 L 188.8517 250.2656 L 188.1024 255.517 C 202.2974 255.501 210.6562 252.0479 223.1971 249.0024 C 233.5944 246.4786 247.3714 247.609 256.6761 243.9691 C 266.7636 240.0225 274.0571 233.3201 282.7209 228.4609 C 310.8747 212.6726 337.9159 199.1021 378.812 196.1898 C 394.5284 195.0706 381.0749 208.006 391.3729 209.3135 C 398.726 210.2473 407.6051 207.8796 415.4556 208.3437 C 436.752 209.6028 458.9639 213.6068 478.0159 218.957 C 484.1743 220.6862 490.5629 222.4981 496.198 224.7176 C 497.6613 225.2936 501.4667 226.7221 500.24 228.0063 C 497.965 230.3894 481.858 227.3214 478.0159 227.0078 C 454.098 225.0546 430.0642 223.301 406.3003 220.8514 C 426.6035 238.2214 450.6938 255.0757 462.7572 274.9637 L 422.9506 250.444 L 406.8557 242.6252 L 399.376 248.753 L 384.9384 269.8906 L 395.6194 269.0451 C 391.231 272.3747 384.3189 274.2221 379.9427 277.5534 C 374.7837 281.4791 373.1755 286.6282 369.7393 291.0283 C 367.2857 294.1676 361.7407 299.0301 367.304 302.0257 C 379.9624 308.8439 406.685 300.9224 421.5591 300.3559 C 423.4602 300.284 439.674 298.7875 438.5464 301.0373 C 437.2983 303.5248 423.8737 305.0298 420.0331 305.9514 C 410.1257 308.329 400.8226 311.3694 391.0419 313.8814 C 384.148 315.6519 376.5812 316.6428 371.2056 319.7754 C 383.7161 319.7788 406.0502 319.6824 415.4556 324.8485 C 407.1045 324.8485 399.2295 325.0666 391.0419 326.0592 C 382.4404 327.1026 373.6088 326.8126 365.1251 327.8601 C 362.5799 328.1738 358.3579 328.7251 357.3706 330.2994 C 355.5671 333.175 366.5869 334.9734 369.6797 335.8375 C 384.9429 340.0988 397.9326 349.3284 413.9298 352.1946 C 425.7277 354.3084 442.3305 350.7953 452.0762 356.1321 L 426.0344 357.5839 L 428.0149 361.2407 L 442.9623 368.4469 L 462.7572 360.5803 L 500.9038 351.0591 L 476.4899 364.5872 C 487.7462 369.4074 499.7638 366.3788 513.1106 366.3788 C 531.5414 366.3788 552.2672 368.1096 569.5674 371.6226 C 575.3641 372.8004 581.6828 373.197 586.3518 375.5788 C 549.7617 375.5788 512.4483 377.6655 476.4899 381.4973 L 513.1106 387.6982 L 571.0933 409.4767 L 610.7655 428.0001 L 539.0502 409.6949 L 500.9937 396.4686 L 488.6068 396.1939 L 474.9641 394.1799 C 478.3256 397.9246 484.2489 400.73 488.1001 404.3259 C 504.3307 419.4816 522.0597 439.6367 522.2657 457.5927 L 487.1175 427.1546 L 460.3616 408.5805 L 450.2848 396.7164 L 447.0653 389.6074 L 435.2901 386.5348 L 415.4556 383.1883 L 461.2313 418.6995 L 435.2917 407.1203 L 392.679 388.8439 L 379.9244 379.9331 L 357.4729 377.2698 L 371.2056 401.7894 L 345.266 384.0338 L 340.2734 402.4658 L 354.4059 410.3417 L 372.7314 423.7725 L 348.3192 414.7502 L 337.8656 413.1335 L 335.2289 420.3905 L 331.2341 440.6826 L 331.7163 448.6625 L 342.3302 443.5481 L 352.9579 443.7239 L 381.8866 438.1461 L 340.2154 451.073 L 329.4322 455.3809 L 336.2588 463.5113 L 357.4729 477.8849 L 326.9558 468.5843 L 323.9193 485.4944 L 322.8069 504.0955 L 308.4379 529.4607 L 308.215 538.4712 L 332.7524 545.193 L 345.266 551.4438 L 352.0606 521.8511 L 357.4729 510.8596 L 363.4802 542.9887 L 358.9988 553.9803 L 370.4428 551.4793 L 386.4642 552.2893 L 386.4642 553.9803 L 362.0505 557.3623 C 373.0611 560.9938 384.7675 564.1991 393.9028 569.2992 C 400.763 573.1293 405.1681 578.6217 414.0213 581.2512 C 425.4881 584.6561 439.6969 585.1651 452.0762 587.0582 C 467.2432 589.3774 481.684 593.2515 494.8003 598.0303 C 502.6828 600.9016 510.7715 604.32 515.5138 608.9381 C 519.2858 612.6102 519.6062 618.9574 528.392 620.3237 C 534.1446 621.2182 540.6172 617.6029 545.1537 616.1046 C 556.1826 612.4613 567.7973 610.4778 580.2483 608.9381 L 566.5157 616.5477 L 604.6623 616.7142 L 633.6535 619.0842 L 615.3432 621.9758 L 572.6192 626.6937 L 593.9811 635.4887 L 621.9073 649.5224 L 632.1795 656.2475 L 633.3315 659.2533 L 616.869 655.7148 L 568.0416 642.7583 L 578.7119 657.9766 L 583.7931 663.1629 L 596.8986 656.7117 L 592.4553 663.0505 L 609.2397 659.6684 C 607.575 661.9614 605.1351 664.0946 601.2137 665.4018 C 597.2373 666.7267 587.9524 667.6196 588.8359 671.2104 C 589.7743 675.0169 604.2058 671.4844 607.714 670.9872 C 630.7162 667.7312 653.7201 669.199 676.3776 672.351 C 664.6102 675.6062 648.0699 676.2911 635.1795 678.1782 C 632.5243 678.5672 622.1103 679.5234 622.1103 681.6702 C 622.1103 683.1836 627.5486 682.9173 629.1004 682.8226 C 635.7409 682.4201 642.3479 681.3353 648.9121 680.6454 C 670.3351 678.3938 693.1819 678.2678 714.524 680.828 C 722.425 681.7758 731.6183 682.5326 737.4119 685.8791 L 700.7913 686.5724 L 636.7053 694.3341 C 643.8219 696.9265 653.1327 697.7534 661.1191 699.2753 C 674.3177 701.7898 691.1785 706.3902 700.7913 712.0897 L 633.6535 705.373 L 600.0846 699.4072 L 612.8134 714.0792 L 650.4379 724.7723 L 615.3432 719.6993 C 617.3268 728.5965 629.877 728.036 641.2828 732.7125 C 655.5908 738.5794 668.6246 747.1427 676.3776 756.056 C 663.9936 752.887 652.7619 747.9087 641.2828 743.8385 C 637.3583 742.4476 632.8661 739.9381 628.1787 739.4461 C 621.1476 738.7079 628.2138 747.5401 622.5681 746.8679 C 616.0008 746.0858 612.2685 738.6242 609.4579 735.8028 C 608.5333 734.8744 605.8356 732.0986 603.1668 732.857 C 599.2103 733.9807 600.173 739.6904 599.9992 741.6824 C 599.2438 750.2939 596.7979 758.8952 591.7122 767.0476 C 590.7418 768.605 586.9561 777.1497 582.4579 776.4606 C 579.9494 776.0767 580.311 773.1513 580.2286 772.1164 C 579.9112 768.0537 579.7403 763.9877 571.0933 763.6655 C 571.4305 760.8957 567.8905 759.9893 563.4639 759.438 L 563.4639 762.82 L 560.4122 761.129 C 554.8306 763.2445 553.3689 765.9095 552.9188 769.5841 C 552.7676 770.8084 553.5383 774.5049 550.5628 774.9691 C 547.2837 775.4798 546.3073 771.4425 545.796 770.4287 C 543.0404 764.9719 539.7506 760.4898 529.8935 765.4496 C 527.8122 766.4971 525.8149 767.6048 523.8817 768.7352 C 521.2084 770.2977 519.1042 771.8078 517.6883 773.8116 L 531.4209 772.1206 L 525.3175 776.3481 L 535.9985 777.1936 L 535.9985 778.8846 L 511.6824 778.9624 L 504.4437 781.4186 L 525.3175 785.3654 L 564.9899 791.6864 L 586.3518 796.6402 C 559.3808 796.6335 532.5058 794.1037 505.4813 794.1037 C 497.5362 794.1037 480.8799 792.909 482.1097 800.0028 C 482.8527 804.2921 493.9152 807.3291 499.3778 809.6889 C 512.1112 815.1889 526.4313 821.7407 534.4727 829.6149 L 479.5417 813.5503 C 487.4196 827.2999 486.0785 840.2539 481.0676 854.1346 C 480.274 856.3346 474.7977 865.8118 479.7706 867.1875 C 483.5745 868.2401 492.1025 862.6902 494.8003 861.553 C 509.9841 855.1517 525.4228 848.3141 542.102 843.143 L 505.4813 870.1992 L 551.2571 865.2234 L 601.6105 865.2919 L 635.1795 867.6627 C 627.2357 871.7016 613.1399 870.8232 603.1363 872.1016 C 574.7064 875.7347 543.9238 880.0704 514.6365 880.3452 L 529.895 884.1407 L 549.7312 889.6458 L 503.9554 889.6458 C 514.5541 892.8029 525.5249 895.3606 535.9954 898.7502 C 537.2878 899.1687 546.3819 901.6198 544.4898 902.9549 C 543.2539 903.8283 539.1098 903.2677 537.5107 903.1612 C 529.8905 902.6556 522.2901 901.9115 514.6365 901.5708 C 501.0547 900.9663 484.7051 900.3769 471.9124 897.6764 C 465.9524 896.4183 457.0627 891.8703 450.5549 892.7395 C 442.1275 893.8666 431.0072 902.363 427.6625 906.5559 L 445.9728 903.1739 L 432.4384 908.4828 L 439.8922 911.1926 L 465.8089 911.6289 C 451.3193 919.5631 426.7378 907.3642 412.0147 913.7824 C 408.635 915.2553 410.9679 918.1199 410.8719 920.0848 C 410.7803 921.9407 409.3247 923.5734 407.7103 925.157 C 388.4524 944.0371 384.981 969.0827 380.3607 990.2609 L 387.9901 988.5699 C 373.5799 998.8436 368.4621 1011.585 362.0505 1024.081 L 665.6966 1024.081 L 741.9896 1024.081 L 769.2263 1023.109 L 770.9809 1009.708 L 770.9809 973.3508 L 770.9809 827.0784 L 770.9809 341.7586 L 770.9809 209.8598 L 770.9809 174.3486 L 769.8868 159.736 L 757.2481 158.2841 L 723.6793 158.284 L 583.3001 158.284 L -2.630048 158.284 L -161.3195 158.284 L -199.4658 158.2841 L -212.1042 159.736 L -213.1987 176.8851 L -213.1987 220.0059 L -213.1987 378.1153 L -213.1987 962.3592 L -213.1987 1007.171 L -211.4444 1023.109 L -184.2074 1024.081 L -109.4403 1024.081 L 117.9129 1024.081 L 186.5765 1024.081 L 217.991 1023.734 L 220.919 1017.317 L 207.9386 999.5614 z " fill="#fefffc" id="path604" stroke="none" style="fill:#fefffc;stroke:none;" transform="matrix(0.793800,0.000000,0.000000,0.793800,57.50731,131.7872)"/>
43 <path d="M 137.7491 219.1604 C 138.9331 216.2464 140.6161 213.4311 142.8332 210.7053 C 144.2264 208.991 145.7324 207.2953 147.3315 205.6365 C 150.2702 202.5857 161.7662 197.1216 165.3457 203.2756 C 168.2052 208.191 163.4506 214.7057 167.7704 219.5717 C 171.1624 223.3904 173.3503 215.1195 173.5428 214.2647 C 173.8738 212.797 174.1714 211.335 174.3697 209.8598 C 177.2277 213.5088 176.7943 216.9876 177.9494 220.8153 C 178.2332 221.7562 178.7733 223.804 180.8469 224.1238 C 184.8707 224.7442 182.4429 217.4651 182.295 216.6239 C 181.9273 214.5432 181.5184 212.2119 182.5223 210.1681 C 183.2457 208.6969 185.6122 207.2343 184.9561 205.6323 C 183.9415 203.1609 178.305 202.2617 177.0186 199.8523 C 176.2771 198.4656 179.5805 197.1088 178.1889 195.8953 C 176.4357 194.3665 171.0296 194.6345 168.2647 194.4784 C 161.4227 194.0922 137.8803 192.5423 137.7491 198.0228 C 136.4353 197.4322 132.8067 194.9829 130.7469 195.3615 C 127.4098 195.9752 129.9535 200.62 129.8786 201.9422 C 129.4957 208.7471 125.8016 214.394 137.7491 219.1604 z " fill="#fffdff" id="path605" stroke="none" style="fill:#fffdff;stroke:none;" transform="matrix(0.793800,0.000000,0.000000,0.793800,57.50731,131.7872)"/>
44 <path d="M 116.3869 195.4862 L 119.4387 198.0228 L 116.3869 195.4862 z " fill="#53575a" id="path606" stroke="none" style="fill:#53575a;stroke:none;" transform="matrix(0.793800,0.000000,0.000000,0.793800,57.50731,131.7872)"/>
    [all...]
  /external/eigen/Eigen/src/SVD/
JacobiSVD.h 24 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
75 typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
86 bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
88 if(matrix.rows() > matrix.cols())
90 m_qr.compute(matrix);
91 svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
117 typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
130 bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
    [all...]
  /external/eigen/Eigen/src/Eigen2Support/
LU.h 22 typedef Matrix<int, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> IntRowVectorType;
23 typedef Matrix<int, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> IntColVectorType;
24 typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime, MatrixType::Options, 1, MatrixType::MaxColsAtCompileTime> RowVectorType;
25 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1, MatrixType::Options, MatrixType::MaxRowsAtCompileTime, 1> ColVectorType;
27 typedef Matrix<typename MatrixType::Scalar,
28 MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix" is the number of cols of the original matrix
29 // so that the product "matrix * kernel = zero" makes sense
34 // of columns of the original matrix
37 typedef Matrix<typename MatrixType::Scalar
    [all...]
  /external/eigen/Eigen/src/Eigenvalues/
ComplexSchur_MKL.h 44 ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >& \
45 ComplexSchur<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> >::compute(const Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW>& matrix, bool computeU) \
47 typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW> MatrixType; \
52 assert(matrix.cols() == matrix.rows()); \
55 if(matrix.cols() == 1) \
57 m_matT = matrix.cast<ComplexScalar>(); \
64 lapack_int n = matrix.cols(), sdim, info;
    [all...]
  /external/robolectric/src/main/java/com/xtremelabs/robolectric/shadows/
ShadowImageView.java 6 import android.graphics.Matrix;
26 private Matrix matrix; field in class:ShadowImageView
140 public void setImageMatrix(Matrix matrix) {
141 this.matrix = new Matrix(matrix);
146 if (matrix != null) {
147 canvas.translate(shadowOf(matrix).getTransX(), shadowOf(matrix
    [all...]
  /frameworks/base/core/java/android/view/animation/
Transformation.java 19 import android.graphics.Matrix;
30 * Indicates a transformation that has no effect (alpha = 1 and identity matrix.)
34 * Indicates a transformation that applies an alpha only (uses an identity matrix.)
38 * Indicates a transformation that applies a matrix only (alpha = 1.)
42 * Indicates a transformation that applies an alpha and a matrix.
46 protected Matrix mMatrix;
51 * Creates a new transformation with alpha = 1 and the identity matrix.
64 mMatrix = new Matrix();
116 * the transformation matrix.
125 * @return The 3x3 Matrix representing the trnasformation to apply to th
    [all...]
  /external/chromium_org/third_party/angle_dx11/samples/gles2_book/Common/
esUtil.h 231 /// \brief multiply matrix specified by result with a scaling matrix and return new matrix in result
232 /// \param result Specifies the input matrix. Scaled matrix is returned in result.
238 /// \brief multiply matrix specified by result with a translation matrix and return new matrix in result
239 /// \param result Specifies the input matrix. Translated matrix is returned in result
    [all...]
  /cts/suite/cts/deviceTests/opengl/jni/graphics/
PerspectiveProgram.cpp 32 void PerspectiveProgram::before(Matrix& model, Matrix& view, Matrix& projection) {
36 Matrix::multiplyVector(mLightPosInWorldSpace, mLightModelMatrix, mLightPosInModelSpace);
37 Matrix::multiplyVector(mLightPosInEyeSpace, view, mLightPosInWorldSpace);
  /external/chromium_org/chrome/browser/ui/cocoa/omnibox/
omnibox_popup_matrix.h 17 // Called when the selection in the matrix changes.
18 virtual void OnMatrixRowSelected(OmniboxPopupMatrix* matrix, size_t row) = 0;
21 virtual void OnMatrixRowClicked(OmniboxPopupMatrix* matrix, size_t row) = 0;
24 virtual void OnMatrixRowMiddleClicked(OmniboxPopupMatrix* matrix,
35 // Create a zero-size matrix.
  /external/chromium_org/third_party/skia/src/core/
SkRasterizer.cpp 17 bool SkRasterizer::rasterize(const SkPath& fillPath, const SkMatrix& matrix,
29 if (!filter->filterMask(&dstM, srcM, matrix, &margin)) {
37 return this->onRasterize(fillPath, matrix, clipBounds, mask, mode);
42 bool SkRasterizer::onRasterize(const SkPath& fillPath, const SkMatrix& matrix,
47 fillPath.transform(matrix, &devPath);
  /external/eigen/unsupported/Eigen/src/SparseExtra/
MatrixMarketIterator.h 25 * The matrices should be in Matrix Market format
27 * and matname_SPD.mtx if the matrix is Symmetric and positive definite (or Hermitian)
30 * Note that the right hand side for a SPD matrix is named as matname_SPD_b.mtx
45 typedef Matrix<Scalar,Dynamic,1> VectorType;
54 std::cerr << "The provided Matrix folder could not be opened \n\n";
75 /** Return the sparse matrix corresponding to the current file */
76 inline MatrixType& matrix() function in class:Eigen::MatrixMarketIterator
78 // Read the matrix
90 { // Store the upper part of the matrix. It is needed by the solvers dealing with nonsymmetric matrices ??
98 /** Return the right hand side corresponding to the current matrix.
    [all...]
  /external/skia/src/core/
SkRasterizer.cpp 17 bool SkRasterizer::rasterize(const SkPath& fillPath, const SkMatrix& matrix,
29 if (!filter->filterMask(&dstM, srcM, matrix, &margin)) {
37 return this->onRasterize(fillPath, matrix, clipBounds, mask, mode);
42 bool SkRasterizer::onRasterize(const SkPath& fillPath, const SkMatrix& matrix,
47 fillPath.transform(matrix, &devPath);
  /external/eigen/test/
nomalloc.cpp 33 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
49 VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
88 // The following fancy matrix-matrix products are not safe yet regarding static allocation
102 typedef Eigen::Matrix<Scalar,
105 maxSize, maxSize> Matrix;
107 typedef Eigen::Matrix<Scalar,
112 typedef Eigen::Matrix<std::complex<Scalar>,
117 const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size))
    [all...]
vectorization_logic.cpp 86 typedef Matrix<Scalar,PacketSize,1> Vector1;
87 typedef Matrix<Scalar,Dynamic,1> VectorX;
88 typedef Matrix<Scalar,Dynamic,Dynamic> MatrixXX;
89 typedef Matrix<Scalar,PacketSize,PacketSize> Matrix11;
90 typedef Matrix<Scalar,2*PacketSize,2*PacketSize> Matrix22;
91 typedef Matrix<Scalar,(Matrix11::Flags&RowMajorBit)?16:4*PacketSize,(Matrix11::Flags&RowMajorBit)?4*PacketSize:16> Matrix44;
92 typedef Matrix<Scalar,(Matrix11::Flags&RowMajorBit)?16:4*PacketSize,(Matrix11::Flags&RowMajorBit)?4*PacketSize:16,DontAlign|EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION> Matrix44u;
93 typedef Matrix<Scalar,4*PacketSize,16,ColMajor> Matrix44c;
94 typedef Matrix<Scalar,4*PacketSize,16,RowMajor> Matrix44r;
96 typedef Matrix<Scalar
    [all...]
  /external/eigen/doc/
C03_TutorialArrayClass.dox 23 The Array class provides general-purpose arrays, as opposed to the Matrix class which
30 Array is a class template taking the same template parameters as Matrix.
31 As with Matrix, the first three template parameters are mandatory:
35 The last three template parameters are optional. Since this is exactly the same as for Matrix,
38 Eigen also provides typedefs for some common cases, in a way that is similar to the Matrix typedefs
41 the size and the scalar type, as in the Matrix typedefs explained on \ref TutorialMatrixClass "this page". For 2-dimensional arrays, we
91 This provides a functionality that is not directly available for Matrix objects.
107 multiplication as matrix product and arrays interpret multiplication as coefficient-wise product. Thus, two
141 \section TutorialArrayClassConvert Converting between array and matrix expressions
143 When should you use objects of the Matrix class and when should you use objects of the Array class? You canno
    [all...]
C04_TutorialBlockOperations.dox 10 A block is a rectangular part of a matrix or array. Blocks expressions can be used both
32 matrix.block(i,j,p,q);\endcode </td>
34 matrix.block<p,q>(i,j);\endcode </td>
46 matrix.
73 matters is that you give Eigen as much information as possible at compile time. For example, if your block is a single whole column in a matrix,
89 matrix.row(i);\endcode </td>
94 matrix.col(j);\endcode </td>
115 matrix or array. For instance, \link DenseBase::topLeftCorner() .topLeftCorner() \endlink can be used to refer
116 to a block in the top-left corner of a matrix.
126 matrix.topLeftCorner(p,q);\endcode </td
    [all...]
  /external/ceres-solver/internal/ceres/
incomplete_lq_factorization.cc 45 inline double NormalizeRow(const int row, CompressedRowSparseMatrix* matrix) {
46 const int row_begin = matrix->rows()[row];
47 const int row_end = matrix->rows()[row + 1];
49 double* values = matrix->mutable_values();
111 // vector to matrix.
118 CompressedRowSparseMatrix* matrix) {
119 int* rows = matrix->mutable_rows();
120 int* cols = matrix->mutable_cols();
121 double* values = matrix->mutable_values();
122 int num_nonzeros = rows[matrix->num_rows()]
    [all...]
  /external/chromium-trace/trace-viewer/third_party/gl-matrix/src/gl-matrix/
mat2.js 24 * @class 2x2 Matrix
32 * @returns {mat2} a new 2x2 matrix
44 * Creates a new mat2 initialized with values from an existing matrix
46 * @param {mat2} a matrix to clone
47 * @returns {mat2} a new 2x2 matrix
61 * @param {mat2} out the receiving matrix
62 * @param {mat2} a the source matrix
74 * Set a mat2 to the identity matrix
76 * @param {mat2} out the receiving matrix
90 * @param {mat2} out the receiving matrix
    [all...]
mat2d.js 24 * @class 2x3 Matrix
34 * This is a short form for the 3x3 matrix:
47 * @returns {mat2d} a new 2x3 matrix
61 * Creates a new mat2d initialized with values from an existing matrix
63 * @param {mat2d} a matrix to clone
64 * @returns {mat2d} a new 2x3 matrix
80 * @param {mat2d} out the receiving matrix
81 * @param {mat2d} a the source matrix
95 * Set a mat2d to the identity matrix
97 * @param {mat2d} out the receiving matrix
    [all...]
  /external/eigen/debug/msvc/
eigen_autoexp_part.dat 9 ; * - Eigen::Matrix<*,4,1,*,*,*> and Eigen::Matrix<*,1,4,*,*,*>
10 ; * - Eigen::Matrix<*,3,1,*,*,*> and Eigen::Matrix<*,1,3,*,*,*>
11 ; * - Eigen::Matrix<*,2,1,*,*,*> and Eigen::Matrix<*,1,2,*,*,*>
12 ; * - Eigen::Matrix<*,-1,-1,*,*,*>
13 ; * - Eigen::Matrix<*,+,-1,*,*,*>
14 ; * - Eigen::Matrix<*,-1,+,*,*,*>
15 ; * - Eigen::Matrix<*,+,+,*,*,*>
    [all...]
  /cts/tests/tests/view/src/android/view/animation/cts/
TranslateAnimationTest.java 21 import android.graphics.Matrix;
104 assertEquals(FROM_X_DETLTA, values[Matrix.MTRANS_X], POSITION_DELTA);
105 assertEquals(FROM_Y_DELTA, values[Matrix.MTRANS_Y], POSITION_DELTA);
110 assertEquals((TO_X_DELTA + FROM_X_DETLTA) / 2, values[Matrix.MTRANS_X], POSITION_DELTA);
111 assertEquals((TO_Y_DELTA + FROM_Y_DELTA) / 2, values[Matrix.MTRANS_Y], POSITION_DELTA);
116 assertEquals(TO_X_DELTA, values[Matrix.MTRANS_X], POSITION_DELTA);
117 assertEquals(TO_Y_DELTA, values[Matrix.MTRANS_Y], POSITION_DELTA);
124 assertEquals(FROM_X_DETLTA, values[Matrix.MTRANS_X], POSITION_DELTA);
125 assertEquals(FROM_Y_DELTA, values[Matrix.MTRANS_Y], POSITION_DELTA);
132 values[Matrix.MTRANS_X], POSITION_DELTA)
    [all...]
  /external/chromium_org/third_party/skia/include/core/
SkMatrix.h 29 The SkMatrix class holds a 3x3 matrix for transforming coordinates.
31 using either reset() - to construct an identity matrix, or one of the set
37 Use this to identify the complexity of the matrix.
41 kTranslate_Mask = 0x01, //!< set if the matrix has translation
42 kScale_Mask = 0x02, //!< set if the matrix has X or Y scale
43 kAffine_Mask = 0x04, //!< set if the matrix skews or rotates
44 kPerspective_Mask = 0x08 //!< set if the matrix is in perspective
47 /** Returns a bitfield describing the transformations the matrix may
61 /** Returns true if the matrix is identity.
68 true if the matrix is identity, scale-only, or rotates a multiple o
    [all...]
  /external/eigen/Eigen/src/PaStiXSupport/
PaStiXSupport.h 19 * The matrix can be either real or complex, symmetric or not.
87 // Convert the matrix to Fortran-style Numbering
128 typedef Matrix<Scalar,Dynamic,1> Vector;
153 && "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
167 // we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
171 Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,rhsCols);
234 * \c InvalidInput if the input matrix is invalid
254 && "PastixBase::solve(): invalid number of rows of the right hand side matrix b");
260 // Initialize the Pastix data structure, check the matrix
288 mutable Matrix<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameter
    [all...]
  /external/skia/include/core/
SkMatrix.h 29 The SkMatrix class holds a 3x3 matrix for transforming coordinates.
31 using either reset() - to construct an identity matrix, or one of the set
37 Use this to identify the complexity of the matrix.
41 kTranslate_Mask = 0x01, //!< set if the matrix has translation
42 kScale_Mask = 0x02, //!< set if the matrix has X or Y scale
43 kAffine_Mask = 0x04, //!< set if the matrix skews or rotates
44 kPerspective_Mask = 0x08 //!< set if the matrix is in perspective
47 /** Returns a bitfield describing the transformations the matrix may
61 /** Returns true if the matrix is identity.
68 true if the matrix is identity, scale-only, or rotates a multiple o
    [all...]

Completed in 1714 milliseconds

1 2 3 4 5 6 78 91011>>