Home | History | Annotate | Download | only in Eigen2Support

Lines Matching refs:m_matU

54       : m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())),
64 const MatrixUType& matrixU() const { return m_matU; }
82 MatrixUType m_matU;
102 m_matU.resize(m, nu);
103 m_matU.setZero();
152 m_matU.col(k).end(m-k) = matA.col(k).end(m-k);
197 m_matU.col(j).setZero();
198 m_matU(j,j) = 1.0;
206 Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ?
207 t = -t/m_matU(k,k);
208 m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k);
210 m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k);
211 m_matU(k,k) = Scalar(1) + m_matU(k,k);
213 m_matU.col(k).start(k-1).setZero();
217 m_matU.col(k).setZero();
218 m_matU(k,k) = 1.0;
357 t = cs*m_matU(i,j) + sn*m_matU(i,k-1);
358 m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1);
359 m_matU(i,j) = t;
425 t = cs*m_matU(i,j) + sn*m_matU(i,j+1);
426 m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1);
427 m_matU(i,j) = t;
458 m_matU.col(k).swap(m_matU.col(k+1));
472 int mu = m_matU.rows();
474 int n = m_matU.cols();
496 std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k));
515 const int rows = m_matU.rows();
521 Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j);
523 for (int i = 0; i <m_matU.cols(); ++i)
550 ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
551 if(unitary) *unitary = m_matU * m_matV.adjoint();
568 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
569 if(unitary) *unitary = m_matU * m_matV.adjoint();
570 if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
586 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
587 Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
593 MatrixType m(m_matU);
612 ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
613 Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
616 if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint());
619 MatrixType m(m_matU);