1 //===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines various classes for working with Instructions and 11 // ConstantExprs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_IR_OPERATOR_H 16 #define LLVM_IR_OPERATOR_H 17 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/Type.h" 23 #include "llvm/Support/GetElementPtrTypeIterator.h" 24 25 namespace llvm { 26 27 class GetElementPtrInst; 28 class BinaryOperator; 29 class ConstantExpr; 30 31 /// Operator - This is a utility class that provides an abstraction for the 32 /// common functionality between Instructions and ConstantExprs. 33 /// 34 class Operator : public User { 35 private: 36 // The Operator class is intended to be used as a utility, and is never itself 37 // instantiated. 38 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION; 39 void *operator new(size_t s) LLVM_DELETED_FUNCTION; 40 Operator() LLVM_DELETED_FUNCTION; 41 42 protected: 43 // NOTE: Cannot use LLVM_DELETED_FUNCTION because it's not legal to delete 44 // an overridden method that's not deleted in the base class. Cannot leave 45 // this unimplemented because that leads to an ODR-violation. 46 ~Operator(); 47 48 public: 49 /// getOpcode - Return the opcode for this Instruction or ConstantExpr. 50 /// 51 unsigned getOpcode() const { 52 if (const Instruction *I = dyn_cast<Instruction>(this)) 53 return I->getOpcode(); 54 return cast<ConstantExpr>(this)->getOpcode(); 55 } 56 57 /// getOpcode - If V is an Instruction or ConstantExpr, return its 58 /// opcode. Otherwise return UserOp1. 59 /// 60 static unsigned getOpcode(const Value *V) { 61 if (const Instruction *I = dyn_cast<Instruction>(V)) 62 return I->getOpcode(); 63 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 64 return CE->getOpcode(); 65 return Instruction::UserOp1; 66 } 67 68 static inline bool classof(const Instruction *) { return true; } 69 static inline bool classof(const ConstantExpr *) { return true; } 70 static inline bool classof(const Value *V) { 71 return isa<Instruction>(V) || isa<ConstantExpr>(V); 72 } 73 }; 74 75 /// OverflowingBinaryOperator - Utility class for integer arithmetic operators 76 /// which may exhibit overflow - Add, Sub, and Mul. It does not include SDiv, 77 /// despite that operator having the potential for overflow. 78 /// 79 class OverflowingBinaryOperator : public Operator { 80 public: 81 enum { 82 NoUnsignedWrap = (1 << 0), 83 NoSignedWrap = (1 << 1) 84 }; 85 86 private: 87 friend class BinaryOperator; 88 friend class ConstantExpr; 89 void setHasNoUnsignedWrap(bool B) { 90 SubclassOptionalData = 91 (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap); 92 } 93 void setHasNoSignedWrap(bool B) { 94 SubclassOptionalData = 95 (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap); 96 } 97 98 public: 99 /// hasNoUnsignedWrap - Test whether this operation is known to never 100 /// undergo unsigned overflow, aka the nuw property. 101 bool hasNoUnsignedWrap() const { 102 return SubclassOptionalData & NoUnsignedWrap; 103 } 104 105 /// hasNoSignedWrap - Test whether this operation is known to never 106 /// undergo signed overflow, aka the nsw property. 107 bool hasNoSignedWrap() const { 108 return (SubclassOptionalData & NoSignedWrap) != 0; 109 } 110 111 static inline bool classof(const Instruction *I) { 112 return I->getOpcode() == Instruction::Add || 113 I->getOpcode() == Instruction::Sub || 114 I->getOpcode() == Instruction::Mul || 115 I->getOpcode() == Instruction::Shl; 116 } 117 static inline bool classof(const ConstantExpr *CE) { 118 return CE->getOpcode() == Instruction::Add || 119 CE->getOpcode() == Instruction::Sub || 120 CE->getOpcode() == Instruction::Mul || 121 CE->getOpcode() == Instruction::Shl; 122 } 123 static inline bool classof(const Value *V) { 124 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || 125 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); 126 } 127 }; 128 129 /// PossiblyExactOperator - A udiv or sdiv instruction, which can be marked as 130 /// "exact", indicating that no bits are destroyed. 131 class PossiblyExactOperator : public Operator { 132 public: 133 enum { 134 IsExact = (1 << 0) 135 }; 136 137 private: 138 friend class BinaryOperator; 139 friend class ConstantExpr; 140 void setIsExact(bool B) { 141 SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact); 142 } 143 144 public: 145 /// isExact - Test whether this division is known to be exact, with 146 /// zero remainder. 147 bool isExact() const { 148 return SubclassOptionalData & IsExact; 149 } 150 151 static bool isPossiblyExactOpcode(unsigned OpC) { 152 return OpC == Instruction::SDiv || 153 OpC == Instruction::UDiv || 154 OpC == Instruction::AShr || 155 OpC == Instruction::LShr; 156 } 157 static inline bool classof(const ConstantExpr *CE) { 158 return isPossiblyExactOpcode(CE->getOpcode()); 159 } 160 static inline bool classof(const Instruction *I) { 161 return isPossiblyExactOpcode(I->getOpcode()); 162 } 163 static inline bool classof(const Value *V) { 164 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || 165 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); 166 } 167 }; 168 169 /// Convenience struct for specifying and reasoning about fast-math flags. 170 class FastMathFlags { 171 private: 172 friend class FPMathOperator; 173 unsigned Flags; 174 FastMathFlags(unsigned F) : Flags(F) { } 175 176 public: 177 enum { 178 UnsafeAlgebra = (1 << 0), 179 NoNaNs = (1 << 1), 180 NoInfs = (1 << 2), 181 NoSignedZeros = (1 << 3), 182 AllowReciprocal = (1 << 4) 183 }; 184 185 FastMathFlags() : Flags(0) 186 { } 187 188 /// Whether any flag is set 189 bool any() { return Flags != 0; } 190 191 /// Set all the flags to false 192 void clear() { Flags = 0; } 193 194 /// Flag queries 195 bool noNaNs() { return 0 != (Flags & NoNaNs); } 196 bool noInfs() { return 0 != (Flags & NoInfs); } 197 bool noSignedZeros() { return 0 != (Flags & NoSignedZeros); } 198 bool allowReciprocal() { return 0 != (Flags & AllowReciprocal); } 199 bool unsafeAlgebra() { return 0 != (Flags & UnsafeAlgebra); } 200 201 /// Flag setters 202 void setNoNaNs() { Flags |= NoNaNs; } 203 void setNoInfs() { Flags |= NoInfs; } 204 void setNoSignedZeros() { Flags |= NoSignedZeros; } 205 void setAllowReciprocal() { Flags |= AllowReciprocal; } 206 void setUnsafeAlgebra() { 207 Flags |= UnsafeAlgebra; 208 setNoNaNs(); 209 setNoInfs(); 210 setNoSignedZeros(); 211 setAllowReciprocal(); 212 } 213 }; 214 215 216 /// FPMathOperator - Utility class for floating point operations which can have 217 /// information about relaxed accuracy requirements attached to them. 218 class FPMathOperator : public Operator { 219 private: 220 friend class Instruction; 221 222 void setHasUnsafeAlgebra(bool B) { 223 SubclassOptionalData = 224 (SubclassOptionalData & ~FastMathFlags::UnsafeAlgebra) | 225 (B * FastMathFlags::UnsafeAlgebra); 226 227 // Unsafe algebra implies all the others 228 if (B) { 229 setHasNoNaNs(true); 230 setHasNoInfs(true); 231 setHasNoSignedZeros(true); 232 setHasAllowReciprocal(true); 233 } 234 } 235 void setHasNoNaNs(bool B) { 236 SubclassOptionalData = 237 (SubclassOptionalData & ~FastMathFlags::NoNaNs) | 238 (B * FastMathFlags::NoNaNs); 239 } 240 void setHasNoInfs(bool B) { 241 SubclassOptionalData = 242 (SubclassOptionalData & ~FastMathFlags::NoInfs) | 243 (B * FastMathFlags::NoInfs); 244 } 245 void setHasNoSignedZeros(bool B) { 246 SubclassOptionalData = 247 (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) | 248 (B * FastMathFlags::NoSignedZeros); 249 } 250 void setHasAllowReciprocal(bool B) { 251 SubclassOptionalData = 252 (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) | 253 (B * FastMathFlags::AllowReciprocal); 254 } 255 256 /// Convenience function for setting all the fast-math flags 257 void setFastMathFlags(FastMathFlags FMF) { 258 SubclassOptionalData |= FMF.Flags; 259 } 260 261 public: 262 /// Test whether this operation is permitted to be 263 /// algebraically transformed, aka the 'A' fast-math property. 264 bool hasUnsafeAlgebra() const { 265 return (SubclassOptionalData & FastMathFlags::UnsafeAlgebra) != 0; 266 } 267 268 /// Test whether this operation's arguments and results are to be 269 /// treated as non-NaN, aka the 'N' fast-math property. 270 bool hasNoNaNs() const { 271 return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0; 272 } 273 274 /// Test whether this operation's arguments and results are to be 275 /// treated as NoN-Inf, aka the 'I' fast-math property. 276 bool hasNoInfs() const { 277 return (SubclassOptionalData & FastMathFlags::NoInfs) != 0; 278 } 279 280 /// Test whether this operation can treat the sign of zero 281 /// as insignificant, aka the 'S' fast-math property. 282 bool hasNoSignedZeros() const { 283 return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0; 284 } 285 286 /// Test whether this operation is permitted to use 287 /// reciprocal instead of division, aka the 'R' fast-math property. 288 bool hasAllowReciprocal() const { 289 return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0; 290 } 291 292 /// Convenience function for getting all the fast-math flags 293 FastMathFlags getFastMathFlags() const { 294 return FastMathFlags(SubclassOptionalData); 295 } 296 297 /// \brief Get the maximum error permitted by this operation in ULPs. An 298 /// accuracy of 0.0 means that the operation should be performed with the 299 /// default precision. 300 float getFPAccuracy() const; 301 302 static inline bool classof(const Instruction *I) { 303 return I->getType()->isFPOrFPVectorTy(); 304 } 305 static inline bool classof(const Value *V) { 306 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 307 } 308 }; 309 310 311 /// ConcreteOperator - A helper template for defining operators for individual 312 /// opcodes. 313 template<typename SuperClass, unsigned Opc> 314 class ConcreteOperator : public SuperClass { 315 public: 316 static inline bool classof(const Instruction *I) { 317 return I->getOpcode() == Opc; 318 } 319 static inline bool classof(const ConstantExpr *CE) { 320 return CE->getOpcode() == Opc; 321 } 322 static inline bool classof(const Value *V) { 323 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) || 324 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V))); 325 } 326 }; 327 328 class AddOperator 329 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> { 330 }; 331 class SubOperator 332 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> { 333 }; 334 class MulOperator 335 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> { 336 }; 337 class ShlOperator 338 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> { 339 }; 340 341 342 class SDivOperator 343 : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> { 344 }; 345 class UDivOperator 346 : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> { 347 }; 348 class AShrOperator 349 : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> { 350 }; 351 class LShrOperator 352 : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> { 353 }; 354 355 356 357 class GEPOperator 358 : public ConcreteOperator<Operator, Instruction::GetElementPtr> { 359 enum { 360 IsInBounds = (1 << 0) 361 }; 362 363 friend class GetElementPtrInst; 364 friend class ConstantExpr; 365 void setIsInBounds(bool B) { 366 SubclassOptionalData = 367 (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds); 368 } 369 370 public: 371 /// isInBounds - Test whether this is an inbounds GEP, as defined 372 /// by LangRef.html. 373 bool isInBounds() const { 374 return SubclassOptionalData & IsInBounds; 375 } 376 377 inline op_iterator idx_begin() { return op_begin()+1; } 378 inline const_op_iterator idx_begin() const { return op_begin()+1; } 379 inline op_iterator idx_end() { return op_end(); } 380 inline const_op_iterator idx_end() const { return op_end(); } 381 382 Value *getPointerOperand() { 383 return getOperand(0); 384 } 385 const Value *getPointerOperand() const { 386 return getOperand(0); 387 } 388 static unsigned getPointerOperandIndex() { 389 return 0U; // get index for modifying correct operand 390 } 391 392 /// getPointerOperandType - Method to return the pointer operand as a 393 /// PointerType. 394 Type *getPointerOperandType() const { 395 return getPointerOperand()->getType(); 396 } 397 398 /// getPointerAddressSpace - Method to return the address space of the 399 /// pointer operand. 400 unsigned getPointerAddressSpace() const { 401 return cast<PointerType>(getPointerOperandType())->getAddressSpace(); 402 } 403 404 unsigned getNumIndices() const { // Note: always non-negative 405 return getNumOperands() - 1; 406 } 407 408 bool hasIndices() const { 409 return getNumOperands() > 1; 410 } 411 412 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 413 /// zeros. If so, the result pointer and the first operand have the same 414 /// value, just potentially different types. 415 bool hasAllZeroIndices() const { 416 for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) { 417 if (ConstantInt *C = dyn_cast<ConstantInt>(I)) 418 if (C->isZero()) 419 continue; 420 return false; 421 } 422 return true; 423 } 424 425 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 426 /// constant integers. If so, the result pointer and the first operand have 427 /// a constant offset between them. 428 bool hasAllConstantIndices() const { 429 for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) { 430 if (!isa<ConstantInt>(I)) 431 return false; 432 } 433 return true; 434 } 435 436 /// \brief Accumulate the constant address offset of this GEP if possible. 437 /// 438 /// This routine accepts an APInt into which it will accumulate the constant 439 /// offset of this GEP if the GEP is in fact constant. If the GEP is not 440 /// all-constant, it returns false and the value of the offset APInt is 441 /// undefined (it is *not* preserved!). The APInt passed into this routine 442 /// must be at least as wide as the IntPtr type for the address space of 443 /// the base GEP pointer. 444 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const { 445 assert(Offset.getBitWidth() == 446 DL.getPointerSizeInBits(getPointerAddressSpace()) && 447 "The offset must have exactly as many bits as our pointer."); 448 449 for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); 450 GTI != GTE; ++GTI) { 451 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 452 if (!OpC) 453 return false; 454 if (OpC->isZero()) 455 continue; 456 457 // Handle a struct index, which adds its field offset to the pointer. 458 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 459 unsigned ElementIdx = OpC->getZExtValue(); 460 const StructLayout *SL = DL.getStructLayout(STy); 461 Offset += APInt(Offset.getBitWidth(), 462 SL->getElementOffset(ElementIdx)); 463 continue; 464 } 465 466 // For array or vector indices, scale the index by the size of the type. 467 APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth()); 468 Offset += Index * APInt(Offset.getBitWidth(), 469 DL.getTypeAllocSize(GTI.getIndexedType())); 470 } 471 return true; 472 } 473 474 }; 475 476 } // End llvm namespace 477 478 #endif 479