Home | History | Annotate | Download | only in v8-v4
      1 // Copyright 2008 the V8 project authors. All rights reserved.
      2 // Copyright 1996 John Maloney and Mario Wolczko.
      3 
      4 // This program is free software; you can redistribute it and/or modify
      5 // it under the terms of the GNU General Public License as published by
      6 // the Free Software Foundation; either version 2 of the License, or
      7 // (at your option) any later version.
      8 //
      9 // This program is distributed in the hope that it will be useful,
     10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     12 // GNU General Public License for more details.
     13 //
     14 // You should have received a copy of the GNU General Public License
     15 // along with this program; if not, write to the Free Software
     16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     17 
     18 
     19 // This implementation of the DeltaBlue benchmark is derived
     20 // from the Smalltalk implementation by John Maloney and Mario
     21 // Wolczko. Some parts have been translated directly, whereas
     22 // others have been modified more aggresively to make it feel
     23 // more like a JavaScript program.
     24 
     25 /**
     26  * A JavaScript implementation of the DeltaBlue constrain-solving
     27  * algorithm, as described in:
     28  *
     29  * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
     30  *   Bjorn N. Freeman-Benson and John Maloney
     31  *   January 1990 Communications of the ACM,
     32  *   also available as University of Washington TR 89-08-06.
     33  *
     34  * Beware: this benchmark is written in a grotesque style where
     35  * the constraint model is built by side-effects from constructors.
     36  * I've kept it this way to avoid deviating too much from the original
     37  * implementation.
     38  */
     39 
     40 
     41 /* --- O b j e c t   M o d e l --- */
     42 
     43 Object.prototype.inherits = function (shuper) {
     44   function Inheriter() { }
     45   Inheriter.prototype = shuper.prototype;
     46   this.prototype = new Inheriter();
     47   this.superConstructor = shuper;
     48 }
     49 
     50 function OrderedCollection() {
     51   this.elms = new Array();
     52 }
     53 
     54 OrderedCollection.prototype.add = function (elm) {
     55   this.elms.push(elm);
     56 }
     57 
     58 OrderedCollection.prototype.at = function (index) {
     59   return this.elms[index];
     60 }
     61 
     62 OrderedCollection.prototype.size = function () {
     63   return this.elms.length;
     64 }
     65 
     66 OrderedCollection.prototype.removeFirst = function () {
     67   return this.elms.pop();
     68 }
     69 
     70 OrderedCollection.prototype.remove = function (elm) {
     71   var index = 0, skipped = 0;
     72   for (var i = 0; i < this.elms.length; i++) {
     73     var value = this.elms[i];
     74     if (value != elm) {
     75       this.elms[index] = value;
     76       index++;
     77     } else {
     78       skipped++;
     79     }
     80   }
     81   for (var i = 0; i < skipped; i++)
     82     this.elms.pop();
     83 }
     84 
     85 /* --- *
     86  * S t r e n g t h
     87  * --- */
     88 
     89 /**
     90  * Strengths are used to measure the relative importance of constraints.
     91  * New strengths may be inserted in the strength hierarchy without
     92  * disrupting current constraints.  Strengths cannot be created outside
     93  * this class, so pointer comparison can be used for value comparison.
     94  */
     95 function Strength(strengthValue, name) {
     96   this.strengthValue = strengthValue;
     97   this.name = name;
     98 }
     99 
    100 Strength.stronger = function (s1, s2) {
    101   return s1.strengthValue < s2.strengthValue;
    102 }
    103 
    104 Strength.weaker = function (s1, s2) {
    105   return s1.strengthValue > s2.strengthValue;
    106 }
    107 
    108 Strength.weakestOf = function (s1, s2) {
    109   return this.weaker(s1, s2) ? s1 : s2;
    110 }
    111 
    112 Strength.strongest = function (s1, s2) {
    113   return this.stronger(s1, s2) ? s1 : s2;
    114 }
    115 
    116 Strength.prototype.nextWeaker = function () {
    117   switch (this.strengthValue) {
    118     case 0: return Strength.WEAKEST;
    119     case 1: return Strength.WEAK_DEFAULT;
    120     case 2: return Strength.NORMAL;
    121     case 3: return Strength.STRONG_DEFAULT;
    122     case 4: return Strength.PREFERRED;
    123     case 5: return Strength.REQUIRED;
    124   }
    125 }
    126 
    127 // Strength constants.
    128 Strength.REQUIRED        = new Strength(0, "required");
    129 Strength.STONG_PREFERRED = new Strength(1, "strongPreferred");
    130 Strength.PREFERRED       = new Strength(2, "preferred");
    131 Strength.STRONG_DEFAULT  = new Strength(3, "strongDefault");
    132 Strength.NORMAL          = new Strength(4, "normal");
    133 Strength.WEAK_DEFAULT    = new Strength(5, "weakDefault");
    134 Strength.WEAKEST         = new Strength(6, "weakest");
    135 
    136 /* --- *
    137  * C o n s t r a i n t
    138  * --- */
    139 
    140 /**
    141  * An abstract class representing a system-maintainable relationship
    142  * (or "constraint") between a set of variables. A constraint supplies
    143  * a strength instance variable; concrete subclasses provide a means
    144  * of storing the constrained variables and other information required
    145  * to represent a constraint.
    146  */
    147 function Constraint(strength) {
    148   this.strength = strength;
    149 }
    150 
    151 /**
    152  * Activate this constraint and attempt to satisfy it.
    153  */
    154 Constraint.prototype.addConstraint = function () {
    155   this.addToGraph();
    156   planner.incrementalAdd(this);
    157 }
    158 
    159 /**
    160  * Attempt to find a way to enforce this constraint. If successful,
    161  * record the solution, perhaps modifying the current dataflow
    162  * graph. Answer the constraint that this constraint overrides, if
    163  * there is one, or nil, if there isn't.
    164  * Assume: I am not already satisfied.
    165  */
    166 Constraint.prototype.satisfy = function (mark) {
    167   this.chooseMethod(mark);
    168   if (!this.isSatisfied()) {
    169     if (this.strength == Strength.REQUIRED)
    170       alert("Could not satisfy a required constraint!");
    171     return null;
    172   }
    173   this.markInputs(mark);
    174   var out = this.output();
    175   var overridden = out.determinedBy;
    176   if (overridden != null) overridden.markUnsatisfied();
    177   out.determinedBy = this;
    178   if (!planner.addPropagate(this, mark))
    179     alert("Cycle encountered");
    180   out.mark = mark;
    181   return overridden;
    182 }
    183 
    184 Constraint.prototype.destroyConstraint = function () {
    185   if (this.isSatisfied()) planner.incrementalRemove(this);
    186   else this.removeFromGraph();
    187 }
    188 
    189 /**
    190  * Normal constraints are not input constraints.  An input constraint
    191  * is one that depends on external state, such as the mouse, the
    192  * keybord, a clock, or some arbitraty piece of imperative code.
    193  */
    194 Constraint.prototype.isInput = function () {
    195   return false;
    196 }
    197 
    198 /* --- *
    199  * U n a r y   C o n s t r a i n t
    200  * --- */
    201 
    202 /**
    203  * Abstract superclass for constraints having a single possible output
    204  * variable.
    205  */
    206 function UnaryConstraint(v, strength) {
    207   UnaryConstraint.superConstructor.call(this, strength);
    208   this.myOutput = v;
    209   this.satisfied = false;
    210   this.addConstraint();
    211 }
    212 
    213 UnaryConstraint.inherits(Constraint);
    214 
    215 /**
    216  * Adds this constraint to the constraint graph
    217  */
    218 UnaryConstraint.prototype.addToGraph = function () {
    219   this.myOutput.addConstraint(this);
    220   this.satisfied = false;
    221 }
    222 
    223 /**
    224  * Decides if this constraint can be satisfied and records that
    225  * decision.
    226  */
    227 UnaryConstraint.prototype.chooseMethod = function (mark) {
    228   this.satisfied = (this.myOutput.mark != mark)
    229     && Strength.stronger(this.strength, this.myOutput.walkStrength);
    230 }
    231 
    232 /**
    233  * Returns true if this constraint is satisfied in the current solution.
    234  */
    235 UnaryConstraint.prototype.isSatisfied = function () {
    236   return this.satisfied;
    237 }
    238 
    239 UnaryConstraint.prototype.markInputs = function (mark) {
    240   // has no inputs
    241 }
    242 
    243 /**
    244  * Returns the current output variable.
    245  */
    246 UnaryConstraint.prototype.output = function () {
    247   return this.myOutput;
    248 }
    249 
    250 /**
    251  * Calculate the walkabout strength, the stay flag, and, if it is
    252  * 'stay', the value for the current output of this constraint. Assume
    253  * this constraint is satisfied.
    254  */
    255 UnaryConstraint.prototype.recalculate = function () {
    256   this.myOutput.walkStrength = this.strength;
    257   this.myOutput.stay = !this.isInput();
    258   if (this.myOutput.stay) this.execute(); // Stay optimization
    259 }
    260 
    261 /**
    262  * Records that this constraint is unsatisfied
    263  */
    264 UnaryConstraint.prototype.markUnsatisfied = function () {
    265   this.satisfied = false;
    266 }
    267 
    268 UnaryConstraint.prototype.inputsKnown = function () {
    269   return true;
    270 }
    271 
    272 UnaryConstraint.prototype.removeFromGraph = function () {
    273   if (this.myOutput != null) this.myOutput.removeConstraint(this);
    274   this.satisfied = false;
    275 }
    276 
    277 /* --- *
    278  * S t a y   C o n s t r a i n t
    279  * --- */
    280 
    281 /**
    282  * Variables that should, with some level of preference, stay the same.
    283  * Planners may exploit the fact that instances, if satisfied, will not
    284  * change their output during plan execution.  This is called "stay
    285  * optimization".
    286  */
    287 function StayConstraint(v, str) {
    288   StayConstraint.superConstructor.call(this, v, str);
    289 }
    290 
    291 StayConstraint.inherits(UnaryConstraint);
    292 
    293 StayConstraint.prototype.execute = function () {
    294   // Stay constraints do nothing
    295 }
    296 
    297 /* --- *
    298  * E d i t   C o n s t r a i n t
    299  * --- */
    300 
    301 /**
    302  * A unary input constraint used to mark a variable that the client
    303  * wishes to change.
    304  */
    305 function EditConstraint(v, str) {
    306   EditConstraint.superConstructor.call(this, v, str);
    307 }
    308 
    309 EditConstraint.inherits(UnaryConstraint);
    310 
    311 /**
    312  * Edits indicate that a variable is to be changed by imperative code.
    313  */
    314 EditConstraint.prototype.isInput = function () {
    315   return true;
    316 }
    317 
    318 EditConstraint.prototype.execute = function () {
    319   // Edit constraints do nothing
    320 }
    321 
    322 /* --- *
    323  * B i n a r y   C o n s t r a i n t
    324  * --- */
    325 
    326 var Direction = new Object();
    327 Direction.NONE     = 0;
    328 Direction.FORWARD  = 1;
    329 Direction.BACKWARD = -1;
    330 
    331 /**
    332  * Abstract superclass for constraints having two possible output
    333  * variables.
    334  */
    335 function BinaryConstraint(var1, var2, strength) {
    336   BinaryConstraint.superConstructor.call(this, strength);
    337   this.v1 = var1;
    338   this.v2 = var2;
    339   this.direction = Direction.NONE;
    340   this.addConstraint();
    341 }
    342 
    343 BinaryConstraint.inherits(Constraint);
    344 
    345 /**
    346  * Decides if this constratint can be satisfied and which way it
    347  * should flow based on the relative strength of the variables related,
    348  * and record that decision.
    349  */
    350 BinaryConstraint.prototype.chooseMethod = function (mark) {
    351   if (this.v1.mark == mark) {
    352     this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength))
    353       ? Direction.FORWARD
    354       : Direction.NONE;
    355   }
    356   if (this.v2.mark == mark) {
    357     this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength))
    358       ? Direction.BACKWARD
    359       : Direction.NONE;
    360   }
    361   if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) {
    362     this.direction = Strength.stronger(this.strength, this.v1.walkStrength)
    363       ? Direction.BACKWARD
    364       : Direction.NONE;
    365   } else {
    366     this.direction = Strength.stronger(this.strength, this.v2.walkStrength)
    367       ? Direction.FORWARD
    368       : Direction.BACKWARD
    369   }
    370 }
    371 
    372 /**
    373  * Add this constraint to the constraint graph
    374  */
    375 BinaryConstraint.prototype.addToGraph = function () {
    376   this.v1.addConstraint(this);
    377   this.v2.addConstraint(this);
    378   this.direction = Direction.NONE;
    379 }
    380 
    381 /**
    382  * Answer true if this constraint is satisfied in the current solution.
    383  */
    384 BinaryConstraint.prototype.isSatisfied = function () {
    385   return this.direction != Direction.NONE;
    386 }
    387 
    388 /**
    389  * Mark the input variable with the given mark.
    390  */
    391 BinaryConstraint.prototype.markInputs = function (mark) {
    392   this.input().mark = mark;
    393 }
    394 
    395 /**
    396  * Returns the current input variable
    397  */
    398 BinaryConstraint.prototype.input = function () {
    399   return (this.direction == Direction.FORWARD) ? this.v1 : this.v2;
    400 }
    401 
    402 /**
    403  * Returns the current output variable
    404  */
    405 BinaryConstraint.prototype.output = function () {
    406   return (this.direction == Direction.FORWARD) ? this.v2 : this.v1;
    407 }
    408 
    409 /**
    410  * Calculate the walkabout strength, the stay flag, and, if it is
    411  * 'stay', the value for the current output of this
    412  * constraint. Assume this constraint is satisfied.
    413  */
    414 BinaryConstraint.prototype.recalculate = function () {
    415   var ihn = this.input(), out = this.output();
    416   out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
    417   out.stay = ihn.stay;
    418   if (out.stay) this.execute();
    419 }
    420 
    421 /**
    422  * Record the fact that this constraint is unsatisfied.
    423  */
    424 BinaryConstraint.prototype.markUnsatisfied = function () {
    425   this.direction = Direction.NONE;
    426 }
    427 
    428 BinaryConstraint.prototype.inputsKnown = function (mark) {
    429   var i = this.input();
    430   return i.mark == mark || i.stay || i.determinedBy == null;
    431 }
    432 
    433 BinaryConstraint.prototype.removeFromGraph = function () {
    434   if (this.v1 != null) this.v1.removeConstraint(this);
    435   if (this.v2 != null) this.v2.removeConstraint(this);
    436   this.direction = Direction.NONE;
    437 }
    438 
    439 /* --- *
    440  * S c a l e   C o n s t r a i n t
    441  * --- */
    442 
    443 /**
    444  * Relates two variables by the linear scaling relationship: "v2 =
    445  * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
    446  * this relationship but the scale factor and offset are considered
    447  * read-only.
    448  */
    449 function ScaleConstraint(src, scale, offset, dest, strength) {
    450   this.direction = Direction.NONE;
    451   this.scale = scale;
    452   this.offset = offset;
    453   ScaleConstraint.superConstructor.call(this, src, dest, strength);
    454 }
    455 
    456 ScaleConstraint.inherits(BinaryConstraint);
    457 
    458 /**
    459  * Adds this constraint to the constraint graph.
    460  */
    461 ScaleConstraint.prototype.addToGraph = function () {
    462   ScaleConstraint.superConstructor.prototype.addToGraph.call(this);
    463   this.scale.addConstraint(this);
    464   this.offset.addConstraint(this);
    465 }
    466 
    467 ScaleConstraint.prototype.removeFromGraph = function () {
    468   ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this);
    469   if (this.scale != null) this.scale.removeConstraint(this);
    470   if (this.offset != null) this.offset.removeConstraint(this);
    471 }
    472 
    473 ScaleConstraint.prototype.markInputs = function (mark) {
    474   ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark);
    475   this.scale.mark = this.offset.mark = mark;
    476 }
    477 
    478 /**
    479  * Enforce this constraint. Assume that it is satisfied.
    480  */
    481 ScaleConstraint.prototype.execute = function () {
    482   if (this.direction == Direction.FORWARD) {
    483     this.v2.value = this.v1.value * this.scale.value + this.offset.value;
    484   } else {
    485     this.v1.value = (this.v2.value - this.offset.value) / this.scale.value;
    486   }
    487 }
    488 
    489 /**
    490  * Calculate the walkabout strength, the stay flag, and, if it is
    491  * 'stay', the value for the current output of this constraint. Assume
    492  * this constraint is satisfied.
    493  */
    494 ScaleConstraint.prototype.recalculate = function () {
    495   var ihn = this.input(), out = this.output();
    496   out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
    497   out.stay = ihn.stay && this.scale.stay && this.offset.stay;
    498   if (out.stay) this.execute();
    499 }
    500 
    501 /* --- *
    502  * E q u a l i t  y   C o n s t r a i n t
    503  * --- */
    504 
    505 /**
    506  * Constrains two variables to have the same value.
    507  */
    508 function EqualityConstraint(var1, var2, strength) {
    509   EqualityConstraint.superConstructor.call(this, var1, var2, strength);
    510 }
    511 
    512 EqualityConstraint.inherits(BinaryConstraint);
    513 
    514 /**
    515  * Enforce this constraint. Assume that it is satisfied.
    516  */
    517 EqualityConstraint.prototype.execute = function () {
    518   this.output().value = this.input().value;
    519 }
    520 
    521 /* --- *
    522  * V a r i a b l e
    523  * --- */
    524 
    525 /**
    526  * A constrained variable. In addition to its value, it maintain the
    527  * structure of the constraint graph, the current dataflow graph, and
    528  * various parameters of interest to the DeltaBlue incremental
    529  * constraint solver.
    530  **/
    531 function Variable(name, initialValue) {
    532   this.value = initialValue || 0;
    533   this.constraints = new OrderedCollection();
    534   this.determinedBy = null;
    535   this.mark = 0;
    536   this.walkStrength = Strength.WEAKEST;
    537   this.stay = true;
    538   this.name = name;
    539 }
    540 
    541 /**
    542  * Add the given constraint to the set of all constraints that refer
    543  * this variable.
    544  */
    545 Variable.prototype.addConstraint = function (c) {
    546   this.constraints.add(c);
    547 }
    548 
    549 /**
    550  * Removes all traces of c from this variable.
    551  */
    552 Variable.prototype.removeConstraint = function (c) {
    553   this.constraints.remove(c);
    554   if (this.determinedBy == c) this.determinedBy = null;
    555 }
    556 
    557 /* --- *
    558  * P l a n n e r
    559  * --- */
    560 
    561 /**
    562  * The DeltaBlue planner
    563  */
    564 function Planner() {
    565   this.currentMark = 0;
    566 }
    567 
    568 /**
    569  * Attempt to satisfy the given constraint and, if successful,
    570  * incrementally update the dataflow graph.  Details: If satifying
    571  * the constraint is successful, it may override a weaker constraint
    572  * on its output. The algorithm attempts to resatisfy that
    573  * constraint using some other method. This process is repeated
    574  * until either a) it reaches a variable that was not previously
    575  * determined by any constraint or b) it reaches a constraint that
    576  * is too weak to be satisfied using any of its methods. The
    577  * variables of constraints that have been processed are marked with
    578  * a unique mark value so that we know where we've been. This allows
    579  * the algorithm to avoid getting into an infinite loop even if the
    580  * constraint graph has an inadvertent cycle.
    581  */
    582 Planner.prototype.incrementalAdd = function (c) {
    583   var mark = this.newMark();
    584   var overridden = c.satisfy(mark);
    585   while (overridden != null)
    586     overridden = overridden.satisfy(mark);
    587 }
    588 
    589 /**
    590  * Entry point for retracting a constraint. Remove the given
    591  * constraint and incrementally update the dataflow graph.
    592  * Details: Retracting the given constraint may allow some currently
    593  * unsatisfiable downstream constraint to be satisfied. We therefore collect
    594  * a list of unsatisfied downstream constraints and attempt to
    595  * satisfy each one in turn. This list is traversed by constraint
    596  * strength, strongest first, as a heuristic for avoiding
    597  * unnecessarily adding and then overriding weak constraints.
    598  * Assume: c is satisfied.
    599  */
    600 Planner.prototype.incrementalRemove = function (c) {
    601   var out = c.output();
    602   c.markUnsatisfied();
    603   c.removeFromGraph();
    604   var unsatisfied = this.removePropagateFrom(out);
    605   var strength = Strength.REQUIRED;
    606   do {
    607     for (var i = 0; i < unsatisfied.size(); i++) {
    608       var u = unsatisfied.at(i);
    609       if (u.strength == strength)
    610         this.incrementalAdd(u);
    611     }
    612     strength = strength.nextWeaker();
    613   } while (strength != Strength.WEAKEST);
    614 }
    615 
    616 /**
    617  * Select a previously unused mark value.
    618  */
    619 Planner.prototype.newMark = function () {
    620   return ++this.currentMark;
    621 }
    622 
    623 /**
    624  * Extract a plan for resatisfaction starting from the given source
    625  * constraints, usually a set of input constraints. This method
    626  * assumes that stay optimization is desired; the plan will contain
    627  * only constraints whose output variables are not stay. Constraints
    628  * that do no computation, such as stay and edit constraints, are
    629  * not included in the plan.
    630  * Details: The outputs of a constraint are marked when it is added
    631  * to the plan under construction. A constraint may be appended to
    632  * the plan when all its input variables are known. A variable is
    633  * known if either a) the variable is marked (indicating that has
    634  * been computed by a constraint appearing earlier in the plan), b)
    635  * the variable is 'stay' (i.e. it is a constant at plan execution
    636  * time), or c) the variable is not determined by any
    637  * constraint. The last provision is for past states of history
    638  * variables, which are not stay but which are also not computed by
    639  * any constraint.
    640  * Assume: sources are all satisfied.
    641  */
    642 Planner.prototype.makePlan = function (sources) {
    643   var mark = this.newMark();
    644   var plan = new Plan();
    645   var todo = sources;
    646   while (todo.size() > 0) {
    647     var c = todo.removeFirst();
    648     if (c.output().mark != mark && c.inputsKnown(mark)) {
    649       plan.addConstraint(c);
    650       c.output().mark = mark;
    651       this.addConstraintsConsumingTo(c.output(), todo);
    652     }
    653   }
    654   return plan;
    655 }
    656 
    657 /**
    658  * Extract a plan for resatisfying starting from the output of the
    659  * given constraints, usually a set of input constraints.
    660  */
    661 Planner.prototype.extractPlanFromConstraints = function (constraints) {
    662   var sources = new OrderedCollection();
    663   for (var i = 0; i < constraints.size(); i++) {
    664     var c = constraints.at(i);
    665     if (c.isInput() && c.isSatisfied())
    666       // not in plan already and eligible for inclusion
    667       sources.add(c);
    668   }
    669   return this.makePlan(sources);
    670 }
    671 
    672 /**
    673  * Recompute the walkabout strengths and stay flags of all variables
    674  * downstream of the given constraint and recompute the actual
    675  * values of all variables whose stay flag is true. If a cycle is
    676  * detected, remove the given constraint and answer
    677  * false. Otherwise, answer true.
    678  * Details: Cycles are detected when a marked variable is
    679  * encountered downstream of the given constraint. The sender is
    680  * assumed to have marked the inputs of the given constraint with
    681  * the given mark. Thus, encountering a marked node downstream of
    682  * the output constraint means that there is a path from the
    683  * constraint's output to one of its inputs.
    684  */
    685 Planner.prototype.addPropagate = function (c, mark) {
    686   var todo = new OrderedCollection();
    687   todo.add(c);
    688   while (todo.size() > 0) {
    689     var d = todo.removeFirst();
    690     if (d.output().mark == mark) {
    691       this.incrementalRemove(c);
    692       return false;
    693     }
    694     d.recalculate();
    695     this.addConstraintsConsumingTo(d.output(), todo);
    696   }
    697   return true;
    698 }
    699 
    700 
    701 /**
    702  * Update the walkabout strengths and stay flags of all variables
    703  * downstream of the given constraint. Answer a collection of
    704  * unsatisfied constraints sorted in order of decreasing strength.
    705  */
    706 Planner.prototype.removePropagateFrom = function (out) {
    707   out.determinedBy = null;
    708   out.walkStrength = Strength.WEAKEST;
    709   out.stay = true;
    710   var unsatisfied = new OrderedCollection();
    711   var todo = new OrderedCollection();
    712   todo.add(out);
    713   while (todo.size() > 0) {
    714     var v = todo.removeFirst();
    715     for (var i = 0; i < v.constraints.size(); i++) {
    716       var c = v.constraints.at(i);
    717       if (!c.isSatisfied())
    718         unsatisfied.add(c);
    719     }
    720     var determining = v.determinedBy;
    721     for (var i = 0; i < v.constraints.size(); i++) {
    722       var next = v.constraints.at(i);
    723       if (next != determining && next.isSatisfied()) {
    724         next.recalculate();
    725         todo.add(next.output());
    726       }
    727     }
    728   }
    729   return unsatisfied;
    730 }
    731 
    732 Planner.prototype.addConstraintsConsumingTo = function (v, coll) {
    733   var determining = v.determinedBy;
    734   var cc = v.constraints;
    735   for (var i = 0; i < cc.size(); i++) {
    736     var c = cc.at(i);
    737     if (c != determining && c.isSatisfied())
    738       coll.add(c);
    739   }
    740 }
    741 
    742 /* --- *
    743  * P l a n
    744  * --- */
    745 
    746 /**
    747  * A Plan is an ordered list of constraints to be executed in sequence
    748  * to resatisfy all currently satisfiable constraints in the face of
    749  * one or more changing inputs.
    750  */
    751 function Plan() {
    752   this.v = new OrderedCollection();
    753 }
    754 
    755 Plan.prototype.addConstraint = function (c) {
    756   this.v.add(c);
    757 }
    758 
    759 Plan.prototype.size = function () {
    760   return this.v.size();
    761 }
    762 
    763 Plan.prototype.constraintAt = function (index) {
    764   return this.v.at(index);
    765 }
    766 
    767 Plan.prototype.execute = function () {
    768   for (var i = 0; i < this.size(); i++) {
    769     var c = this.constraintAt(i);
    770     c.execute();
    771   }
    772 }
    773 
    774 /* --- *
    775  * M a i n
    776  * --- */
    777 
    778 /**
    779  * This is the standard DeltaBlue benchmark. A long chain of equality
    780  * constraints is constructed with a stay constraint on one end. An
    781  * edit constraint is then added to the opposite end and the time is
    782  * measured for adding and removing this constraint, and extracting
    783  * and executing a constraint satisfaction plan. There are two cases.
    784  * In case 1, the added constraint is stronger than the stay
    785  * constraint and values must propagate down the entire length of the
    786  * chain. In case 2, the added constraint is weaker than the stay
    787  * constraint so it cannot be accomodated. The cost in this case is,
    788  * of course, very low. Typical situations lie somewhere between these
    789  * two extremes.
    790  */
    791 function chainTest(n) {
    792   planner = new Planner();
    793   var prev = null, first = null, last = null;
    794 
    795   // Build chain of n equality constraints
    796   for (var i = 0; i <= n; i++) {
    797     var name = "v" + i;
    798     var v = new Variable(name);
    799     if (prev != null)
    800       new EqualityConstraint(prev, v, Strength.REQUIRED);
    801     if (i == 0) first = v;
    802     if (i == n) last = v;
    803     prev = v;
    804   }
    805 
    806   new StayConstraint(last, Strength.STRONG_DEFAULT);
    807   var edit = new EditConstraint(first, Strength.PREFERRED);
    808   var edits = new OrderedCollection();
    809   edits.add(edit);
    810   var plan = planner.extractPlanFromConstraints(edits);
    811   for (var i = 0; i < 100; i++) {
    812     first.value = i;
    813     plan.execute();
    814     if (last.value != i)
    815       alert("Chain test failed.");
    816   }
    817 }
    818 
    819 /**
    820  * This test constructs a two sets of variables related to each
    821  * other by a simple linear transformation (scale and offset). The
    822  * time is measured to change a variable on either side of the
    823  * mapping and to change the scale and offset factors.
    824  */
    825 function projectionTest(n) {
    826   planner = new Planner();
    827   var scale = new Variable("scale", 10);
    828   var offset = new Variable("offset", 1000);
    829   var src = null, dst = null;
    830 
    831   var dests = new OrderedCollection();
    832   for (var i = 0; i < n; i++) {
    833     src = new Variable("src" + i, i);
    834     dst = new Variable("dst" + i, i);
    835     dests.add(dst);
    836     new StayConstraint(src, Strength.NORMAL);
    837     new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED);
    838   }
    839 
    840   change(src, 17);
    841   if (dst.value != 1170) alert("Projection 1 failed");
    842   change(dst, 1050);
    843   if (src.value != 5) alert("Projection 2 failed");
    844   change(scale, 5);
    845   for (var i = 0; i < n - 1; i++) {
    846     if (dests.at(i).value != i * 5 + 1000)
    847       alert("Projection 3 failed");
    848   }
    849   change(offset, 2000);
    850   for (var i = 0; i < n - 1; i++) {
    851     if (dests.at(i).value != i * 5 + 2000)
    852       alert("Projection 4 failed");
    853   }
    854 }
    855 
    856 function change(v, newValue) {
    857   var edit = new EditConstraint(v, Strength.PREFERRED);
    858   var edits = new OrderedCollection();
    859   edits.add(edit);
    860   var plan = planner.extractPlanFromConstraints(edits);
    861   for (var i = 0; i < 10; i++) {
    862     v.value = newValue;
    863     plan.execute();
    864   }
    865   edit.destroyConstraint();
    866 }
    867 
    868 // Global variable holding the current planner.
    869 var planner = null;
    870 
    871 function deltaBlue() {
    872   chainTest(100);
    873   projectionTest(100);
    874 }
    875 
    876 for (var i = 0; i < 155; ++i)
    877     deltaBlue();
    878