/external/eigen/unsupported/Eigen/src/MatrixFunctions/ |
MatrixFunction.h | 20 * \brief Class for computing matrix functions. 21 * \tparam MatrixType type of the argument of the matrix function, 22 * expected to be an instantiation of the Matrix class template. 23 * \tparam AtomicType type for computing matrix function of atomic blocks. 26 * This class implements the Schur-Parlett algorithm for computing matrix functions. The spectrum of the 27 * matrix is divided in clustered of eigenvalues that lies close together. This class delegates the 28 * computation of the matrix function on every block corresponding to these clusters to an object of type 29 * \p AtomicType and uses these results to compute the matrix function of the whole matrix. The class 30 * \p AtomicType should have a \p compute() member function for computing the matrix function of a block [all...] |
/external/chromium_org/third_party/mesa/src/src/mesa/math/ |
m_matrix.c | 28 * Matrix operations. 33 * -# Transformation of a point p by a matrix M is: p' = M * p 50 #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag. 52 * matrix is identified by the absense 55 #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */ 56 #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */ 57 #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */ 58 #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */ 59 #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */ 60 #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag * [all...] |
/external/mesa3d/src/mesa/math/ |
m_matrix.c | 28 * Matrix operations. 33 * -# Transformation of a point p by a matrix M is: p' = M * p 50 #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag. 52 * matrix is identified by the absense 55 #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */ 56 #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */ 57 #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */ 58 #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */ 59 #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */ 60 #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag * [all...] |
/external/chromium_org/ui/gfx/ |
transform.h | 21 // 4x4 transformation matrix. Transform is cheap and explicitly allows 32 // Skips initializing this matrix to avoid overhead, when we know it will be 40 // Constructs a transform from explicit 16 matrix elements. Elements 46 // Constructs a transform from explicit 2d elements. All other matrix 48 // matrix. 98 // Returns true if this is the identity matrix. 101 // Returns true if the matrix is either identity or pure translation. 106 // Returns true if the matrix is either a positive scale and/or a translation. 115 // Returns true if the matrix is either identity or pure, non-fractional 119 // Returns true if the matrix is has only scaling and translation components 214 const SkMatrix44& matrix() const { return matrix_; } function in class:gfx::Transform 215 SkMatrix44& matrix() { return matrix_; } function in class:gfx::Transform [all...] |
matrix3_f.h | 62 // Returns an inverse of this if the matrix is non-singular, zero (== Zero()) 66 // Value of the determinant of the matrix. 69 // Trace (sum of diagonal elements) of the matrix. 77 // a positive defnite matrix *this. Eigenvectors are computed only if 78 // non-null |eigenvectors| matrix is passed. If it is NULL, the routine 81 // If eigenvalues cannot be computed (the matrix does not meet constraints) 82 // the 0-vector is returned. Note that to retrieve eigenvalues, the matrix 84 // positive-definite. Passing a non-positive definite matrix will result in
|
/cts/suite/cts/deviceTests/opengl/jni/reference/scene/flocking/ |
FlockingScene.cpp | 26 #include <graphics/Matrix.h> 71 Matrix* FlockingScene::setUpModelMatrix() { 72 return new Matrix(); 75 Matrix* FlockingScene::setUpViewMatrix() { 91 // Set the view matrix. 92 return Matrix::newLookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ); 95 Matrix* FlockingScene::setUpProjectionMatrix(float width, float height) { 96 // Create a new perspective projection matrix. The height will stay the same 109 return Matrix::newFrustum(left, right, bottom, top, near, far); 146 Matrix* transformMatrix = Matrix::newScale(MAIN_SCALE * mDisplayRatio, MAIN_SCALE, 0.0f) [all...] |
/external/ceres-solver/internal/ceres/ |
compressed_row_sparse_matrix.cc | 200 void CompressedRowSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const { 228 // Copy the contents of m into this matrix. 257 void CompressedRowSparseMatrix::ToCRSMatrix(CRSMatrix* matrix) const { 258 matrix->num_rows = num_rows_; 259 matrix->num_cols = num_cols_; 260 matrix->rows = rows_; 261 matrix->cols = cols_; 262 matrix->values = values_; 265 matrix->rows.resize(matrix->num_rows + 1) 300 CompressedRowSparseMatrix* matrix = local [all...] |
/external/eigen/doc/ |
QuickReference.dox | 26 <tr><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr> 34 <tr class="alt"><td>\link Sparse_Module Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, DynamicSparseMatrix, SparseVector)</td></tr> 40 \section QuickRef_Types Array, matrix and vector types 43 \b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array: 45 typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType; 50 \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic. 51 \li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options) 53 All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid: 55 Matrix<double, 6, Dynamic> // Dynamic number of columns (heap allocation) 56 Matrix<double, Dynamic, 2> // Dynamic number of rows (heap allocation [all...] |
/external/ceres-solver/include/ceres/ |
normal_prior.h | 46 // where, the matrix A and the vector b are fixed and x is the 52 // where, mu is a vector and S is a covariance matrix, then, A = 53 // S^{-1/2}, i.e the matrix A is the square root of the inverse of the 54 // covariance, also known as the stiffness matrix. There are however 56 // which would be the case if the covariance matrix S is rank 62 // number of columns in the matrix A, crash otherwise. 63 NormalPrior(const Matrix& A, const Vector& b); 69 Matrix A_;
|
/external/chromium/chrome/browser/ui/cocoa/bookmarks/ |
bookmark_tree_browser_cell.h | 16 // identifying the bookmark node being edited and the column matrix 26 @property(nonatomic, assign) NSMatrix* matrix; variable
|
/external/chromium-trace/trace-viewer/third_party/gl-matrix/ |
README.md | 6 These types of applications demand high performance vector and matrix math, 10 glMatrix is designed to perform vector and matrix operations stupidly fast! By
|
/external/chromium-trace/trace-viewer/third_party/gl-matrix/tasks/ |
release.rake | 1 desc "tag and release gl-matrix v#{GLMatrix::VERSION}" 14 # if anything fails, gl-matrix will be untagged and not pushed.
|
/external/chromium_org/cc/animation/ |
transform_operations.h | 21 // Transform operations are a decomposed transformation matrix. It can be 36 // Returns a transformation matrix representing these transform operations. 40 // [0, 1], returns a transformation matrix representing the intermediate 45 // http://www.w3.org/TR/2011/WD-css3-2d-transforms-20111215/#matrix-decomposition. 53 // false if we must resort to matrix interpolation, and matrix interpolation 54 // fails (this can happen if either matrix cannot be decomposed). 62 void AppendMatrix(const gfx::Transform& matrix);
|
/external/chromium_org/chrome/browser/ui/cocoa/bookmarks/ |
bookmark_tree_browser_cell.h | 15 // identifying the bookmark node being edited and the column matrix 25 @property(nonatomic, assign) NSMatrix* matrix; variable
|
/external/chromium_org/third_party/skia/src/effects/ |
SkColorFilterImageFilter.cpp | 28 // To detect if we need to apply clamping after applying a matrix, we check if 50 bool matrix_needs_clamping(SkScalar matrix[20]) { 51 return component_needs_clamping(matrix) 52 || component_needs_clamping(matrix+5) 53 || component_needs_clamping(matrix+10) 54 || component_needs_clamping(matrix+15); 100 const SkMatrix& matrix, 104 if (getInput(0) && !getInput(0)->filterImage(proxy, source, matrix, &src, loc)) {
|
/external/chromium_org/ui/compositor/test/ |
test_utils.cc | 17 EXPECT_FLOAT_EQ(lhs.matrix().get(i, j), rhs.matrix().get(i, j));
|
/external/chromium_org/webkit/renderer/compositor_bindings/ |
web_layer_impl_fixed_bounds.cc | 52 void WebLayerImplFixedBounds::setSublayerTransform(const SkMatrix44& matrix) { 54 transform.matrix() = matrix; 59 return original_sublayer_transform_.matrix(); 62 void WebLayerImplFixedBounds::setTransform(const SkMatrix44& matrix) { 64 transform.matrix() = matrix; 69 return original_transform_.matrix();
|
/external/eigen/Eigen/src/Eigenvalues/ |
RealSchur.h | 23 * \brief Performs a real Schur decomposition of a square matrix 25 * \tparam _MatrixType the type of the matrix of which we are computing the 27 * Matrix class template. 29 * Given a real square matrix A, this class computes the real Schur 30 * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and 31 * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose 33 * matrix is a block-triangular matrix whose diagonal consists of 1-by- [all...] |
/external/eigen/doc/examples/ |
TutorialLinAlgComputeTwice.cpp | 13 cout << "Here is the matrix A:\n" << A << endl; 19 cout << "The matrix A is now:\n" << A << endl;
|
Tutorial_simple_example_dynamic_size.cpp | 10 MatrixXi m(size,size+1); // a (size)x(size+1)-matrix of int's 13 m(i,j) = i+j*m.rows(); // to access matrix coefficients,
|
/external/eigen/doc/snippets/ |
ComplexEigenSolver_compute.cpp | 2 cout << "Here is a random 4x4 matrix, A:" << endl << A << endl << endl; 7 cout << "The matrix of eigenvectors, V, is:" << endl << ces.eigenvectors() << endl << endl;
|
EigenSolver_EigenSolver_MatrixType.cpp | 2 cout << "Here is a random 6x6 matrix, A:" << endl << A << endl << endl; 6 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl;
|
SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 3 cout << "Here is a random symmetric 5x5 matrix, A:" << endl << A << endl << endl; 7 cout << "The matrix of eigenvectors, V, is:" << endl << es.eigenvectors() << endl << endl;
|
/external/eigen/test/eigen2/ |
eigen2_basicstuff.cpp | 15 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; 26 identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> 28 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows); 72 Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows); 73 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows); 100 CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) ); 105 CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) ); 106 CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(10,10)) );
|
eigen2_product_small.cpp | 16 CALL_SUBTEST_1( product(Matrix<float, 3, 2>()) ); 17 CALL_SUBTEST_2( product(Matrix<int, 3, 5>()) );
|