HomeSort by relevance Sort by last modified time
    Searched full:matrix (Results 476 - 500 of 3296) sorted by null

<<11121314151617181920>>

  /external/ceres-solver/internal/ceres/
dense_sparse_matrix.h 31 // A dense matrix implemented under the SparseMatrix interface.
49 // Build a matrix with the same content as the TripletSparseMatrix
65 virtual void ToDenseMatrix(Matrix* dense_matrix) const;
73 ConstColMajorMatrixRef matrix() const;
79 // Original matrix:
95 // diagonal to a matrix that already has an appended diagonal, and it is also
96 // a fatal error to remove a diagonal from a matrix that has none.
suitesparse.h 87 // matrices stored in triplet form. The matrix A is not
105 // The matrix A is scaled using the matrix whose diagonal is the
115 // Create and return a matrix m = A * A'. Caller owns the
116 // result. The matrix A is not modified.
133 // matrix. This is done by using the AMD algorithm.
163 // on the matrix. See the documentation for CHOLMOD for more details.
167 // factorization for the matrix A or AA^T. Return true if
172 // Given a Cholesky factorization of a matrix A = LL^T, solve the
190 // compute the symbolic factorization of a matrix by either usin
    [all...]
  /external/eigen/unsupported/Eigen/src/NonLinearOptimization/
qrsolv.h 8 Matrix< Scalar, Dynamic, Dynamic > &s,
11 const Matrix< Scalar, Dynamic, 1 > &diag,
12 const Matrix< Scalar, Dynamic, 1 > &qtb,
13 Matrix< Scalar, Dynamic, 1 > &x,
14 Matrix< Scalar, Dynamic, 1 > &sdiag)
23 Matrix< Scalar, Dynamic, 1 > wa(n);
37 /* eliminate the diagonal matrix d using a givens rotation. */
  /frameworks/base/tests/CanvasCompare/src/com/android/test/hwuicompare/
ResourceModifiers.java 27 import android.graphics.Matrix;
42 private final Matrix mMtx1;
43 private final Matrix mMtx2;
44 private final Matrix mMtx3;
68 mMtx1 = new Matrix();
75 mMtx2 = new Matrix();
81 mMtx3 = new Matrix();
  /frameworks/base/tests/HwAccelerationTest/src/com/android/test/hwui/
AdvancedGradientsActivity.java 22 import android.graphics.Matrix;
43 private final Matrix mMatrix;
44 private final Matrix mMatrix2;
45 private final Matrix mMatrix3;
54 mMatrix = new Matrix();
58 mMatrix2 = new Matrix();
62 mMatrix3 = new Matrix();
Alpha8BitmapActivity.java 25 import android.graphics.Matrix;
81 Matrix matrix = new Matrix(); local
82 matrix.setScale(2.0f, 2.0f);
83 matrix.postTranslate(0.0f, mBitmap1.getHeight());
84 canvas.drawBitmap(mBitmap1, matrix, mBitmapPaint);
  /frameworks/base/tests/RenderScriptTests/ModelViewer/src/com/android/modelviewer/
simplemodel.rs 159 rs_matrix4x4 matrix;
160 rsMatrixLoadIdentity(&matrix);
162 rsMatrixTranslate(&matrix, gLookAt.x, gLookAt.y, gLookAt.z - gZoom);
163 rsMatrixMultiply(&matrix, &gPostureMatrix);
164 rsMatrixRotate(&matrix, gRotateX, 1.0f, 0.0f, 0.0f);
165 rsMatrixRotate(&matrix, gRotateY, 0.0f, 1.0f, 0.0f);
167 rsgProgramVertexLoadModelMatrix(&matrix);
  /frameworks/base/tests/RenderScriptTests/PerfTest/src/com/android/perftest/
fill_test.rs 61 // Setup the projection matrix
69 rs_matrix4x4 matrix;
70 rsMatrixLoadIdentity(&matrix);
71 rsgProgramVertexLoadModelMatrix(&matrix);
107 rs_matrix4x4 matrix;
108 rsMatrixLoadIdentity(&matrix);
109 rsgProgramVertexLoadModelMatrix(&matrix);
  /packages/apps/Gallery2/src/com/android/gallery3d/filtershow/imageshow/
ImageRedEye.java 22 import android.graphics.Matrix;
74 Matrix originalNoRotateToScreen = getImageToScreenMatrix(false);
75 Matrix originalToScreen = getImageToScreenMatrix(true);
76 Matrix invert = new Matrix();
109 protected void drawPoint(FilterPoint point, Canvas canvas, Matrix originalToScreen,
110 Matrix originalRotateToScreen, Paint paint) {
  /external/eigen/Eigen/src/Eigen2Support/Geometry/
Transform.h 34 * The homography is internally represented and stored as a (Dim+1)^2 matrix which
35 * is available through the matrix() method.
40 * \sa class Matrix, class Quaternion
53 /** type of the matrix used to represent the transformation */
54 typedef Matrix<Scalar,HDim,HDim> MatrixType;
55 /** type of the matrix used to represent the linear part of the transformation */
56 typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
62 typedef Matrix<Scalar,Dim,1> VectorType;
99 transform->matrix() = other;
109 transform->matrix()(Dim,Dim) = Scalar(1)
143 inline const MatrixType& matrix() const { return m_matrix; } function in class:Eigen::Transform
145 inline MatrixType& matrix() { return m_matrix; } function in class:Eigen::Transform
    [all...]
  /external/chromium_org/ui/gfx/
matrix3_f.cc 60 Matrix3F matrix; local
61 matrix.set(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
62 return matrix;
67 Matrix3F matrix; local
68 matrix.set(1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f);
69 return matrix;
74 Matrix3F matrix; local
75 matrix.set(1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f);
76 return matrix;
81 Matrix3F matrix; local
    [all...]
  /external/eigen/Eigen/src/SparseCholesky/
SimplicialCholesky.h 68 * such that the factorized matrix is P A P^-1.
70 * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
85 typedef Matrix<Scalar,Dynamic,1> VectorType;
94 SimplicialCholeskyBase(const MatrixType& matrix)
97 derived().compute(matrix);
113 * \c NumericalIssue if the matrix.appears to be negative.
131 && "SimplicialCholeskyBase::solve(): invalid number of rows of the right hand side matrix b");
145 && "SimplicialCholesky::solve(): invalid number of rows of the right hand side matrix b");
225 // we process the sparse rhs per block of NbColsAtOnce columns temporarily stored into a dense matrix.
229 Eigen::Matrix<DestScalar,Dynamic,Dynamic> tmp(size,rhsCols)
    [all...]
  /external/neven/Embedded/common/src/b_TensorEm/
Flt16Mat3D.h 36 /** 3d matrix with floating point */
81 /** initializes matrix */
84 /** destroys matrix */
111 /** creates identity matrix */
114 /** creates scale matrix */
117 /** creates matrix from 16 bit values */
123 /** creates matrix from 32 bit values (automatic adjustment of bbp value) */
129 /** scales matrix by a factor */
132 /** multiplies matrix with vecA; returns resulting vector */
137 /** Multiplies matrix with float vecA; returns resulting vector.
    [all...]
  /frameworks/base/opengl/java/android/opengl/
GLU.java 77 Matrix.setLookAtM(scratch, 0, eyeX, eyeY, eyeZ, centerX, centerY, centerZ,
84 * Set up a 2D orthographic projection matrix
98 * Set up a perspective projection matrix
131 * @param model the current modelview matrix
134 * @param project the current projection matrix
136 * matrix data starts.
155 Matrix.multiplyMM(scratch, M_OFFSET, project, projectOffset,
163 Matrix.multiplyMV(scratch, V2_OFFSET,
197 * @param model the current modelview matrix
200 * @param project the current projection matrix
    [all...]
  /external/eigen/doc/
C06_TutorialLinearAlgebra.dox 25 \b The \b problem: You have a system of equations, that you have written as a single matrix equation
29 \b The \b solution: You can choose between various decompositions, depending on what your matrix \a A looks like,
41 matrix is of type Matrix3f, this line could have been replaced by:
49 depending on your matrix and the trade-off you want to make:
55 <th>Requirements on the matrix</th>
112 For example, if your matrix is positive definite, the above table says that a very good
114 matrix (not a vector) as right hand side is possible.
144 Make sure to check if your matrix is self-adjoint, as is often the case in these problems. Here's an example using
162 advantageously replaced by solve() operations, and the determinant is often \em not a good way of checking if a matrix
168 call inverse() and determinant() directly on a matrix. If your matrix is of a very small fixed size (at most 4x4) thi
    [all...]
  /external/ceres-solver/include/ceres/
covariance.h 83 // If J(x*) is rank deficient, then the covariance matrix C(x*) is
89 // matrix for y was identity. This is an important assumption. If this
94 // Where S is a positive semi-definite matrix denoting the covariance
104 // covariance matrix not equal to identity, then it is the user's
108 // is the inverse square root of the covariance matrix S.
115 // Since the computation of the covariance matrix requires computing
116 // the inverse of a potentially large matrix, this can involve a
119 // covariance matrix. Quite often just the block diagonal. This class
120 // allows the user to specify the parts of the covariance matrix that
122 // and store those parts of the covariance matrix
    [all...]
  /external/eigen/Eigen/src/UmfPackSupport/
UmfPackSupport.h 114 * using the UmfPack library. The sparse matrix A must be squared and full rank.
117 * \WARNING The input matrix A should be in a \b compressed and \b column-major form.
118 * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
119 * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
131 typedef Matrix<Scalar,Dynamic,1> Vector;
132 typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
133 typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
141 UmfPackLU(const MatrixType& matrix)
144 compute(matrix);
159 * \c NumericalIssue if the matrix.appears to be negative
    [all...]
  /frameworks/base/tools/layoutlib/bridge/src/android/graphics/
Matrix_Delegate.java 25 import android.graphics.Matrix.ScaleToFit;
31 * Delegate implementing the native methods of android.graphics.Matrix
33 * Through the layoutlib_create tool, the original native methods of Matrix have been replaced
38 * it and the original Matrix class.
61 * Returns an {@link AffineTransform} matching the given Matrix.
63 public static AffineTransform getAffineTransform(Matrix m) {
72 public static boolean hasPerspective(Matrix m) {
82 * Sets the content of the matrix with the content of another matrix.
84 public void set(Matrix_Delegate matrix) {
    [all...]
  /external/eigen/Eigen/src/PardisoSupport/
PardisoSupport.h 108 typedef Matrix<Scalar,Dynamic,1> VectorType;
109 typedef Matrix<Index, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
110 typedef Matrix<Index, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
134 * \c NumericalIssue if the matrix appears to be negative.
150 /** Performs a symbolic decomposition on the sparcity of \a matrix.
156 Derived& analyzePattern(const MatrixType& matrix);
158 /** Performs a numeric decomposition of \a matrix
160 * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
164 Derived& factorize(const MatrixType& matrix);
    [all...]
  /external/chromium_org/third_party/mesa/src/src/gallium/state_trackers/vega/
path.c 32 #include "matrix.h"
64 struct matrix matrix; member in struct:path::__anon14939
69 struct matrix matrix; member in struct:path::__anon14940
292 struct matrix *matrix)
298 matrix_map_point(matrix, x0, y0, &x0, &y0);
360 static struct polygon_array * path_get_fill_polygons(struct path *p, struct matrix *matrix)
812 struct matrix *matrix; member in struct:transform_data
    [all...]
  /external/mesa3d/src/gallium/state_trackers/vega/
path.c 32 #include "matrix.h"
64 struct matrix matrix; member in struct:path::__anon25281
69 struct matrix matrix; member in struct:path::__anon25282
292 struct matrix *matrix)
298 matrix_map_point(matrix, x0, y0, &x0, &y0);
360 static struct polygon_array * path_get_fill_polygons(struct path *p, struct matrix *matrix)
812 struct matrix *matrix; member in struct:transform_data
    [all...]
  /external/chromium_org/third_party/mesa/src/src/gallium/auxiliary/vl/
vl_csc.c 41 * To calculate the color space conversion matrix csc with ProcAmp adjustments,
45 * Where cstd is a matrix corresponding to one of the color standards (BT.601, BT.709, etc)
47 * bias is a matrix corresponding to the kind of YCbCr -> RGB mapping wanted (1:1, full)
177 vl_csc_matrix *matrix)
191 assert(matrix);
206 memcpy(matrix, identity, sizeof(vl_csc_matrix));
210 (*matrix)[0][0] = c * (*cstd)[0][0];
211 (*matrix)[0][1] = c * (*cstd)[0][1] * s * cosf(h) - c * (*cstd)[0][2] * s * sinf(h);
212 (*matrix)[0][2] = c * (*cstd)[0][2] * s * cosf(h) + c * (*cstd)[0][1] * s * sinf(h);
213 (*matrix)[0][3] = (*cstd)[0][3] + (*cstd)[0][0] * (b + c * ybias)
    [all...]
  /external/eigen/Eigen/src/Core/
SelfAdjointView.h 19 * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
21 * \param MatrixType the type of the dense matrix storing the coefficients
24 * This class is an expression of a sefladjoint matrix from a triangular part of a matrix
62 /** \brief The type of coefficients in this matrix */
72 inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
104 /** Efficient self-adjoint matrix times vector/matrix product *
    [all...]
  /external/eigen/test/
array_for_matrix.cpp 17 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
18 typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
35 VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1);
36 VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) );
39 VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix());
42 VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix());
66 const Scalar& ref_m1 = m.matrix().array().coeffRef(0);
67 const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0);
68 const Scalar& ref_a1 = m.array().matrix().coeffRef(0);
69 const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0)
    [all...]
  /external/mesa3d/src/gallium/auxiliary/vl/
vl_csc.c 41 * To calculate the color space conversion matrix csc with ProcAmp adjustments,
45 * Where cstd is a matrix corresponding to one of the color standards (BT.601, BT.709, etc)
47 * bias is a matrix corresponding to the kind of YCbCr -> RGB mapping wanted (1:1, full)
177 vl_csc_matrix *matrix)
191 assert(matrix);
206 memcpy(matrix, identity, sizeof(vl_csc_matrix));
210 (*matrix)[0][0] = c * (*cstd)[0][0];
211 (*matrix)[0][1] = c * (*cstd)[0][1] * s * cosf(h) - c * (*cstd)[0][2] * s * sinf(h);
212 (*matrix)[0][2] = c * (*cstd)[0][2] * s * cosf(h) + c * (*cstd)[0][1] * s * sinf(h);
213 (*matrix)[0][3] = (*cstd)[0][3] + (*cstd)[0][0] * (b + c * ybias)
    [all...]

Completed in 984 milliseconds

<<11121314151617181920>>