Home | History | Annotate | Download | only in IR
      1 //===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines various classes for working with Instructions and
     11 // ConstantExprs.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_IR_OPERATOR_H
     16 #define LLVM_IR_OPERATOR_H
     17 
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/DataLayout.h"
     20 #include "llvm/IR/DerivedTypes.h"
     21 #include "llvm/IR/Instruction.h"
     22 #include "llvm/IR/Type.h"
     23 #include "llvm/Support/GetElementPtrTypeIterator.h"
     24 
     25 namespace llvm {
     26 
     27 class GetElementPtrInst;
     28 class BinaryOperator;
     29 class ConstantExpr;
     30 
     31 /// Operator - This is a utility class that provides an abstraction for the
     32 /// common functionality between Instructions and ConstantExprs.
     33 ///
     34 class Operator : public User {
     35 private:
     36   // The Operator class is intended to be used as a utility, and is never itself
     37   // instantiated.
     38   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
     39   void *operator new(size_t s) LLVM_DELETED_FUNCTION;
     40   Operator() LLVM_DELETED_FUNCTION;
     41 
     42 protected:
     43   // NOTE: Cannot use LLVM_DELETED_FUNCTION because it's not legal to delete
     44   // an overridden method that's not deleted in the base class. Cannot leave
     45   // this unimplemented because that leads to an ODR-violation.
     46   ~Operator();
     47 
     48 public:
     49   /// getOpcode - Return the opcode for this Instruction or ConstantExpr.
     50   ///
     51   unsigned getOpcode() const {
     52     if (const Instruction *I = dyn_cast<Instruction>(this))
     53       return I->getOpcode();
     54     return cast<ConstantExpr>(this)->getOpcode();
     55   }
     56 
     57   /// getOpcode - If V is an Instruction or ConstantExpr, return its
     58   /// opcode. Otherwise return UserOp1.
     59   ///
     60   static unsigned getOpcode(const Value *V) {
     61     if (const Instruction *I = dyn_cast<Instruction>(V))
     62       return I->getOpcode();
     63     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
     64       return CE->getOpcode();
     65     return Instruction::UserOp1;
     66   }
     67 
     68   static inline bool classof(const Instruction *) { return true; }
     69   static inline bool classof(const ConstantExpr *) { return true; }
     70   static inline bool classof(const Value *V) {
     71     return isa<Instruction>(V) || isa<ConstantExpr>(V);
     72   }
     73 };
     74 
     75 /// OverflowingBinaryOperator - Utility class for integer arithmetic operators
     76 /// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv,
     77 /// despite that operator having the potential for overflow.
     78 ///
     79 class OverflowingBinaryOperator : public Operator {
     80 public:
     81   enum {
     82     NoUnsignedWrap = (1 << 0),
     83     NoSignedWrap   = (1 << 1)
     84   };
     85 
     86 private:
     87   friend class BinaryOperator;
     88   friend class ConstantExpr;
     89   void setHasNoUnsignedWrap(bool B) {
     90     SubclassOptionalData =
     91       (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
     92   }
     93   void setHasNoSignedWrap(bool B) {
     94     SubclassOptionalData =
     95       (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
     96   }
     97 
     98 public:
     99   /// hasNoUnsignedWrap - Test whether this operation is known to never
    100   /// undergo unsigned overflow, aka the nuw property.
    101   bool hasNoUnsignedWrap() const {
    102     return SubclassOptionalData & NoUnsignedWrap;
    103   }
    104 
    105   /// hasNoSignedWrap - Test whether this operation is known to never
    106   /// undergo signed overflow, aka the nsw property.
    107   bool hasNoSignedWrap() const {
    108     return (SubclassOptionalData & NoSignedWrap) != 0;
    109   }
    110 
    111   static inline bool classof(const Instruction *I) {
    112     return I->getOpcode() == Instruction::Add ||
    113            I->getOpcode() == Instruction::Sub ||
    114            I->getOpcode() == Instruction::Mul ||
    115            I->getOpcode() == Instruction::Shl;
    116   }
    117   static inline bool classof(const ConstantExpr *CE) {
    118     return CE->getOpcode() == Instruction::Add ||
    119            CE->getOpcode() == Instruction::Sub ||
    120            CE->getOpcode() == Instruction::Mul ||
    121            CE->getOpcode() == Instruction::Shl;
    122   }
    123   static inline bool classof(const Value *V) {
    124     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
    125            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
    126   }
    127 };
    128 
    129 /// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as
    130 /// "exact", indicating that no bits are destroyed.
    131 class PossiblyExactOperator : public Operator {
    132 public:
    133   enum {
    134     IsExact = (1 << 0)
    135   };
    136 
    137 private:
    138   friend class BinaryOperator;
    139   friend class ConstantExpr;
    140   void setIsExact(bool B) {
    141     SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
    142   }
    143 
    144 public:
    145   /// isExact - Test whether this division is known to be exact, with
    146   /// zero remainder.
    147   bool isExact() const {
    148     return SubclassOptionalData & IsExact;
    149   }
    150 
    151   static bool isPossiblyExactOpcode(unsigned OpC) {
    152     return OpC == Instruction::SDiv ||
    153            OpC == Instruction::UDiv ||
    154            OpC == Instruction::AShr ||
    155            OpC == Instruction::LShr;
    156   }
    157   static inline bool classof(const ConstantExpr *CE) {
    158     return isPossiblyExactOpcode(CE->getOpcode());
    159   }
    160   static inline bool classof(const Instruction *I) {
    161     return isPossiblyExactOpcode(I->getOpcode());
    162   }
    163   static inline bool classof(const Value *V) {
    164     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
    165            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
    166   }
    167 };
    168 
    169 /// Convenience struct for specifying and reasoning about fast-math flags.
    170 class FastMathFlags {
    171 private:
    172   friend class FPMathOperator;
    173   unsigned Flags;
    174   FastMathFlags(unsigned F) : Flags(F) { }
    175 
    176 public:
    177   enum {
    178     UnsafeAlgebra   = (1 << 0),
    179     NoNaNs          = (1 << 1),
    180     NoInfs          = (1 << 2),
    181     NoSignedZeros   = (1 << 3),
    182     AllowReciprocal = (1 << 4)
    183   };
    184 
    185   FastMathFlags() : Flags(0)
    186   { }
    187 
    188   /// Whether any flag is set
    189   bool any() { return Flags != 0; }
    190 
    191   /// Set all the flags to false
    192   void clear() { Flags = 0; }
    193 
    194   /// Flag queries
    195   bool noNaNs()          { return 0 != (Flags & NoNaNs); }
    196   bool noInfs()          { return 0 != (Flags & NoInfs); }
    197   bool noSignedZeros()   { return 0 != (Flags & NoSignedZeros); }
    198   bool allowReciprocal() { return 0 != (Flags & AllowReciprocal); }
    199   bool unsafeAlgebra()   { return 0 != (Flags & UnsafeAlgebra); }
    200 
    201   /// Flag setters
    202   void setNoNaNs()          { Flags |= NoNaNs; }
    203   void setNoInfs()          { Flags |= NoInfs; }
    204   void setNoSignedZeros()   { Flags |= NoSignedZeros; }
    205   void setAllowReciprocal() { Flags |= AllowReciprocal; }
    206   void setUnsafeAlgebra() {
    207     Flags |= UnsafeAlgebra;
    208     setNoNaNs();
    209     setNoInfs();
    210     setNoSignedZeros();
    211     setAllowReciprocal();
    212   }
    213 };
    214 
    215 
    216 /// FPMathOperator - Utility class for floating point operations which can have
    217 /// information about relaxed accuracy requirements attached to them.
    218 class FPMathOperator : public Operator {
    219 private:
    220   friend class Instruction;
    221 
    222   void setHasUnsafeAlgebra(bool B) {
    223     SubclassOptionalData =
    224       (SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) |
    225       (B * FastMathFlags::UnsafeAlgebra);
    226 
    227     // Unsafe algebra implies all the others
    228     if (B) {
    229       setHasNoNaNs(true);
    230       setHasNoInfs(true);
    231       setHasNoSignedZeros(true);
    232       setHasAllowReciprocal(true);
    233     }
    234   }
    235   void setHasNoNaNs(bool B) {
    236     SubclassOptionalData =
    237       (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
    238       (B * FastMathFlags::NoNaNs);
    239   }
    240   void setHasNoInfs(bool B) {
    241     SubclassOptionalData =
    242       (SubclassOptionalData & ~FastMathFlags::NoInfs) |
    243       (B * FastMathFlags::NoInfs);
    244   }
    245   void setHasNoSignedZeros(bool B) {
    246     SubclassOptionalData =
    247       (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
    248       (B * FastMathFlags::NoSignedZeros);
    249   }
    250   void setHasAllowReciprocal(bool B) {
    251     SubclassOptionalData =
    252       (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
    253       (B * FastMathFlags::AllowReciprocal);
    254   }
    255 
    256   /// Convenience function for setting all the fast-math flags
    257   void setFastMathFlags(FastMathFlags FMF) {
    258     SubclassOptionalData |= FMF.Flags;
    259   }
    260 
    261 public:
    262   /// Test whether this operation is permitted to be
    263   /// algebraically transformed, aka the 'A' fast-math property.
    264   bool hasUnsafeAlgebra() const {
    265     return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0;
    266   }
    267 
    268   /// Test whether this operation's arguments and results are to be
    269   /// treated as non-NaN, aka the 'N' fast-math property.
    270   bool hasNoNaNs() const {
    271     return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
    272   }
    273 
    274   /// Test whether this operation's arguments and results are to be
    275   /// treated as NoN-Inf, aka the 'I' fast-math property.
    276   bool hasNoInfs() const {
    277     return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
    278   }
    279 
    280   /// Test whether this operation can treat the sign of zero
    281   /// as insignificant, aka the 'S' fast-math property.
    282   bool hasNoSignedZeros() const {
    283     return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
    284   }
    285 
    286   /// Test whether this operation is permitted to use
    287   /// reciprocal instead of division, aka the 'R' fast-math property.
    288   bool hasAllowReciprocal() const {
    289     return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
    290   }
    291 
    292   /// Convenience function for getting all the fast-math flags
    293   FastMathFlags getFastMathFlags() const {
    294     return FastMathFlags(SubclassOptionalData);
    295   }
    296 
    297   /// \brief Get the maximum error permitted by this operation in ULPs.  An
    298   /// accuracy of 0.0 means that the operation should be performed with the
    299   /// default precision.
    300   float getFPAccuracy() const;
    301 
    302   static inline bool classof(const Instruction *I) {
    303     return I->getType()->isFPOrFPVectorTy();
    304   }
    305   static inline bool classof(const Value *V) {
    306     return isa<Instruction>(V) && classof(cast<Instruction>(V));
    307   }
    308 };
    309 
    310 
    311 /// ConcreteOperator - A helper template for defining operators for individual
    312 /// opcodes.
    313 template<typename SuperClass, unsigned Opc>
    314 class ConcreteOperator : public SuperClass {
    315 public:
    316   static inline bool classof(const Instruction *I) {
    317     return I->getOpcode() == Opc;
    318   }
    319   static inline bool classof(const ConstantExpr *CE) {
    320     return CE->getOpcode() == Opc;
    321   }
    322   static inline bool classof(const Value *V) {
    323     return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
    324            (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
    325   }
    326 };
    327 
    328 class AddOperator
    329   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
    330 };
    331 class SubOperator
    332   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
    333 };
    334 class MulOperator
    335   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
    336 };
    337 class ShlOperator
    338   : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
    339 };
    340 
    341 
    342 class SDivOperator
    343   : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
    344 };
    345 class UDivOperator
    346   : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
    347 };
    348 class AShrOperator
    349   : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
    350 };
    351 class LShrOperator
    352   : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
    353 };
    354 
    355 
    356 
    357 class GEPOperator
    358   : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
    359   enum {
    360     IsInBounds = (1 << 0)
    361   };
    362 
    363   friend class GetElementPtrInst;
    364   friend class ConstantExpr;
    365   void setIsInBounds(bool B) {
    366     SubclassOptionalData =
    367       (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
    368   }
    369 
    370 public:
    371   /// isInBounds - Test whether this is an inbounds GEP, as defined
    372   /// by LangRef.html.
    373   bool isInBounds() const {
    374     return SubclassOptionalData & IsInBounds;
    375   }
    376 
    377   inline op_iterator       idx_begin()       { return op_begin()+1; }
    378   inline const_op_iterator idx_begin() const { return op_begin()+1; }
    379   inline op_iterator       idx_end()         { return op_end(); }
    380   inline const_op_iterator idx_end()   const { return op_end(); }
    381 
    382   Value *getPointerOperand() {
    383     return getOperand(0);
    384   }
    385   const Value *getPointerOperand() const {
    386     return getOperand(0);
    387   }
    388   static unsigned getPointerOperandIndex() {
    389     return 0U;                      // get index for modifying correct operand
    390   }
    391 
    392   /// getPointerOperandType - Method to return the pointer operand as a
    393   /// PointerType.
    394   Type *getPointerOperandType() const {
    395     return getPointerOperand()->getType();
    396   }
    397 
    398   /// getPointerAddressSpace - Method to return the address space of the
    399   /// pointer operand.
    400   unsigned getPointerAddressSpace() const {
    401     return cast<PointerType>(getPointerOperandType())->getAddressSpace();
    402   }
    403 
    404   unsigned getNumIndices() const {  // Note: always non-negative
    405     return getNumOperands() - 1;
    406   }
    407 
    408   bool hasIndices() const {
    409     return getNumOperands() > 1;
    410   }
    411 
    412   /// hasAllZeroIndices - Return true if all of the indices of this GEP are
    413   /// zeros.  If so, the result pointer and the first operand have the same
    414   /// value, just potentially different types.
    415   bool hasAllZeroIndices() const {
    416     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
    417       if (ConstantInt *C = dyn_cast<ConstantInt>(I))
    418         if (C->isZero())
    419           continue;
    420       return false;
    421     }
    422     return true;
    423   }
    424 
    425   /// hasAllConstantIndices - Return true if all of the indices of this GEP are
    426   /// constant integers.  If so, the result pointer and the first operand have
    427   /// a constant offset between them.
    428   bool hasAllConstantIndices() const {
    429     for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
    430       if (!isa<ConstantInt>(I))
    431         return false;
    432     }
    433     return true;
    434   }
    435 
    436   /// \brief Accumulate the constant address offset of this GEP if possible.
    437   ///
    438   /// This routine accepts an APInt into which it will accumulate the constant
    439   /// offset of this GEP if the GEP is in fact constant. If the GEP is not
    440   /// all-constant, it returns false and the value of the offset APInt is
    441   /// undefined (it is *not* preserved!). The APInt passed into this routine
    442   /// must be at least as wide as the IntPtr type for the address space of
    443   /// the base GEP pointer.
    444   bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const {
    445     assert(Offset.getBitWidth() ==
    446            DL.getPointerSizeInBits(getPointerAddressSpace()) &&
    447            "The offset must have exactly as many bits as our pointer.");
    448 
    449     for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
    450          GTI != GTE; ++GTI) {
    451       ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
    452       if (!OpC)
    453         return false;
    454       if (OpC->isZero())
    455         continue;
    456 
    457       // Handle a struct index, which adds its field offset to the pointer.
    458       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    459         unsigned ElementIdx = OpC->getZExtValue();
    460         const StructLayout *SL = DL.getStructLayout(STy);
    461         Offset += APInt(Offset.getBitWidth(),
    462                         SL->getElementOffset(ElementIdx));
    463         continue;
    464       }
    465 
    466       // For array or vector indices, scale the index by the size of the type.
    467       APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
    468       Offset += Index * APInt(Offset.getBitWidth(),
    469                               DL.getTypeAllocSize(GTI.getIndexedType()));
    470     }
    471     return true;
    472   }
    473 
    474 };
    475 
    476 } // End llvm namespace
    477 
    478 #endif
    479