HomeSort by relevance Sort by last modified time
    Searched full:matrix (Results 351 - 375 of 3296) sorted by null

<<11121314151617181920>>

  /external/eigen/unsupported/Eigen/src/MatrixFunctions/
MatrixFunction.h 20 * \brief Class for computing matrix functions.
21 * \tparam MatrixType type of the argument of the matrix function,
22 * expected to be an instantiation of the Matrix class template.
23 * \tparam AtomicType type for computing matrix function of atomic blocks.
26 * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the
27 * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the
28 * computation of the matrix function on every block corresponding to these clusters to an object of type
29 * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class
30 * \p AtomicType should have a \p compute() member function for computing the matrix function of a block
    [all...]
  /external/chromium_org/third_party/mesa/src/src/mesa/math/
m_matrix.c 28 * Matrix operations.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
50 #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag.
52 * matrix is identified by the absense
55 #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */
56 #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */
57 #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */
58 #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */
59 #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */
60 #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag *
    [all...]
  /external/mesa3d/src/mesa/math/
m_matrix.c 28 * Matrix operations.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
50 #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag.
52 * matrix is identified by the absense
55 #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */
56 #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */
57 #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */
58 #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */
59 #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */
60 #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag *
    [all...]
  /external/chromium_org/ui/gfx/
transform.h 21 // 4x4 transformation matrix. Transform is cheap and explicitly allows
32 // Skips initializing this matrix to avoid overhead, when we know it will be
40 // Constructs a transform from explicit 16 matrix elements. Elements
46 // Constructs a transform from explicit 2d elements. All other matrix
48 // matrix.
98 // Returns true if this is the identity matrix.
101 // Returns true if the matrix is either identity or pure translation.
106 // Returns true if the matrix is either a positive scale and/or a translation.
115 // Returns true if the matrix is either identity or pure, non-fractional
119 // Returns true if the matrix is has only scaling and translation components
214 const SkMatrix44& matrix() const { return matrix_; } function in class:gfx::Transform
215 SkMatrix44& matrix() { return matrix_; } function in class:gfx::Transform
    [all...]
matrix3_f.h 62 // Returns an inverse of this if the matrix is non-singular, zero (== Zero())
66 // Value of the determinant of the matrix.
69 // Trace (sum of diagonal elements) of the matrix.
77 // a positive defnite matrix *this. Eigenvectors are computed only if
78 // non-null |eigenvectors| matrix is passed. If it is NULL, the routine
81 // If eigenvalues cannot be computed (the matrix does not meet constraints)
82 // the 0-vector is returned. Note that to retrieve eigenvalues, the matrix
84 // positive-definite. Passing a non-positive definite matrix will result in
  /cts/suite/cts/deviceTests/opengl/jni/reference/scene/flocking/
FlockingScene.cpp 26 #include <graphics/Matrix.h>
71 Matrix* FlockingScene::setUpModelMatrix() {
72 return new Matrix();
75 Matrix* FlockingScene::setUpViewMatrix() {
91 // Set the view matrix.
92 return Matrix::newLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ);
95 Matrix* FlockingScene::setUpProjectionMatrix(float width, float height) {
96 // Create a new perspective projection matrix. The height will stay the same
109 return Matrix::newFrustum(left, right, bottom, top, near, far);
146 Matrix* transformMatrix = Matrix::newScale(MAIN_SCALE * mDisplayRatio, MAIN_SCALE, 0.0f)
    [all...]
  /external/ceres-solver/internal/ceres/
compressed_row_sparse_matrix.cc 200 void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {
228 // Copy the contents of m into this matrix.
257 void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const {
258 matrix->num_rows = num_rows_;
259 matrix->num_cols = num_cols_;
260 matrix->rows = rows_;
261 matrix->cols = cols_;
262 matrix->values = values_;
265 matrix->rows.resize(matrix->num_rows + 1)
300 CompressedRowSparseMatrix* matrix = local
    [all...]
  /external/eigen/doc/
QuickReference.dox 26 <tr><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr>
34 <tr class="alt"><td>\link Sparse_Module Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, DynamicSparseMatrix, SparseVector)</td></tr>
40 \section QuickRef_Types Array, matrix and vector types
43 \b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array:
45 typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType;
50 \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic.
51 \li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options)
53 All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid:
55 Matrix<double, 6, Dynamic> // Dynamic number of columns (heap allocation)
56 Matrix<double, Dynamic, 2> // Dynamic number of rows (heap allocation
    [all...]
  /external/ceres-solver/include/ceres/
normal_prior.h 46 // where, the matrix A and the vector b are fixed and x is the
52 // where, mu is a vector and S is a covariance matrix, then, A =
53 // S^{-1/2}, i.e the matrix A is the square root of the inverse of the
54 // covariance, also known as the stiffness matrix. There are however
56 // which would be the case if the covariance matrix S is rank
62 // number of columns in the matrix A, crash otherwise.
63 NormalPrior(const Matrix& A, const Vector& b);
69 Matrix A_;
  /external/chromium/chrome/browser/ui/cocoa/bookmarks/
bookmark_tree_browser_cell.h 16 // identifying the bookmark node being edited and the column matrix
26 @property(nonatomic, assign) NSMatrix* matrix; variable
  /external/chromium-trace/trace-viewer/third_party/gl-matrix/
README.md 6 These types of applications demand high performance vector and matrix math,
10 glMatrix is designed to perform vector and matrix operations stupidly fast! By
  /external/chromium-trace/trace-viewer/third_party/gl-matrix/tasks/
release.rake 1 desc "tag and release gl-matrix v#{GLMatrix::VERSION}"
14 # if anything fails, gl-matrix will be untagged and not pushed.
  /external/chromium_org/cc/animation/
transform_operations.h 21 // Transform operations are a decomposed transformation matrix. It can be
36 // Returns a transformation matrix representing these transform operations.
40 // [0, 1], returns a transformation matrix representing the intermediate
45 // http://www.w3.org/TR/2011/WD-css3-2d-transforms-20111215/#matrix-decomposition.
53 // false if we must resort to matrix interpolation, and matrix interpolation
54 // fails (this can happen if either matrix cannot be decomposed).
62 void AppendMatrix(const gfx::Transform& matrix);
  /external/chromium_org/chrome/browser/ui/cocoa/bookmarks/
bookmark_tree_browser_cell.h 15 // identifying the bookmark node being edited and the column matrix
25 @property(nonatomic, assign) NSMatrix* matrix; variable
  /external/chromium_org/third_party/skia/src/effects/
SkColorFilterImageFilter.cpp 28 // To detect if we need to apply clamping after applying a matrix, we check if
50 bool matrix_needs_clamping(SkScalar matrix[20]) {
51 return component_needs_clamping(matrix)
52 || component_needs_clamping(matrix+5)
53 || component_needs_clamping(matrix+10)
54 || component_needs_clamping(matrix+15);
100 const SkMatrix& matrix,
104 if (getInput(0) && !getInput(0)->filterImage(proxy, source, matrix, &src, loc)) {
  /external/chromium_org/ui/compositor/test/
test_utils.cc 17 EXPECT_FLOAT_EQ(lhs.matrix().get(i, j), rhs.matrix().get(i, j));
  /external/chromium_org/webkit/renderer/compositor_bindings/
web_layer_impl_fixed_bounds.cc 52 void WebLayerImplFixedBounds::setSublayerTransform(const SkMatrix44& matrix) {
54 transform.matrix() = matrix;
59 return original_sublayer_transform_.matrix();
62 void WebLayerImplFixedBounds::setTransform(const SkMatrix44& matrix) {
64 transform.matrix() = matrix;
69 return original_transform_.matrix();
  /external/eigen/Eigen/src/Eigenvalues/
RealSchur.h 23 * \brief Performs a real Schur decomposition of a square matrix
25 * \tparam _MatrixType the type of the matrix of which we are computing the
27 * Matrix class template.
29 * Given a real square matrix A, this class computes the real Schur
30 * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
31 * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
33 * matrix is a block-triangular matrix whose diagonal consists of 1-by-
    [all...]
  /external/eigen/doc/examples/
TutorialLinAlgComputeTwice.cpp 13 cout << "Here is the matrix A:\n" << A << endl;
19 cout << "The matrix A is now:\n" << A << endl;
Tutorial_simple_example_dynamic_size.cpp 10 MatrixXi m(size,size+1); // a (size)x(size+1)-matrix of int's
13 m(i,j) = i+j*m.rows(); // to access matrix coefficients,
  /external/eigen/doc/snippets/
ComplexEigenSolver_compute.cpp 2 cout << "Here is a random 4x4 matrix, A:" << endl << A << endl << endl;
7 cout << "The matrix of eigenvectors, V, is:" << endl << ces.eigenvectors() << endl << endl;
EigenSolver_EigenSolver_MatrixType.cpp 2 cout << "Here is a random 6x6 matrix, A:" << endl << A << endl << endl;
6 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl;
SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp 3 cout << "Here is a random symmetric 5x5 matrix, A:" << endl << A << endl << endl;
7 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl;
  /external/eigen/test/eigen2/
eigen2_basicstuff.cpp 15 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
26 identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
28 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
72 Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
73 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
100 CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
105 CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
106 CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(10,10)) );
eigen2_product_small.cpp 16 CALL_SUBTEST_1( product(Matrix<float, 3, 2>()) );
17 CALL_SUBTEST_2( product(Matrix<int, 3, 5>()) );

Completed in 1121 milliseconds

<<11121314151617181920>>