1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #include "profile-generator-inl.h" 31 32 #include "global-handles.h" 33 #include "heap-profiler.h" 34 #include "scopeinfo.h" 35 #include "unicode.h" 36 #include "zone-inl.h" 37 38 namespace v8 { 39 namespace internal { 40 41 42 TokenEnumerator::TokenEnumerator() 43 : token_locations_(4), 44 token_removed_(4) { 45 } 46 47 48 TokenEnumerator::~TokenEnumerator() { 49 Isolate* isolate = Isolate::Current(); 50 for (int i = 0; i < token_locations_.length(); ++i) { 51 if (!token_removed_[i]) { 52 isolate->global_handles()->ClearWeakness(token_locations_[i]); 53 isolate->global_handles()->Destroy(token_locations_[i]); 54 } 55 } 56 } 57 58 59 int TokenEnumerator::GetTokenId(Object* token) { 60 Isolate* isolate = Isolate::Current(); 61 if (token == NULL) return TokenEnumerator::kNoSecurityToken; 62 for (int i = 0; i < token_locations_.length(); ++i) { 63 if (*token_locations_[i] == token && !token_removed_[i]) return i; 64 } 65 Handle<Object> handle = isolate->global_handles()->Create(token); 66 // handle.location() points to a memory cell holding a pointer 67 // to a token object in the V8's heap. 68 isolate->global_handles()->MakeWeak(handle.location(), this, 69 TokenRemovedCallback); 70 token_locations_.Add(handle.location()); 71 token_removed_.Add(false); 72 return token_locations_.length() - 1; 73 } 74 75 76 void TokenEnumerator::TokenRemovedCallback(v8::Persistent<v8::Value> handle, 77 void* parameter) { 78 reinterpret_cast<TokenEnumerator*>(parameter)->TokenRemoved( 79 Utils::OpenHandle(*handle).location()); 80 handle.Dispose(); 81 } 82 83 84 void TokenEnumerator::TokenRemoved(Object** token_location) { 85 for (int i = 0; i < token_locations_.length(); ++i) { 86 if (token_locations_[i] == token_location && !token_removed_[i]) { 87 token_removed_[i] = true; 88 return; 89 } 90 } 91 } 92 93 94 StringsStorage::StringsStorage() 95 : names_(StringsMatch) { 96 } 97 98 99 StringsStorage::~StringsStorage() { 100 for (HashMap::Entry* p = names_.Start(); 101 p != NULL; 102 p = names_.Next(p)) { 103 DeleteArray(reinterpret_cast<const char*>(p->value)); 104 } 105 } 106 107 108 const char* StringsStorage::GetCopy(const char* src) { 109 int len = static_cast<int>(strlen(src)); 110 Vector<char> dst = Vector<char>::New(len + 1); 111 OS::StrNCpy(dst, src, len); 112 dst[len] = '\0'; 113 uint32_t hash = 114 HashSequentialString(dst.start(), len, HEAP->HashSeed()); 115 return AddOrDisposeString(dst.start(), hash); 116 } 117 118 119 const char* StringsStorage::GetFormatted(const char* format, ...) { 120 va_list args; 121 va_start(args, format); 122 const char* result = GetVFormatted(format, args); 123 va_end(args); 124 return result; 125 } 126 127 128 const char* StringsStorage::AddOrDisposeString(char* str, uint32_t hash) { 129 HashMap::Entry* cache_entry = names_.Lookup(str, hash, true); 130 if (cache_entry->value == NULL) { 131 // New entry added. 132 cache_entry->value = str; 133 } else { 134 DeleteArray(str); 135 } 136 return reinterpret_cast<const char*>(cache_entry->value); 137 } 138 139 140 const char* StringsStorage::GetVFormatted(const char* format, va_list args) { 141 Vector<char> str = Vector<char>::New(1024); 142 int len = OS::VSNPrintF(str, format, args); 143 if (len == -1) { 144 DeleteArray(str.start()); 145 return format; 146 } 147 uint32_t hash = HashSequentialString( 148 str.start(), len, HEAP->HashSeed()); 149 return AddOrDisposeString(str.start(), hash); 150 } 151 152 153 const char* StringsStorage::GetName(String* name) { 154 if (name->IsString()) { 155 int length = Min(kMaxNameSize, name->length()); 156 SmartArrayPointer<char> data = 157 name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL, 0, length); 158 uint32_t hash = 159 HashSequentialString(*data, length, name->GetHeap()->HashSeed()); 160 return AddOrDisposeString(data.Detach(), hash); 161 } 162 return ""; 163 } 164 165 166 const char* StringsStorage::GetName(int index) { 167 return GetFormatted("%d", index); 168 } 169 170 171 const char* const CodeEntry::kEmptyNamePrefix = ""; 172 173 174 void CodeEntry::CopyData(const CodeEntry& source) { 175 tag_ = source.tag_; 176 name_prefix_ = source.name_prefix_; 177 name_ = source.name_; 178 resource_name_ = source.resource_name_; 179 line_number_ = source.line_number_; 180 } 181 182 183 uint32_t CodeEntry::GetCallUid() const { 184 uint32_t hash = ComputeIntegerHash(tag_, v8::internal::kZeroHashSeed); 185 if (shared_id_ != 0) { 186 hash ^= ComputeIntegerHash(static_cast<uint32_t>(shared_id_), 187 v8::internal::kZeroHashSeed); 188 } else { 189 hash ^= ComputeIntegerHash( 190 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_prefix_)), 191 v8::internal::kZeroHashSeed); 192 hash ^= ComputeIntegerHash( 193 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_)), 194 v8::internal::kZeroHashSeed); 195 hash ^= ComputeIntegerHash( 196 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(resource_name_)), 197 v8::internal::kZeroHashSeed); 198 hash ^= ComputeIntegerHash(line_number_, v8::internal::kZeroHashSeed); 199 } 200 return hash; 201 } 202 203 204 bool CodeEntry::IsSameAs(CodeEntry* entry) const { 205 return this == entry 206 || (tag_ == entry->tag_ 207 && shared_id_ == entry->shared_id_ 208 && (shared_id_ != 0 209 || (name_prefix_ == entry->name_prefix_ 210 && name_ == entry->name_ 211 && resource_name_ == entry->resource_name_ 212 && line_number_ == entry->line_number_))); 213 } 214 215 216 ProfileNode* ProfileNode::FindChild(CodeEntry* entry) { 217 HashMap::Entry* map_entry = 218 children_.Lookup(entry, CodeEntryHash(entry), false); 219 return map_entry != NULL ? 220 reinterpret_cast<ProfileNode*>(map_entry->value) : NULL; 221 } 222 223 224 ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry) { 225 HashMap::Entry* map_entry = 226 children_.Lookup(entry, CodeEntryHash(entry), true); 227 if (map_entry->value == NULL) { 228 // New node added. 229 ProfileNode* new_node = new ProfileNode(tree_, entry); 230 map_entry->value = new_node; 231 children_list_.Add(new_node); 232 } 233 return reinterpret_cast<ProfileNode*>(map_entry->value); 234 } 235 236 237 double ProfileNode::GetSelfMillis() const { 238 return tree_->TicksToMillis(self_ticks_); 239 } 240 241 242 double ProfileNode::GetTotalMillis() const { 243 return tree_->TicksToMillis(total_ticks_); 244 } 245 246 247 void ProfileNode::Print(int indent) { 248 OS::Print("%5u %5u %*c %s%s [%d]", 249 total_ticks_, self_ticks_, 250 indent, ' ', 251 entry_->name_prefix(), 252 entry_->name(), 253 entry_->security_token_id()); 254 if (entry_->resource_name()[0] != '\0') 255 OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number()); 256 OS::Print("\n"); 257 for (HashMap::Entry* p = children_.Start(); 258 p != NULL; 259 p = children_.Next(p)) { 260 reinterpret_cast<ProfileNode*>(p->value)->Print(indent + 2); 261 } 262 } 263 264 265 class DeleteNodesCallback { 266 public: 267 void BeforeTraversingChild(ProfileNode*, ProfileNode*) { } 268 269 void AfterAllChildrenTraversed(ProfileNode* node) { 270 delete node; 271 } 272 273 void AfterChildTraversed(ProfileNode*, ProfileNode*) { } 274 }; 275 276 277 ProfileTree::ProfileTree() 278 : root_entry_(Logger::FUNCTION_TAG, 279 "", 280 "(root)", 281 "", 282 0, 283 TokenEnumerator::kNoSecurityToken), 284 root_(new ProfileNode(this, &root_entry_)) { 285 } 286 287 288 ProfileTree::~ProfileTree() { 289 DeleteNodesCallback cb; 290 TraverseDepthFirst(&cb); 291 } 292 293 294 void ProfileTree::AddPathFromEnd(const Vector<CodeEntry*>& path) { 295 ProfileNode* node = root_; 296 for (CodeEntry** entry = path.start() + path.length() - 1; 297 entry != path.start() - 1; 298 --entry) { 299 if (*entry != NULL) { 300 node = node->FindOrAddChild(*entry); 301 } 302 } 303 node->IncrementSelfTicks(); 304 } 305 306 307 void ProfileTree::AddPathFromStart(const Vector<CodeEntry*>& path) { 308 ProfileNode* node = root_; 309 for (CodeEntry** entry = path.start(); 310 entry != path.start() + path.length(); 311 ++entry) { 312 if (*entry != NULL) { 313 node = node->FindOrAddChild(*entry); 314 } 315 } 316 node->IncrementSelfTicks(); 317 } 318 319 320 struct NodesPair { 321 NodesPair(ProfileNode* src, ProfileNode* dst) 322 : src(src), dst(dst) { } 323 ProfileNode* src; 324 ProfileNode* dst; 325 }; 326 327 328 class FilteredCloneCallback { 329 public: 330 FilteredCloneCallback(ProfileNode* dst_root, int security_token_id) 331 : stack_(10), 332 security_token_id_(security_token_id) { 333 stack_.Add(NodesPair(NULL, dst_root)); 334 } 335 336 void BeforeTraversingChild(ProfileNode* parent, ProfileNode* child) { 337 if (IsTokenAcceptable(child->entry()->security_token_id(), 338 parent->entry()->security_token_id())) { 339 ProfileNode* clone = stack_.last().dst->FindOrAddChild(child->entry()); 340 clone->IncreaseSelfTicks(child->self_ticks()); 341 stack_.Add(NodesPair(child, clone)); 342 } else { 343 // Attribute ticks to parent node. 344 stack_.last().dst->IncreaseSelfTicks(child->self_ticks()); 345 } 346 } 347 348 void AfterAllChildrenTraversed(ProfileNode* parent) { } 349 350 void AfterChildTraversed(ProfileNode*, ProfileNode* child) { 351 if (stack_.last().src == child) { 352 stack_.RemoveLast(); 353 } 354 } 355 356 private: 357 bool IsTokenAcceptable(int token, int parent_token) { 358 if (token == TokenEnumerator::kNoSecurityToken 359 || token == security_token_id_) return true; 360 if (token == TokenEnumerator::kInheritsSecurityToken) { 361 ASSERT(parent_token != TokenEnumerator::kInheritsSecurityToken); 362 return parent_token == TokenEnumerator::kNoSecurityToken 363 || parent_token == security_token_id_; 364 } 365 return false; 366 } 367 368 List<NodesPair> stack_; 369 int security_token_id_; 370 }; 371 372 void ProfileTree::FilteredClone(ProfileTree* src, int security_token_id) { 373 ms_to_ticks_scale_ = src->ms_to_ticks_scale_; 374 FilteredCloneCallback cb(root_, security_token_id); 375 src->TraverseDepthFirst(&cb); 376 CalculateTotalTicks(); 377 } 378 379 380 void ProfileTree::SetTickRatePerMs(double ticks_per_ms) { 381 ms_to_ticks_scale_ = ticks_per_ms > 0 ? 1.0 / ticks_per_ms : 1.0; 382 } 383 384 385 class Position { 386 public: 387 explicit Position(ProfileNode* node) 388 : node(node), child_idx_(0) { } 389 INLINE(ProfileNode* current_child()) { 390 return node->children()->at(child_idx_); 391 } 392 INLINE(bool has_current_child()) { 393 return child_idx_ < node->children()->length(); 394 } 395 INLINE(void next_child()) { ++child_idx_; } 396 397 ProfileNode* node; 398 private: 399 int child_idx_; 400 }; 401 402 403 // Non-recursive implementation of a depth-first post-order tree traversal. 404 template <typename Callback> 405 void ProfileTree::TraverseDepthFirst(Callback* callback) { 406 List<Position> stack(10); 407 stack.Add(Position(root_)); 408 while (stack.length() > 0) { 409 Position& current = stack.last(); 410 if (current.has_current_child()) { 411 callback->BeforeTraversingChild(current.node, current.current_child()); 412 stack.Add(Position(current.current_child())); 413 } else { 414 callback->AfterAllChildrenTraversed(current.node); 415 if (stack.length() > 1) { 416 Position& parent = stack[stack.length() - 2]; 417 callback->AfterChildTraversed(parent.node, current.node); 418 parent.next_child(); 419 } 420 // Remove child from the stack. 421 stack.RemoveLast(); 422 } 423 } 424 } 425 426 427 class CalculateTotalTicksCallback { 428 public: 429 void BeforeTraversingChild(ProfileNode*, ProfileNode*) { } 430 431 void AfterAllChildrenTraversed(ProfileNode* node) { 432 node->IncreaseTotalTicks(node->self_ticks()); 433 } 434 435 void AfterChildTraversed(ProfileNode* parent, ProfileNode* child) { 436 parent->IncreaseTotalTicks(child->total_ticks()); 437 } 438 }; 439 440 441 void ProfileTree::CalculateTotalTicks() { 442 CalculateTotalTicksCallback cb; 443 TraverseDepthFirst(&cb); 444 } 445 446 447 void ProfileTree::ShortPrint() { 448 OS::Print("root: %u %u %.2fms %.2fms\n", 449 root_->total_ticks(), root_->self_ticks(), 450 root_->GetTotalMillis(), root_->GetSelfMillis()); 451 } 452 453 454 void CpuProfile::AddPath(const Vector<CodeEntry*>& path) { 455 top_down_.AddPathFromEnd(path); 456 bottom_up_.AddPathFromStart(path); 457 } 458 459 460 void CpuProfile::CalculateTotalTicks() { 461 top_down_.CalculateTotalTicks(); 462 bottom_up_.CalculateTotalTicks(); 463 } 464 465 466 void CpuProfile::SetActualSamplingRate(double actual_sampling_rate) { 467 top_down_.SetTickRatePerMs(actual_sampling_rate); 468 bottom_up_.SetTickRatePerMs(actual_sampling_rate); 469 } 470 471 472 CpuProfile* CpuProfile::FilteredClone(int security_token_id) { 473 ASSERT(security_token_id != TokenEnumerator::kNoSecurityToken); 474 CpuProfile* clone = new CpuProfile(title_, uid_); 475 clone->top_down_.FilteredClone(&top_down_, security_token_id); 476 clone->bottom_up_.FilteredClone(&bottom_up_, security_token_id); 477 return clone; 478 } 479 480 481 void CpuProfile::ShortPrint() { 482 OS::Print("top down "); 483 top_down_.ShortPrint(); 484 OS::Print("bottom up "); 485 bottom_up_.ShortPrint(); 486 } 487 488 489 void CpuProfile::Print() { 490 OS::Print("[Top down]:\n"); 491 top_down_.Print(); 492 OS::Print("[Bottom up]:\n"); 493 bottom_up_.Print(); 494 } 495 496 497 CodeEntry* const CodeMap::kSharedFunctionCodeEntry = NULL; 498 const CodeMap::CodeTreeConfig::Key CodeMap::CodeTreeConfig::kNoKey = NULL; 499 500 501 void CodeMap::AddCode(Address addr, CodeEntry* entry, unsigned size) { 502 DeleteAllCoveredCode(addr, addr + size); 503 CodeTree::Locator locator; 504 tree_.Insert(addr, &locator); 505 locator.set_value(CodeEntryInfo(entry, size)); 506 } 507 508 509 void CodeMap::DeleteAllCoveredCode(Address start, Address end) { 510 List<Address> to_delete; 511 Address addr = end - 1; 512 while (addr >= start) { 513 CodeTree::Locator locator; 514 if (!tree_.FindGreatestLessThan(addr, &locator)) break; 515 Address start2 = locator.key(), end2 = start2 + locator.value().size; 516 if (start2 < end && start < end2) to_delete.Add(start2); 517 addr = start2 - 1; 518 } 519 for (int i = 0; i < to_delete.length(); ++i) tree_.Remove(to_delete[i]); 520 } 521 522 523 CodeEntry* CodeMap::FindEntry(Address addr) { 524 CodeTree::Locator locator; 525 if (tree_.FindGreatestLessThan(addr, &locator)) { 526 // locator.key() <= addr. Need to check that addr is within entry. 527 const CodeEntryInfo& entry = locator.value(); 528 if (addr < (locator.key() + entry.size)) 529 return entry.entry; 530 } 531 return NULL; 532 } 533 534 535 int CodeMap::GetSharedId(Address addr) { 536 CodeTree::Locator locator; 537 // For shared function entries, 'size' field is used to store their IDs. 538 if (tree_.Find(addr, &locator)) { 539 const CodeEntryInfo& entry = locator.value(); 540 ASSERT(entry.entry == kSharedFunctionCodeEntry); 541 return entry.size; 542 } else { 543 tree_.Insert(addr, &locator); 544 int id = next_shared_id_++; 545 locator.set_value(CodeEntryInfo(kSharedFunctionCodeEntry, id)); 546 return id; 547 } 548 } 549 550 551 void CodeMap::MoveCode(Address from, Address to) { 552 if (from == to) return; 553 CodeTree::Locator locator; 554 if (!tree_.Find(from, &locator)) return; 555 CodeEntryInfo entry = locator.value(); 556 tree_.Remove(from); 557 AddCode(to, entry.entry, entry.size); 558 } 559 560 561 void CodeMap::CodeTreePrinter::Call( 562 const Address& key, const CodeMap::CodeEntryInfo& value) { 563 OS::Print("%p %5d %s\n", key, value.size, value.entry->name()); 564 } 565 566 567 void CodeMap::Print() { 568 CodeTreePrinter printer; 569 tree_.ForEach(&printer); 570 } 571 572 573 CpuProfilesCollection::CpuProfilesCollection() 574 : profiles_uids_(UidsMatch), 575 current_profiles_semaphore_(OS::CreateSemaphore(1)) { 576 // Create list of unabridged profiles. 577 profiles_by_token_.Add(new List<CpuProfile*>()); 578 } 579 580 581 static void DeleteCodeEntry(CodeEntry** entry_ptr) { 582 delete *entry_ptr; 583 } 584 585 static void DeleteCpuProfile(CpuProfile** profile_ptr) { 586 delete *profile_ptr; 587 } 588 589 static void DeleteProfilesList(List<CpuProfile*>** list_ptr) { 590 if (*list_ptr != NULL) { 591 (*list_ptr)->Iterate(DeleteCpuProfile); 592 delete *list_ptr; 593 } 594 } 595 596 CpuProfilesCollection::~CpuProfilesCollection() { 597 delete current_profiles_semaphore_; 598 current_profiles_.Iterate(DeleteCpuProfile); 599 detached_profiles_.Iterate(DeleteCpuProfile); 600 profiles_by_token_.Iterate(DeleteProfilesList); 601 code_entries_.Iterate(DeleteCodeEntry); 602 } 603 604 605 bool CpuProfilesCollection::StartProfiling(const char* title, unsigned uid) { 606 ASSERT(uid > 0); 607 current_profiles_semaphore_->Wait(); 608 if (current_profiles_.length() >= kMaxSimultaneousProfiles) { 609 current_profiles_semaphore_->Signal(); 610 return false; 611 } 612 for (int i = 0; i < current_profiles_.length(); ++i) { 613 if (strcmp(current_profiles_[i]->title(), title) == 0) { 614 // Ignore attempts to start profile with the same title. 615 current_profiles_semaphore_->Signal(); 616 return false; 617 } 618 } 619 current_profiles_.Add(new CpuProfile(title, uid)); 620 current_profiles_semaphore_->Signal(); 621 return true; 622 } 623 624 625 bool CpuProfilesCollection::StartProfiling(String* title, unsigned uid) { 626 return StartProfiling(GetName(title), uid); 627 } 628 629 630 CpuProfile* CpuProfilesCollection::StopProfiling(int security_token_id, 631 const char* title, 632 double actual_sampling_rate) { 633 const int title_len = StrLength(title); 634 CpuProfile* profile = NULL; 635 current_profiles_semaphore_->Wait(); 636 for (int i = current_profiles_.length() - 1; i >= 0; --i) { 637 if (title_len == 0 || strcmp(current_profiles_[i]->title(), title) == 0) { 638 profile = current_profiles_.Remove(i); 639 break; 640 } 641 } 642 current_profiles_semaphore_->Signal(); 643 644 if (profile != NULL) { 645 profile->CalculateTotalTicks(); 646 profile->SetActualSamplingRate(actual_sampling_rate); 647 List<CpuProfile*>* unabridged_list = 648 profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; 649 unabridged_list->Add(profile); 650 HashMap::Entry* entry = 651 profiles_uids_.Lookup(reinterpret_cast<void*>(profile->uid()), 652 static_cast<uint32_t>(profile->uid()), 653 true); 654 ASSERT(entry->value == NULL); 655 entry->value = reinterpret_cast<void*>(unabridged_list->length() - 1); 656 return GetProfile(security_token_id, profile->uid()); 657 } 658 return NULL; 659 } 660 661 662 CpuProfile* CpuProfilesCollection::GetProfile(int security_token_id, 663 unsigned uid) { 664 int index = GetProfileIndex(uid); 665 if (index < 0) return NULL; 666 List<CpuProfile*>* unabridged_list = 667 profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; 668 if (security_token_id == TokenEnumerator::kNoSecurityToken) { 669 return unabridged_list->at(index); 670 } 671 List<CpuProfile*>* list = GetProfilesList(security_token_id); 672 if (list->at(index) == NULL) { 673 (*list)[index] = 674 unabridged_list->at(index)->FilteredClone(security_token_id); 675 } 676 return list->at(index); 677 } 678 679 680 int CpuProfilesCollection::GetProfileIndex(unsigned uid) { 681 HashMap::Entry* entry = profiles_uids_.Lookup(reinterpret_cast<void*>(uid), 682 static_cast<uint32_t>(uid), 683 false); 684 return entry != NULL ? 685 static_cast<int>(reinterpret_cast<intptr_t>(entry->value)) : -1; 686 } 687 688 689 bool CpuProfilesCollection::IsLastProfile(const char* title) { 690 // Called from VM thread, and only it can mutate the list, 691 // so no locking is needed here. 692 if (current_profiles_.length() != 1) return false; 693 return StrLength(title) == 0 694 || strcmp(current_profiles_[0]->title(), title) == 0; 695 } 696 697 698 void CpuProfilesCollection::RemoveProfile(CpuProfile* profile) { 699 // Called from VM thread for a completed profile. 700 unsigned uid = profile->uid(); 701 int index = GetProfileIndex(uid); 702 if (index < 0) { 703 detached_profiles_.RemoveElement(profile); 704 return; 705 } 706 profiles_uids_.Remove(reinterpret_cast<void*>(uid), 707 static_cast<uint32_t>(uid)); 708 // Decrement all indexes above the deleted one. 709 for (HashMap::Entry* p = profiles_uids_.Start(); 710 p != NULL; 711 p = profiles_uids_.Next(p)) { 712 intptr_t p_index = reinterpret_cast<intptr_t>(p->value); 713 if (p_index > index) { 714 p->value = reinterpret_cast<void*>(p_index - 1); 715 } 716 } 717 for (int i = 0; i < profiles_by_token_.length(); ++i) { 718 List<CpuProfile*>* list = profiles_by_token_[i]; 719 if (list != NULL && index < list->length()) { 720 // Move all filtered clones into detached_profiles_, 721 // so we can know that they are still in use. 722 CpuProfile* cloned_profile = list->Remove(index); 723 if (cloned_profile != NULL && cloned_profile != profile) { 724 detached_profiles_.Add(cloned_profile); 725 } 726 } 727 } 728 } 729 730 731 int CpuProfilesCollection::TokenToIndex(int security_token_id) { 732 ASSERT(TokenEnumerator::kNoSecurityToken == -1); 733 return security_token_id + 1; // kNoSecurityToken -> 0, 0 -> 1, ... 734 } 735 736 737 List<CpuProfile*>* CpuProfilesCollection::GetProfilesList( 738 int security_token_id) { 739 const int index = TokenToIndex(security_token_id); 740 const int lists_to_add = index - profiles_by_token_.length() + 1; 741 if (lists_to_add > 0) profiles_by_token_.AddBlock(NULL, lists_to_add); 742 List<CpuProfile*>* unabridged_list = 743 profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; 744 const int current_count = unabridged_list->length(); 745 if (profiles_by_token_[index] == NULL) { 746 profiles_by_token_[index] = new List<CpuProfile*>(current_count); 747 } 748 List<CpuProfile*>* list = profiles_by_token_[index]; 749 const int profiles_to_add = current_count - list->length(); 750 if (profiles_to_add > 0) list->AddBlock(NULL, profiles_to_add); 751 return list; 752 } 753 754 755 List<CpuProfile*>* CpuProfilesCollection::Profiles(int security_token_id) { 756 List<CpuProfile*>* unabridged_list = 757 profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)]; 758 if (security_token_id == TokenEnumerator::kNoSecurityToken) { 759 return unabridged_list; 760 } 761 List<CpuProfile*>* list = GetProfilesList(security_token_id); 762 const int current_count = unabridged_list->length(); 763 for (int i = 0; i < current_count; ++i) { 764 if (list->at(i) == NULL) { 765 (*list)[i] = unabridged_list->at(i)->FilteredClone(security_token_id); 766 } 767 } 768 return list; 769 } 770 771 772 CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag, 773 String* name, 774 String* resource_name, 775 int line_number) { 776 CodeEntry* entry = new CodeEntry(tag, 777 CodeEntry::kEmptyNamePrefix, 778 GetFunctionName(name), 779 GetName(resource_name), 780 line_number, 781 TokenEnumerator::kNoSecurityToken); 782 code_entries_.Add(entry); 783 return entry; 784 } 785 786 787 CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag, 788 const char* name) { 789 CodeEntry* entry = new CodeEntry(tag, 790 CodeEntry::kEmptyNamePrefix, 791 GetFunctionName(name), 792 "", 793 v8::CpuProfileNode::kNoLineNumberInfo, 794 TokenEnumerator::kNoSecurityToken); 795 code_entries_.Add(entry); 796 return entry; 797 } 798 799 800 CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag, 801 const char* name_prefix, 802 String* name) { 803 CodeEntry* entry = new CodeEntry(tag, 804 name_prefix, 805 GetName(name), 806 "", 807 v8::CpuProfileNode::kNoLineNumberInfo, 808 TokenEnumerator::kInheritsSecurityToken); 809 code_entries_.Add(entry); 810 return entry; 811 } 812 813 814 CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag, 815 int args_count) { 816 CodeEntry* entry = new CodeEntry(tag, 817 "args_count: ", 818 GetName(args_count), 819 "", 820 v8::CpuProfileNode::kNoLineNumberInfo, 821 TokenEnumerator::kInheritsSecurityToken); 822 code_entries_.Add(entry); 823 return entry; 824 } 825 826 827 void CpuProfilesCollection::AddPathToCurrentProfiles( 828 const Vector<CodeEntry*>& path) { 829 // As starting / stopping profiles is rare relatively to this 830 // method, we don't bother minimizing the duration of lock holding, 831 // e.g. copying contents of the list to a local vector. 832 current_profiles_semaphore_->Wait(); 833 for (int i = 0; i < current_profiles_.length(); ++i) { 834 current_profiles_[i]->AddPath(path); 835 } 836 current_profiles_semaphore_->Signal(); 837 } 838 839 840 void SampleRateCalculator::Tick() { 841 if (--wall_time_query_countdown_ == 0) 842 UpdateMeasurements(OS::TimeCurrentMillis()); 843 } 844 845 846 void SampleRateCalculator::UpdateMeasurements(double current_time) { 847 if (measurements_count_++ != 0) { 848 const double measured_ticks_per_ms = 849 (kWallTimeQueryIntervalMs * ticks_per_ms_) / 850 (current_time - last_wall_time_); 851 // Update the average value. 852 ticks_per_ms_ += 853 (measured_ticks_per_ms - ticks_per_ms_) / measurements_count_; 854 // Update the externally accessible result. 855 result_ = static_cast<AtomicWord>(ticks_per_ms_ * kResultScale); 856 } 857 last_wall_time_ = current_time; 858 wall_time_query_countdown_ = 859 static_cast<unsigned>(kWallTimeQueryIntervalMs * ticks_per_ms_); 860 } 861 862 863 const char* const ProfileGenerator::kAnonymousFunctionName = 864 "(anonymous function)"; 865 const char* const ProfileGenerator::kProgramEntryName = 866 "(program)"; 867 const char* const ProfileGenerator::kGarbageCollectorEntryName = 868 "(garbage collector)"; 869 870 871 ProfileGenerator::ProfileGenerator(CpuProfilesCollection* profiles) 872 : profiles_(profiles), 873 program_entry_( 874 profiles->NewCodeEntry(Logger::FUNCTION_TAG, kProgramEntryName)), 875 gc_entry_( 876 profiles->NewCodeEntry(Logger::BUILTIN_TAG, 877 kGarbageCollectorEntryName)) { 878 } 879 880 881 void ProfileGenerator::RecordTickSample(const TickSample& sample) { 882 // Allocate space for stack frames + pc + function + vm-state. 883 ScopedVector<CodeEntry*> entries(sample.frames_count + 3); 884 // As actual number of decoded code entries may vary, initialize 885 // entries vector with NULL values. 886 CodeEntry** entry = entries.start(); 887 memset(entry, 0, entries.length() * sizeof(*entry)); 888 if (sample.pc != NULL) { 889 *entry++ = code_map_.FindEntry(sample.pc); 890 891 if (sample.has_external_callback) { 892 // Don't use PC when in external callback code, as it can point 893 // inside callback's code, and we will erroneously report 894 // that a callback calls itself. 895 *(entries.start()) = NULL; 896 *entry++ = code_map_.FindEntry(sample.external_callback); 897 } else if (sample.tos != NULL) { 898 // Find out, if top of stack was pointing inside a JS function 899 // meaning that we have encountered a frameless invocation. 900 *entry = code_map_.FindEntry(sample.tos); 901 if (*entry != NULL && !(*entry)->is_js_function()) { 902 *entry = NULL; 903 } 904 entry++; 905 } 906 907 for (const Address* stack_pos = sample.stack, 908 *stack_end = stack_pos + sample.frames_count; 909 stack_pos != stack_end; 910 ++stack_pos) { 911 *entry++ = code_map_.FindEntry(*stack_pos); 912 } 913 } 914 915 if (FLAG_prof_browser_mode) { 916 bool no_symbolized_entries = true; 917 for (CodeEntry** e = entries.start(); e != entry; ++e) { 918 if (*e != NULL) { 919 no_symbolized_entries = false; 920 break; 921 } 922 } 923 // If no frames were symbolized, put the VM state entry in. 924 if (no_symbolized_entries) { 925 *entry++ = EntryForVMState(sample.state); 926 } 927 } 928 929 profiles_->AddPathToCurrentProfiles(entries); 930 } 931 932 933 void HeapGraphEdge::Init( 934 int child_index, Type type, const char* name, HeapEntry* to) { 935 ASSERT(type == kContextVariable 936 || type == kProperty 937 || type == kInternal 938 || type == kShortcut); 939 child_index_ = child_index; 940 type_ = type; 941 name_ = name; 942 to_ = to; 943 } 944 945 946 void HeapGraphEdge::Init(int child_index, Type type, int index, HeapEntry* to) { 947 ASSERT(type == kElement || type == kHidden || type == kWeak); 948 child_index_ = child_index; 949 type_ = type; 950 index_ = index; 951 to_ = to; 952 } 953 954 955 void HeapGraphEdge::Init(int child_index, int index, HeapEntry* to) { 956 Init(child_index, kElement, index, to); 957 } 958 959 960 HeapEntry* HeapGraphEdge::From() { 961 return reinterpret_cast<HeapEntry*>(this - child_index_) - 1; 962 } 963 964 965 void HeapEntry::Init(HeapSnapshot* snapshot, 966 Type type, 967 const char* name, 968 SnapshotObjectId id, 969 int self_size, 970 int children_count, 971 int retainers_count) { 972 snapshot_ = snapshot; 973 type_ = type; 974 painted_ = false; 975 name_ = name; 976 self_size_ = self_size; 977 retained_size_ = 0; 978 children_count_ = children_count; 979 retainers_count_ = retainers_count; 980 dominator_ = NULL; 981 id_ = id; 982 } 983 984 985 void HeapEntry::SetNamedReference(HeapGraphEdge::Type type, 986 int child_index, 987 const char* name, 988 HeapEntry* entry, 989 int retainer_index) { 990 children()[child_index].Init(child_index, type, name, entry); 991 entry->retainers()[retainer_index] = children_arr() + child_index; 992 } 993 994 995 void HeapEntry::SetIndexedReference(HeapGraphEdge::Type type, 996 int child_index, 997 int index, 998 HeapEntry* entry, 999 int retainer_index) { 1000 children()[child_index].Init(child_index, type, index, entry); 1001 entry->retainers()[retainer_index] = children_arr() + child_index; 1002 } 1003 1004 1005 void HeapEntry::SetUnidirElementReference( 1006 int child_index, int index, HeapEntry* entry) { 1007 children()[child_index].Init(child_index, index, entry); 1008 } 1009 1010 1011 Handle<HeapObject> HeapEntry::GetHeapObject() { 1012 return snapshot_->collection()->FindHeapObjectById(id()); 1013 } 1014 1015 1016 void HeapEntry::Print( 1017 const char* prefix, const char* edge_name, int max_depth, int indent) { 1018 OS::Print("%6d %7d @%6llu %*c %s%s: ", 1019 self_size(), retained_size(), id(), 1020 indent, ' ', prefix, edge_name); 1021 if (type() != kString) { 1022 OS::Print("%s %.40s\n", TypeAsString(), name_); 1023 } else { 1024 OS::Print("\""); 1025 const char* c = name_; 1026 while (*c && (c - name_) <= 40) { 1027 if (*c != '\n') 1028 OS::Print("%c", *c); 1029 else 1030 OS::Print("\\n"); 1031 ++c; 1032 } 1033 OS::Print("\"\n"); 1034 } 1035 if (--max_depth == 0) return; 1036 Vector<HeapGraphEdge> ch = children(); 1037 for (int i = 0; i < ch.length(); ++i) { 1038 HeapGraphEdge& edge = ch[i]; 1039 const char* edge_prefix = ""; 1040 EmbeddedVector<char, 64> index; 1041 const char* edge_name = index.start(); 1042 switch (edge.type()) { 1043 case HeapGraphEdge::kContextVariable: 1044 edge_prefix = "#"; 1045 edge_name = edge.name(); 1046 break; 1047 case HeapGraphEdge::kElement: 1048 OS::SNPrintF(index, "%d", edge.index()); 1049 break; 1050 case HeapGraphEdge::kInternal: 1051 edge_prefix = "$"; 1052 edge_name = edge.name(); 1053 break; 1054 case HeapGraphEdge::kProperty: 1055 edge_name = edge.name(); 1056 break; 1057 case HeapGraphEdge::kHidden: 1058 edge_prefix = "$"; 1059 OS::SNPrintF(index, "%d", edge.index()); 1060 break; 1061 case HeapGraphEdge::kShortcut: 1062 edge_prefix = "^"; 1063 edge_name = edge.name(); 1064 break; 1065 case HeapGraphEdge::kWeak: 1066 edge_prefix = "w"; 1067 OS::SNPrintF(index, "%d", edge.index()); 1068 break; 1069 default: 1070 OS::SNPrintF(index, "!!! unknown edge type: %d ", edge.type()); 1071 } 1072 edge.to()->Print(edge_prefix, edge_name, max_depth, indent + 2); 1073 } 1074 } 1075 1076 1077 const char* HeapEntry::TypeAsString() { 1078 switch (type()) { 1079 case kHidden: return "/hidden/"; 1080 case kObject: return "/object/"; 1081 case kClosure: return "/closure/"; 1082 case kString: return "/string/"; 1083 case kCode: return "/code/"; 1084 case kArray: return "/array/"; 1085 case kRegExp: return "/regexp/"; 1086 case kHeapNumber: return "/number/"; 1087 case kNative: return "/native/"; 1088 case kSynthetic: return "/synthetic/"; 1089 default: return "???"; 1090 } 1091 } 1092 1093 1094 size_t HeapEntry::EntriesSize(int entries_count, 1095 int children_count, 1096 int retainers_count) { 1097 return sizeof(HeapEntry) * entries_count // NOLINT 1098 + sizeof(HeapGraphEdge) * children_count // NOLINT 1099 + sizeof(HeapGraphEdge*) * retainers_count; // NOLINT 1100 } 1101 1102 1103 // It is very important to keep objects that form a heap snapshot 1104 // as small as possible. 1105 namespace { // Avoid littering the global namespace. 1106 1107 template <size_t ptr_size> struct SnapshotSizeConstants; 1108 1109 template <> struct SnapshotSizeConstants<4> { 1110 static const int kExpectedHeapGraphEdgeSize = 12; 1111 static const int kExpectedHeapEntrySize = 32; 1112 static const size_t kMaxSerializableSnapshotRawSize = 256 * MB; 1113 }; 1114 1115 template <> struct SnapshotSizeConstants<8> { 1116 static const int kExpectedHeapGraphEdgeSize = 24; 1117 static const int kExpectedHeapEntrySize = 48; 1118 static const uint64_t kMaxSerializableSnapshotRawSize = 1119 static_cast<uint64_t>(6000) * MB; 1120 }; 1121 1122 } // namespace 1123 1124 HeapSnapshot::HeapSnapshot(HeapSnapshotsCollection* collection, 1125 HeapSnapshot::Type type, 1126 const char* title, 1127 unsigned uid) 1128 : collection_(collection), 1129 type_(type), 1130 title_(title), 1131 uid_(uid), 1132 root_entry_(NULL), 1133 gc_roots_entry_(NULL), 1134 natives_root_entry_(NULL), 1135 raw_entries_(NULL), 1136 entries_sorted_(false) { 1137 STATIC_CHECK( 1138 sizeof(HeapGraphEdge) == 1139 SnapshotSizeConstants<kPointerSize>::kExpectedHeapGraphEdgeSize); 1140 STATIC_CHECK( 1141 sizeof(HeapEntry) == 1142 SnapshotSizeConstants<kPointerSize>::kExpectedHeapEntrySize); 1143 for (int i = 0; i < VisitorSynchronization::kNumberOfSyncTags; ++i) { 1144 gc_subroot_entries_[i] = NULL; 1145 } 1146 } 1147 1148 1149 HeapSnapshot::~HeapSnapshot() { 1150 DeleteArray(raw_entries_); 1151 } 1152 1153 1154 void HeapSnapshot::Delete() { 1155 collection_->RemoveSnapshot(this); 1156 delete this; 1157 } 1158 1159 1160 void HeapSnapshot::AllocateEntries(int entries_count, 1161 int children_count, 1162 int retainers_count) { 1163 ASSERT(raw_entries_ == NULL); 1164 raw_entries_size_ = 1165 HeapEntry::EntriesSize(entries_count, children_count, retainers_count); 1166 raw_entries_ = NewArray<char>(raw_entries_size_); 1167 } 1168 1169 1170 static void HeapEntryClearPaint(HeapEntry** entry_ptr) { 1171 (*entry_ptr)->clear_paint(); 1172 } 1173 1174 1175 void HeapSnapshot::ClearPaint() { 1176 entries_.Iterate(HeapEntryClearPaint); 1177 } 1178 1179 1180 HeapEntry* HeapSnapshot::AddRootEntry(int children_count) { 1181 ASSERT(root_entry_ == NULL); 1182 return (root_entry_ = AddEntry(HeapEntry::kObject, 1183 "", 1184 HeapObjectsMap::kInternalRootObjectId, 1185 0, 1186 children_count, 1187 0)); 1188 } 1189 1190 1191 HeapEntry* HeapSnapshot::AddGcRootsEntry(int children_count, 1192 int retainers_count) { 1193 ASSERT(gc_roots_entry_ == NULL); 1194 return (gc_roots_entry_ = AddEntry(HeapEntry::kObject, 1195 "(GC roots)", 1196 HeapObjectsMap::kGcRootsObjectId, 1197 0, 1198 children_count, 1199 retainers_count)); 1200 } 1201 1202 1203 HeapEntry* HeapSnapshot::AddGcSubrootEntry(int tag, 1204 int children_count, 1205 int retainers_count) { 1206 ASSERT(gc_subroot_entries_[tag] == NULL); 1207 ASSERT(0 <= tag && tag < VisitorSynchronization::kNumberOfSyncTags); 1208 return (gc_subroot_entries_[tag] = AddEntry( 1209 HeapEntry::kObject, 1210 VisitorSynchronization::kTagNames[tag], 1211 HeapObjectsMap::GetNthGcSubrootId(tag), 1212 0, 1213 children_count, 1214 retainers_count)); 1215 } 1216 1217 1218 HeapEntry* HeapSnapshot::AddEntry(HeapEntry::Type type, 1219 const char* name, 1220 SnapshotObjectId id, 1221 int size, 1222 int children_count, 1223 int retainers_count) { 1224 HeapEntry* entry = GetNextEntryToInit(); 1225 entry->Init(this, type, name, id, size, children_count, retainers_count); 1226 return entry; 1227 } 1228 1229 1230 void HeapSnapshot::SetDominatorsToSelf() { 1231 for (int i = 0; i < entries_.length(); ++i) { 1232 HeapEntry* entry = entries_[i]; 1233 if (entry->dominator() == NULL) entry->set_dominator(entry); 1234 } 1235 } 1236 1237 1238 HeapEntry* HeapSnapshot::GetNextEntryToInit() { 1239 if (entries_.length() > 0) { 1240 HeapEntry* last_entry = entries_.last(); 1241 entries_.Add(reinterpret_cast<HeapEntry*>( 1242 reinterpret_cast<char*>(last_entry) + last_entry->EntrySize())); 1243 } else { 1244 entries_.Add(reinterpret_cast<HeapEntry*>(raw_entries_)); 1245 } 1246 ASSERT(reinterpret_cast<char*>(entries_.last()) < 1247 (raw_entries_ + raw_entries_size_)); 1248 return entries_.last(); 1249 } 1250 1251 1252 HeapEntry* HeapSnapshot::GetEntryById(SnapshotObjectId id) { 1253 List<HeapEntry*>* entries_by_id = GetSortedEntriesList(); 1254 1255 // Perform a binary search by id. 1256 int low = 0; 1257 int high = entries_by_id->length() - 1; 1258 while (low <= high) { 1259 int mid = 1260 (static_cast<unsigned int>(low) + static_cast<unsigned int>(high)) >> 1; 1261 SnapshotObjectId mid_id = entries_by_id->at(mid)->id(); 1262 if (mid_id > id) 1263 high = mid - 1; 1264 else if (mid_id < id) 1265 low = mid + 1; 1266 else 1267 return entries_by_id->at(mid); 1268 } 1269 return NULL; 1270 } 1271 1272 1273 template<class T> 1274 static int SortByIds(const T* entry1_ptr, 1275 const T* entry2_ptr) { 1276 if ((*entry1_ptr)->id() == (*entry2_ptr)->id()) return 0; 1277 return (*entry1_ptr)->id() < (*entry2_ptr)->id() ? -1 : 1; 1278 } 1279 1280 1281 List<HeapEntry*>* HeapSnapshot::GetSortedEntriesList() { 1282 if (!entries_sorted_) { 1283 entries_.Sort(SortByIds); 1284 entries_sorted_ = true; 1285 } 1286 return &entries_; 1287 } 1288 1289 1290 void HeapSnapshot::Print(int max_depth) { 1291 root()->Print("", "", max_depth, 0); 1292 } 1293 1294 1295 // We split IDs on evens for embedder objects (see 1296 // HeapObjectsMap::GenerateId) and odds for native objects. 1297 const SnapshotObjectId HeapObjectsMap::kInternalRootObjectId = 1; 1298 const SnapshotObjectId HeapObjectsMap::kGcRootsObjectId = 1299 HeapObjectsMap::kInternalRootObjectId + HeapObjectsMap::kObjectIdStep; 1300 const SnapshotObjectId HeapObjectsMap::kGcRootsFirstSubrootId = 1301 HeapObjectsMap::kGcRootsObjectId + HeapObjectsMap::kObjectIdStep; 1302 const SnapshotObjectId HeapObjectsMap::kFirstAvailableObjectId = 1303 HeapObjectsMap::kGcRootsFirstSubrootId + 1304 VisitorSynchronization::kNumberOfSyncTags * HeapObjectsMap::kObjectIdStep; 1305 1306 HeapObjectsMap::HeapObjectsMap() 1307 : initial_fill_mode_(true), 1308 next_id_(kFirstAvailableObjectId), 1309 entries_map_(AddressesMatch), 1310 entries_(new List<EntryInfo>()) { } 1311 1312 1313 HeapObjectsMap::~HeapObjectsMap() { 1314 delete entries_; 1315 } 1316 1317 1318 void HeapObjectsMap::SnapshotGenerationFinished() { 1319 initial_fill_mode_ = false; 1320 RemoveDeadEntries(); 1321 } 1322 1323 1324 SnapshotObjectId HeapObjectsMap::FindObject(Address addr) { 1325 if (!initial_fill_mode_) { 1326 SnapshotObjectId existing = FindEntry(addr); 1327 if (existing != 0) return existing; 1328 } 1329 SnapshotObjectId id = next_id_; 1330 next_id_ += kObjectIdStep; 1331 AddEntry(addr, id); 1332 return id; 1333 } 1334 1335 1336 void HeapObjectsMap::MoveObject(Address from, Address to) { 1337 if (from == to) return; 1338 HashMap::Entry* entry = entries_map_.Lookup(from, AddressHash(from), false); 1339 if (entry != NULL) { 1340 void* value = entry->value; 1341 entries_map_.Remove(from, AddressHash(from)); 1342 if (to != NULL) { 1343 entry = entries_map_.Lookup(to, AddressHash(to), true); 1344 // We can have an entry at the new location, it is OK, as GC can overwrite 1345 // dead objects with alive objects being moved. 1346 entry->value = value; 1347 } 1348 } 1349 } 1350 1351 1352 void HeapObjectsMap::AddEntry(Address addr, SnapshotObjectId id) { 1353 HashMap::Entry* entry = entries_map_.Lookup(addr, AddressHash(addr), true); 1354 ASSERT(entry->value == NULL); 1355 entry->value = reinterpret_cast<void*>(entries_->length()); 1356 entries_->Add(EntryInfo(id)); 1357 } 1358 1359 1360 SnapshotObjectId HeapObjectsMap::FindEntry(Address addr) { 1361 HashMap::Entry* entry = entries_map_.Lookup(addr, AddressHash(addr), false); 1362 if (entry != NULL) { 1363 int entry_index = 1364 static_cast<int>(reinterpret_cast<intptr_t>(entry->value)); 1365 EntryInfo& entry_info = entries_->at(entry_index); 1366 entry_info.accessed = true; 1367 return entry_info.id; 1368 } else { 1369 return 0; 1370 } 1371 } 1372 1373 1374 void HeapObjectsMap::RemoveDeadEntries() { 1375 List<EntryInfo>* new_entries = new List<EntryInfo>(); 1376 List<void*> dead_entries; 1377 for (HashMap::Entry* entry = entries_map_.Start(); 1378 entry != NULL; 1379 entry = entries_map_.Next(entry)) { 1380 int entry_index = 1381 static_cast<int>(reinterpret_cast<intptr_t>(entry->value)); 1382 EntryInfo& entry_info = entries_->at(entry_index); 1383 if (entry_info.accessed) { 1384 entry->value = reinterpret_cast<void*>(new_entries->length()); 1385 new_entries->Add(EntryInfo(entry_info.id, false)); 1386 } else { 1387 dead_entries.Add(entry->key); 1388 } 1389 } 1390 for (int i = 0; i < dead_entries.length(); ++i) { 1391 void* raw_entry = dead_entries[i]; 1392 entries_map_.Remove( 1393 raw_entry, AddressHash(reinterpret_cast<Address>(raw_entry))); 1394 } 1395 delete entries_; 1396 entries_ = new_entries; 1397 } 1398 1399 1400 SnapshotObjectId HeapObjectsMap::GenerateId(v8::RetainedObjectInfo* info) { 1401 SnapshotObjectId id = static_cast<SnapshotObjectId>(info->GetHash()); 1402 const char* label = info->GetLabel(); 1403 id ^= HashSequentialString(label, 1404 static_cast<int>(strlen(label)), 1405 HEAP->HashSeed()); 1406 intptr_t element_count = info->GetElementCount(); 1407 if (element_count != -1) 1408 id ^= ComputeIntegerHash(static_cast<uint32_t>(element_count), 1409 v8::internal::kZeroHashSeed); 1410 return id << 1; 1411 } 1412 1413 1414 HeapSnapshotsCollection::HeapSnapshotsCollection() 1415 : is_tracking_objects_(false), 1416 snapshots_uids_(HeapSnapshotsMatch), 1417 token_enumerator_(new TokenEnumerator()) { 1418 } 1419 1420 1421 static void DeleteHeapSnapshot(HeapSnapshot** snapshot_ptr) { 1422 delete *snapshot_ptr; 1423 } 1424 1425 1426 HeapSnapshotsCollection::~HeapSnapshotsCollection() { 1427 delete token_enumerator_; 1428 snapshots_.Iterate(DeleteHeapSnapshot); 1429 } 1430 1431 1432 HeapSnapshot* HeapSnapshotsCollection::NewSnapshot(HeapSnapshot::Type type, 1433 const char* name, 1434 unsigned uid) { 1435 is_tracking_objects_ = true; // Start watching for heap objects moves. 1436 return new HeapSnapshot(this, type, name, uid); 1437 } 1438 1439 1440 void HeapSnapshotsCollection::SnapshotGenerationFinished( 1441 HeapSnapshot* snapshot) { 1442 ids_.SnapshotGenerationFinished(); 1443 if (snapshot != NULL) { 1444 snapshots_.Add(snapshot); 1445 HashMap::Entry* entry = 1446 snapshots_uids_.Lookup(reinterpret_cast<void*>(snapshot->uid()), 1447 static_cast<uint32_t>(snapshot->uid()), 1448 true); 1449 ASSERT(entry->value == NULL); 1450 entry->value = snapshot; 1451 } 1452 } 1453 1454 1455 HeapSnapshot* HeapSnapshotsCollection::GetSnapshot(unsigned uid) { 1456 HashMap::Entry* entry = snapshots_uids_.Lookup(reinterpret_cast<void*>(uid), 1457 static_cast<uint32_t>(uid), 1458 false); 1459 return entry != NULL ? reinterpret_cast<HeapSnapshot*>(entry->value) : NULL; 1460 } 1461 1462 1463 void HeapSnapshotsCollection::RemoveSnapshot(HeapSnapshot* snapshot) { 1464 snapshots_.RemoveElement(snapshot); 1465 unsigned uid = snapshot->uid(); 1466 snapshots_uids_.Remove(reinterpret_cast<void*>(uid), 1467 static_cast<uint32_t>(uid)); 1468 } 1469 1470 1471 Handle<HeapObject> HeapSnapshotsCollection::FindHeapObjectById( 1472 SnapshotObjectId id) { 1473 // First perform a full GC in order to avoid dead objects. 1474 HEAP->CollectAllGarbage(Heap::kMakeHeapIterableMask, 1475 "HeapSnapshotsCollection::FindHeapObjectById"); 1476 AssertNoAllocation no_allocation; 1477 HeapObject* object = NULL; 1478 HeapIterator iterator(HeapIterator::kFilterUnreachable); 1479 // Make sure that object with the given id is still reachable. 1480 for (HeapObject* obj = iterator.next(); 1481 obj != NULL; 1482 obj = iterator.next()) { 1483 if (ids_.FindObject(obj->address()) == id) { 1484 ASSERT(object == NULL); 1485 object = obj; 1486 // Can't break -- kFilterUnreachable requires full heap traversal. 1487 } 1488 } 1489 return object != NULL ? Handle<HeapObject>(object) : Handle<HeapObject>(); 1490 } 1491 1492 1493 HeapEntry* const HeapEntriesMap::kHeapEntryPlaceholder = 1494 reinterpret_cast<HeapEntry*>(1); 1495 1496 HeapEntriesMap::HeapEntriesMap() 1497 : entries_(HeapThingsMatch), 1498 entries_count_(0), 1499 total_children_count_(0), 1500 total_retainers_count_(0) { 1501 } 1502 1503 1504 HeapEntriesMap::~HeapEntriesMap() { 1505 for (HashMap::Entry* p = entries_.Start(); p != NULL; p = entries_.Next(p)) { 1506 delete reinterpret_cast<EntryInfo*>(p->value); 1507 } 1508 } 1509 1510 1511 void HeapEntriesMap::AllocateEntries() { 1512 for (HashMap::Entry* p = entries_.Start(); 1513 p != NULL; 1514 p = entries_.Next(p)) { 1515 EntryInfo* entry_info = reinterpret_cast<EntryInfo*>(p->value); 1516 entry_info->entry = entry_info->allocator->AllocateEntry( 1517 p->key, 1518 entry_info->children_count, 1519 entry_info->retainers_count); 1520 ASSERT(entry_info->entry != NULL); 1521 ASSERT(entry_info->entry != kHeapEntryPlaceholder); 1522 entry_info->children_count = 0; 1523 entry_info->retainers_count = 0; 1524 } 1525 } 1526 1527 1528 HeapEntry* HeapEntriesMap::Map(HeapThing thing) { 1529 HashMap::Entry* cache_entry = entries_.Lookup(thing, Hash(thing), false); 1530 if (cache_entry != NULL) { 1531 EntryInfo* entry_info = reinterpret_cast<EntryInfo*>(cache_entry->value); 1532 return entry_info->entry; 1533 } else { 1534 return NULL; 1535 } 1536 } 1537 1538 1539 void HeapEntriesMap::Pair( 1540 HeapThing thing, HeapEntriesAllocator* allocator, HeapEntry* entry) { 1541 HashMap::Entry* cache_entry = entries_.Lookup(thing, Hash(thing), true); 1542 ASSERT(cache_entry->value == NULL); 1543 cache_entry->value = new EntryInfo(entry, allocator); 1544 ++entries_count_; 1545 } 1546 1547 1548 void HeapEntriesMap::CountReference(HeapThing from, HeapThing to, 1549 int* prev_children_count, 1550 int* prev_retainers_count) { 1551 HashMap::Entry* from_cache_entry = entries_.Lookup(from, Hash(from), false); 1552 HashMap::Entry* to_cache_entry = entries_.Lookup(to, Hash(to), false); 1553 ASSERT(from_cache_entry != NULL); 1554 ASSERT(to_cache_entry != NULL); 1555 EntryInfo* from_entry_info = 1556 reinterpret_cast<EntryInfo*>(from_cache_entry->value); 1557 EntryInfo* to_entry_info = 1558 reinterpret_cast<EntryInfo*>(to_cache_entry->value); 1559 if (prev_children_count) 1560 *prev_children_count = from_entry_info->children_count; 1561 if (prev_retainers_count) 1562 *prev_retainers_count = to_entry_info->retainers_count; 1563 ++from_entry_info->children_count; 1564 ++to_entry_info->retainers_count; 1565 ++total_children_count_; 1566 ++total_retainers_count_; 1567 } 1568 1569 1570 HeapObjectsSet::HeapObjectsSet() 1571 : entries_(HeapEntriesMap::HeapThingsMatch) { 1572 } 1573 1574 1575 void HeapObjectsSet::Clear() { 1576 entries_.Clear(); 1577 } 1578 1579 1580 bool HeapObjectsSet::Contains(Object* obj) { 1581 if (!obj->IsHeapObject()) return false; 1582 HeapObject* object = HeapObject::cast(obj); 1583 HashMap::Entry* cache_entry = 1584 entries_.Lookup(object, HeapEntriesMap::Hash(object), false); 1585 return cache_entry != NULL; 1586 } 1587 1588 1589 void HeapObjectsSet::Insert(Object* obj) { 1590 if (!obj->IsHeapObject()) return; 1591 HeapObject* object = HeapObject::cast(obj); 1592 HashMap::Entry* cache_entry = 1593 entries_.Lookup(object, HeapEntriesMap::Hash(object), true); 1594 if (cache_entry->value == NULL) { 1595 cache_entry->value = HeapEntriesMap::kHeapEntryPlaceholder; 1596 } 1597 } 1598 1599 1600 const char* HeapObjectsSet::GetTag(Object* obj) { 1601 HeapObject* object = HeapObject::cast(obj); 1602 HashMap::Entry* cache_entry = 1603 entries_.Lookup(object, HeapEntriesMap::Hash(object), false); 1604 if (cache_entry != NULL 1605 && cache_entry->value != HeapEntriesMap::kHeapEntryPlaceholder) { 1606 return reinterpret_cast<const char*>(cache_entry->value); 1607 } else { 1608 return NULL; 1609 } 1610 } 1611 1612 1613 void HeapObjectsSet::SetTag(Object* obj, const char* tag) { 1614 if (!obj->IsHeapObject()) return; 1615 HeapObject* object = HeapObject::cast(obj); 1616 HashMap::Entry* cache_entry = 1617 entries_.Lookup(object, HeapEntriesMap::Hash(object), true); 1618 cache_entry->value = const_cast<char*>(tag); 1619 } 1620 1621 1622 HeapObject* const V8HeapExplorer::kInternalRootObject = 1623 reinterpret_cast<HeapObject*>( 1624 static_cast<intptr_t>(HeapObjectsMap::kInternalRootObjectId)); 1625 HeapObject* const V8HeapExplorer::kGcRootsObject = 1626 reinterpret_cast<HeapObject*>( 1627 static_cast<intptr_t>(HeapObjectsMap::kGcRootsObjectId)); 1628 HeapObject* const V8HeapExplorer::kFirstGcSubrootObject = 1629 reinterpret_cast<HeapObject*>( 1630 static_cast<intptr_t>(HeapObjectsMap::kGcRootsFirstSubrootId)); 1631 HeapObject* const V8HeapExplorer::kLastGcSubrootObject = 1632 reinterpret_cast<HeapObject*>( 1633 static_cast<intptr_t>(HeapObjectsMap::kFirstAvailableObjectId)); 1634 1635 1636 V8HeapExplorer::V8HeapExplorer( 1637 HeapSnapshot* snapshot, 1638 SnapshottingProgressReportingInterface* progress) 1639 : heap_(Isolate::Current()->heap()), 1640 snapshot_(snapshot), 1641 collection_(snapshot_->collection()), 1642 progress_(progress), 1643 filler_(NULL) { 1644 } 1645 1646 1647 V8HeapExplorer::~V8HeapExplorer() { 1648 } 1649 1650 1651 HeapEntry* V8HeapExplorer::AllocateEntry( 1652 HeapThing ptr, int children_count, int retainers_count) { 1653 return AddEntry( 1654 reinterpret_cast<HeapObject*>(ptr), children_count, retainers_count); 1655 } 1656 1657 1658 HeapEntry* V8HeapExplorer::AddEntry(HeapObject* object, 1659 int children_count, 1660 int retainers_count) { 1661 if (object == kInternalRootObject) { 1662 ASSERT(retainers_count == 0); 1663 return snapshot_->AddRootEntry(children_count); 1664 } else if (object == kGcRootsObject) { 1665 return snapshot_->AddGcRootsEntry(children_count, retainers_count); 1666 } else if (object >= kFirstGcSubrootObject && object < kLastGcSubrootObject) { 1667 return snapshot_->AddGcSubrootEntry( 1668 GetGcSubrootOrder(object), 1669 children_count, 1670 retainers_count); 1671 } else if (object->IsJSFunction()) { 1672 JSFunction* func = JSFunction::cast(object); 1673 SharedFunctionInfo* shared = func->shared(); 1674 const char* name = shared->bound() ? "native_bind" : 1675 collection_->names()->GetName(String::cast(shared->name())); 1676 return AddEntry(object, 1677 HeapEntry::kClosure, 1678 name, 1679 children_count, 1680 retainers_count); 1681 } else if (object->IsJSRegExp()) { 1682 JSRegExp* re = JSRegExp::cast(object); 1683 return AddEntry(object, 1684 HeapEntry::kRegExp, 1685 collection_->names()->GetName(re->Pattern()), 1686 children_count, 1687 retainers_count); 1688 } else if (object->IsJSObject()) { 1689 return AddEntry(object, 1690 HeapEntry::kObject, 1691 "", 1692 children_count, 1693 retainers_count); 1694 } else if (object->IsString()) { 1695 return AddEntry(object, 1696 HeapEntry::kString, 1697 collection_->names()->GetName(String::cast(object)), 1698 children_count, 1699 retainers_count); 1700 } else if (object->IsCode()) { 1701 return AddEntry(object, 1702 HeapEntry::kCode, 1703 "", 1704 children_count, 1705 retainers_count); 1706 } else if (object->IsSharedFunctionInfo()) { 1707 SharedFunctionInfo* shared = SharedFunctionInfo::cast(object); 1708 return AddEntry(object, 1709 HeapEntry::kCode, 1710 collection_->names()->GetName(String::cast(shared->name())), 1711 children_count, 1712 retainers_count); 1713 } else if (object->IsScript()) { 1714 Script* script = Script::cast(object); 1715 return AddEntry(object, 1716 HeapEntry::kCode, 1717 script->name()->IsString() ? 1718 collection_->names()->GetName( 1719 String::cast(script->name())) 1720 : "", 1721 children_count, 1722 retainers_count); 1723 } else if (object->IsGlobalContext()) { 1724 return AddEntry(object, 1725 HeapEntry::kHidden, 1726 "system / GlobalContext", 1727 children_count, 1728 retainers_count); 1729 } else if (object->IsContext()) { 1730 return AddEntry(object, 1731 HeapEntry::kHidden, 1732 "system / Context", 1733 children_count, 1734 retainers_count); 1735 } else if (object->IsFixedArray() || 1736 object->IsFixedDoubleArray() || 1737 object->IsByteArray() || 1738 object->IsExternalArray()) { 1739 const char* tag = objects_tags_.GetTag(object); 1740 return AddEntry(object, 1741 HeapEntry::kArray, 1742 tag != NULL ? tag : "", 1743 children_count, 1744 retainers_count); 1745 } else if (object->IsHeapNumber()) { 1746 return AddEntry(object, 1747 HeapEntry::kHeapNumber, 1748 "number", 1749 children_count, 1750 retainers_count); 1751 } 1752 return AddEntry(object, 1753 HeapEntry::kHidden, 1754 GetSystemEntryName(object), 1755 children_count, 1756 retainers_count); 1757 } 1758 1759 1760 HeapEntry* V8HeapExplorer::AddEntry(HeapObject* object, 1761 HeapEntry::Type type, 1762 const char* name, 1763 int children_count, 1764 int retainers_count) { 1765 return snapshot_->AddEntry(type, 1766 name, 1767 collection_->GetObjectId(object->address()), 1768 object->Size(), 1769 children_count, 1770 retainers_count); 1771 } 1772 1773 1774 class GcSubrootsEnumerator : public ObjectVisitor { 1775 public: 1776 GcSubrootsEnumerator( 1777 SnapshotFillerInterface* filler, V8HeapExplorer* explorer) 1778 : filler_(filler), 1779 explorer_(explorer), 1780 previous_object_count_(0), 1781 object_count_(0) { 1782 } 1783 void VisitPointers(Object** start, Object** end) { 1784 object_count_ += end - start; 1785 } 1786 void Synchronize(VisitorSynchronization::SyncTag tag) { 1787 // Skip empty subroots. 1788 if (previous_object_count_ != object_count_) { 1789 previous_object_count_ = object_count_; 1790 filler_->AddEntry(V8HeapExplorer::GetNthGcSubrootObject(tag), explorer_); 1791 } 1792 } 1793 private: 1794 SnapshotFillerInterface* filler_; 1795 V8HeapExplorer* explorer_; 1796 intptr_t previous_object_count_; 1797 intptr_t object_count_; 1798 }; 1799 1800 1801 void V8HeapExplorer::AddRootEntries(SnapshotFillerInterface* filler) { 1802 filler->AddEntry(kInternalRootObject, this); 1803 filler->AddEntry(kGcRootsObject, this); 1804 GcSubrootsEnumerator enumerator(filler, this); 1805 heap_->IterateRoots(&enumerator, VISIT_ALL); 1806 } 1807 1808 1809 const char* V8HeapExplorer::GetSystemEntryName(HeapObject* object) { 1810 switch (object->map()->instance_type()) { 1811 case MAP_TYPE: return "system / Map"; 1812 case JS_GLOBAL_PROPERTY_CELL_TYPE: return "system / JSGlobalPropertyCell"; 1813 case FOREIGN_TYPE: return "system / Foreign"; 1814 case ODDBALL_TYPE: return "system / Oddball"; 1815 #define MAKE_STRUCT_CASE(NAME, Name, name) \ 1816 case NAME##_TYPE: return "system / "#Name; 1817 STRUCT_LIST(MAKE_STRUCT_CASE) 1818 #undef MAKE_STRUCT_CASE 1819 default: return "system"; 1820 } 1821 } 1822 1823 1824 int V8HeapExplorer::EstimateObjectsCount(HeapIterator* iterator) { 1825 int objects_count = 0; 1826 for (HeapObject* obj = iterator->next(); 1827 obj != NULL; 1828 obj = iterator->next()) { 1829 objects_count++; 1830 } 1831 return objects_count; 1832 } 1833 1834 1835 class IndexedReferencesExtractor : public ObjectVisitor { 1836 public: 1837 IndexedReferencesExtractor(V8HeapExplorer* generator, 1838 HeapObject* parent_obj, 1839 HeapEntry* parent_entry) 1840 : generator_(generator), 1841 parent_obj_(parent_obj), 1842 parent_(parent_entry), 1843 next_index_(1) { 1844 } 1845 void VisitPointers(Object** start, Object** end) { 1846 for (Object** p = start; p < end; p++) { 1847 if (CheckVisitedAndUnmark(p)) continue; 1848 generator_->SetHiddenReference(parent_obj_, parent_, next_index_++, *p); 1849 } 1850 } 1851 static void MarkVisitedField(HeapObject* obj, int offset) { 1852 if (offset < 0) return; 1853 Address field = obj->address() + offset; 1854 ASSERT(!Memory::Object_at(field)->IsFailure()); 1855 ASSERT(Memory::Object_at(field)->IsHeapObject()); 1856 *field |= kFailureTag; 1857 } 1858 1859 private: 1860 bool CheckVisitedAndUnmark(Object** field) { 1861 if ((*field)->IsFailure()) { 1862 intptr_t untagged = reinterpret_cast<intptr_t>(*field) & ~kFailureTagMask; 1863 *field = reinterpret_cast<Object*>(untagged | kHeapObjectTag); 1864 ASSERT((*field)->IsHeapObject()); 1865 return true; 1866 } 1867 return false; 1868 } 1869 V8HeapExplorer* generator_; 1870 HeapObject* parent_obj_; 1871 HeapEntry* parent_; 1872 int next_index_; 1873 }; 1874 1875 1876 void V8HeapExplorer::ExtractReferences(HeapObject* obj) { 1877 HeapEntry* entry = GetEntry(obj); 1878 if (entry == NULL) return; // No interest in this object. 1879 1880 bool extract_indexed_refs = true; 1881 if (obj->IsJSGlobalProxy()) { 1882 // We need to reference JS global objects from snapshot's root. 1883 // We use JSGlobalProxy because this is what embedder (e.g. browser) 1884 // uses for the global object. 1885 JSGlobalProxy* proxy = JSGlobalProxy::cast(obj); 1886 SetRootShortcutReference(proxy->map()->prototype()); 1887 } else if (obj->IsJSObject()) { 1888 JSObject* js_obj = JSObject::cast(obj); 1889 ExtractClosureReferences(js_obj, entry); 1890 ExtractPropertyReferences(js_obj, entry); 1891 ExtractElementReferences(js_obj, entry); 1892 ExtractInternalReferences(js_obj, entry); 1893 SetPropertyReference( 1894 obj, entry, heap_->Proto_symbol(), js_obj->GetPrototype()); 1895 if (obj->IsJSFunction()) { 1896 JSFunction* js_fun = JSFunction::cast(js_obj); 1897 Object* proto_or_map = js_fun->prototype_or_initial_map(); 1898 if (!proto_or_map->IsTheHole()) { 1899 if (!proto_or_map->IsMap()) { 1900 SetPropertyReference( 1901 obj, entry, 1902 heap_->prototype_symbol(), proto_or_map, 1903 NULL, 1904 JSFunction::kPrototypeOrInitialMapOffset); 1905 } else { 1906 SetPropertyReference( 1907 obj, entry, 1908 heap_->prototype_symbol(), js_fun->prototype()); 1909 } 1910 } 1911 SharedFunctionInfo* shared_info = js_fun->shared(); 1912 // JSFunction has either bindings or literals and never both. 1913 bool bound = shared_info->bound(); 1914 TagObject(js_fun->literals_or_bindings(), 1915 bound ? "(function bindings)" : "(function literals)"); 1916 SetInternalReference(js_fun, entry, 1917 bound ? "bindings" : "literals", 1918 js_fun->literals_or_bindings(), 1919 JSFunction::kLiteralsOffset); 1920 SetInternalReference(js_fun, entry, 1921 "shared", shared_info, 1922 JSFunction::kSharedFunctionInfoOffset); 1923 TagObject(js_fun->unchecked_context(), "(context)"); 1924 SetInternalReference(js_fun, entry, 1925 "context", js_fun->unchecked_context(), 1926 JSFunction::kContextOffset); 1927 for (int i = JSFunction::kNonWeakFieldsEndOffset; 1928 i < JSFunction::kSize; 1929 i += kPointerSize) { 1930 SetWeakReference(js_fun, entry, i, *HeapObject::RawField(js_fun, i), i); 1931 } 1932 } 1933 TagObject(js_obj->properties(), "(object properties)"); 1934 SetInternalReference(obj, entry, 1935 "properties", js_obj->properties(), 1936 JSObject::kPropertiesOffset); 1937 TagObject(js_obj->elements(), "(object elements)"); 1938 SetInternalReference(obj, entry, 1939 "elements", js_obj->elements(), 1940 JSObject::kElementsOffset); 1941 } else if (obj->IsString()) { 1942 if (obj->IsConsString()) { 1943 ConsString* cs = ConsString::cast(obj); 1944 SetInternalReference(obj, entry, 1, cs->first()); 1945 SetInternalReference(obj, entry, 2, cs->second()); 1946 } 1947 if (obj->IsSlicedString()) { 1948 SlicedString* ss = SlicedString::cast(obj); 1949 SetInternalReference(obj, entry, "parent", ss->parent()); 1950 } 1951 extract_indexed_refs = false; 1952 } else if (obj->IsGlobalContext()) { 1953 Context* context = Context::cast(obj); 1954 TagObject(context->jsfunction_result_caches(), 1955 "(context func. result caches)"); 1956 TagObject(context->normalized_map_cache(), "(context norm. map cache)"); 1957 TagObject(context->runtime_context(), "(runtime context)"); 1958 TagObject(context->data(), "(context data)"); 1959 for (int i = Context::FIRST_WEAK_SLOT; 1960 i < Context::GLOBAL_CONTEXT_SLOTS; 1961 ++i) { 1962 SetWeakReference(obj, entry, 1963 i, context->get(i), 1964 FixedArray::OffsetOfElementAt(i)); 1965 } 1966 } else if (obj->IsMap()) { 1967 Map* map = Map::cast(obj); 1968 SetInternalReference(obj, entry, 1969 "prototype", map->prototype(), Map::kPrototypeOffset); 1970 SetInternalReference(obj, entry, 1971 "constructor", map->constructor(), 1972 Map::kConstructorOffset); 1973 if (!map->instance_descriptors()->IsEmpty()) { 1974 TagObject(map->instance_descriptors(), "(map descriptors)"); 1975 SetInternalReference(obj, entry, 1976 "descriptors", map->instance_descriptors(), 1977 Map::kInstanceDescriptorsOrBitField3Offset); 1978 } 1979 if (map->prototype_transitions() != heap_->empty_fixed_array()) { 1980 TagObject(map->prototype_transitions(), "(prototype transitions)"); 1981 SetInternalReference(obj, 1982 entry, 1983 "prototype_transitions", 1984 map->prototype_transitions(), 1985 Map::kPrototypeTransitionsOffset); 1986 } 1987 SetInternalReference(obj, entry, 1988 "code_cache", map->code_cache(), 1989 Map::kCodeCacheOffset); 1990 } else if (obj->IsSharedFunctionInfo()) { 1991 SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj); 1992 SetInternalReference(obj, entry, 1993 "name", shared->name(), 1994 SharedFunctionInfo::kNameOffset); 1995 SetInternalReference(obj, entry, 1996 "code", shared->unchecked_code(), 1997 SharedFunctionInfo::kCodeOffset); 1998 TagObject(shared->scope_info(), "(function scope info)"); 1999 SetInternalReference(obj, entry, 2000 "scope_info", shared->scope_info(), 2001 SharedFunctionInfo::kScopeInfoOffset); 2002 SetInternalReference(obj, entry, 2003 "instance_class_name", shared->instance_class_name(), 2004 SharedFunctionInfo::kInstanceClassNameOffset); 2005 SetInternalReference(obj, entry, 2006 "script", shared->script(), 2007 SharedFunctionInfo::kScriptOffset); 2008 SetWeakReference(obj, entry, 2009 1, shared->initial_map(), 2010 SharedFunctionInfo::kInitialMapOffset); 2011 } else if (obj->IsScript()) { 2012 Script* script = Script::cast(obj); 2013 SetInternalReference(obj, entry, 2014 "source", script->source(), 2015 Script::kSourceOffset); 2016 SetInternalReference(obj, entry, 2017 "name", script->name(), 2018 Script::kNameOffset); 2019 SetInternalReference(obj, entry, 2020 "data", script->data(), 2021 Script::kDataOffset); 2022 SetInternalReference(obj, entry, 2023 "context_data", script->context_data(), 2024 Script::kContextOffset); 2025 TagObject(script->line_ends(), "(script line ends)"); 2026 SetInternalReference(obj, entry, 2027 "line_ends", script->line_ends(), 2028 Script::kLineEndsOffset); 2029 } else if (obj->IsCodeCache()) { 2030 CodeCache* code_cache = CodeCache::cast(obj); 2031 TagObject(code_cache->default_cache(), "(default code cache)"); 2032 SetInternalReference(obj, entry, 2033 "default_cache", code_cache->default_cache(), 2034 CodeCache::kDefaultCacheOffset); 2035 TagObject(code_cache->normal_type_cache(), "(code type cache)"); 2036 SetInternalReference(obj, entry, 2037 "type_cache", code_cache->normal_type_cache(), 2038 CodeCache::kNormalTypeCacheOffset); 2039 } else if (obj->IsCode()) { 2040 Code* code = Code::cast(obj); 2041 TagObject(code->unchecked_relocation_info(), "(code relocation info)"); 2042 TagObject(code->unchecked_deoptimization_data(), "(code deopt data)"); 2043 } 2044 if (extract_indexed_refs) { 2045 SetInternalReference(obj, entry, "map", obj->map(), HeapObject::kMapOffset); 2046 IndexedReferencesExtractor refs_extractor(this, obj, entry); 2047 obj->Iterate(&refs_extractor); 2048 } 2049 } 2050 2051 2052 void V8HeapExplorer::ExtractClosureReferences(JSObject* js_obj, 2053 HeapEntry* entry) { 2054 if (!js_obj->IsJSFunction()) return; 2055 2056 JSFunction* func = JSFunction::cast(js_obj); 2057 Context* context = func->context(); 2058 ScopeInfo* scope_info = context->closure()->shared()->scope_info(); 2059 2060 if (func->shared()->bound()) { 2061 FixedArray* bindings = func->function_bindings(); 2062 SetNativeBindReference(js_obj, entry, "bound_this", 2063 bindings->get(JSFunction::kBoundThisIndex)); 2064 SetNativeBindReference(js_obj, entry, "bound_function", 2065 bindings->get(JSFunction::kBoundFunctionIndex)); 2066 for (int i = JSFunction::kBoundArgumentsStartIndex; 2067 i < bindings->length(); i++) { 2068 const char* reference_name = collection_->names()->GetFormatted( 2069 "bound_argument_%d", 2070 i - JSFunction::kBoundArgumentsStartIndex); 2071 SetNativeBindReference(js_obj, entry, reference_name, 2072 bindings->get(i)); 2073 } 2074 } else { 2075 // Add context allocated locals. 2076 int context_locals = scope_info->ContextLocalCount(); 2077 for (int i = 0; i < context_locals; ++i) { 2078 String* local_name = scope_info->ContextLocalName(i); 2079 int idx = Context::MIN_CONTEXT_SLOTS + i; 2080 SetClosureReference(js_obj, entry, local_name, context->get(idx)); 2081 } 2082 2083 // Add function variable. 2084 if (scope_info->HasFunctionName()) { 2085 String* name = scope_info->FunctionName(); 2086 int idx = Context::MIN_CONTEXT_SLOTS + context_locals; 2087 #ifdef DEBUG 2088 VariableMode mode; 2089 ASSERT(idx == scope_info->FunctionContextSlotIndex(name, &mode)); 2090 #endif 2091 SetClosureReference(js_obj, entry, name, context->get(idx)); 2092 } 2093 } 2094 } 2095 2096 2097 void V8HeapExplorer::ExtractPropertyReferences(JSObject* js_obj, 2098 HeapEntry* entry) { 2099 if (js_obj->HasFastProperties()) { 2100 DescriptorArray* descs = js_obj->map()->instance_descriptors(); 2101 for (int i = 0; i < descs->number_of_descriptors(); i++) { 2102 switch (descs->GetType(i)) { 2103 case FIELD: { 2104 int index = descs->GetFieldIndex(i); 2105 if (index < js_obj->map()->inobject_properties()) { 2106 SetPropertyReference( 2107 js_obj, entry, 2108 descs->GetKey(i), js_obj->InObjectPropertyAt(index), 2109 NULL, 2110 js_obj->GetInObjectPropertyOffset(index)); 2111 } else { 2112 SetPropertyReference( 2113 js_obj, entry, 2114 descs->GetKey(i), js_obj->FastPropertyAt(index)); 2115 } 2116 break; 2117 } 2118 case CONSTANT_FUNCTION: 2119 SetPropertyReference( 2120 js_obj, entry, 2121 descs->GetKey(i), descs->GetConstantFunction(i)); 2122 break; 2123 case CALLBACKS: { 2124 Object* callback_obj = descs->GetValue(i); 2125 if (callback_obj->IsAccessorPair()) { 2126 AccessorPair* accessors = AccessorPair::cast(callback_obj); 2127 if (Object* getter = accessors->getter()) { 2128 SetPropertyReference(js_obj, entry, descs->GetKey(i), 2129 getter, "get-%s"); 2130 } 2131 if (Object* setter = accessors->setter()) { 2132 SetPropertyReference(js_obj, entry, descs->GetKey(i), 2133 setter, "set-%s"); 2134 } 2135 } 2136 break; 2137 } 2138 case NORMAL: // only in slow mode 2139 case HANDLER: // only in lookup results, not in descriptors 2140 case INTERCEPTOR: // only in lookup results, not in descriptors 2141 case MAP_TRANSITION: // we do not care about transitions here... 2142 case ELEMENTS_TRANSITION: 2143 case CONSTANT_TRANSITION: 2144 case NULL_DESCRIPTOR: // ... and not about "holes" 2145 break; 2146 } 2147 } 2148 } else { 2149 StringDictionary* dictionary = js_obj->property_dictionary(); 2150 int length = dictionary->Capacity(); 2151 for (int i = 0; i < length; ++i) { 2152 Object* k = dictionary->KeyAt(i); 2153 if (dictionary->IsKey(k)) { 2154 Object* target = dictionary->ValueAt(i); 2155 SetPropertyReference( 2156 js_obj, entry, String::cast(k), target); 2157 // We assume that global objects can only have slow properties. 2158 if (target->IsJSGlobalPropertyCell()) { 2159 SetPropertyShortcutReference(js_obj, 2160 entry, 2161 String::cast(k), 2162 JSGlobalPropertyCell::cast( 2163 target)->value()); 2164 } 2165 } 2166 } 2167 } 2168 } 2169 2170 2171 void V8HeapExplorer::ExtractElementReferences(JSObject* js_obj, 2172 HeapEntry* entry) { 2173 if (js_obj->HasFastElements()) { 2174 FixedArray* elements = FixedArray::cast(js_obj->elements()); 2175 int length = js_obj->IsJSArray() ? 2176 Smi::cast(JSArray::cast(js_obj)->length())->value() : 2177 elements->length(); 2178 for (int i = 0; i < length; ++i) { 2179 if (!elements->get(i)->IsTheHole()) { 2180 SetElementReference(js_obj, entry, i, elements->get(i)); 2181 } 2182 } 2183 } else if (js_obj->HasDictionaryElements()) { 2184 SeededNumberDictionary* dictionary = js_obj->element_dictionary(); 2185 int length = dictionary->Capacity(); 2186 for (int i = 0; i < length; ++i) { 2187 Object* k = dictionary->KeyAt(i); 2188 if (dictionary->IsKey(k)) { 2189 ASSERT(k->IsNumber()); 2190 uint32_t index = static_cast<uint32_t>(k->Number()); 2191 SetElementReference(js_obj, entry, index, dictionary->ValueAt(i)); 2192 } 2193 } 2194 } 2195 } 2196 2197 2198 void V8HeapExplorer::ExtractInternalReferences(JSObject* js_obj, 2199 HeapEntry* entry) { 2200 int length = js_obj->GetInternalFieldCount(); 2201 for (int i = 0; i < length; ++i) { 2202 Object* o = js_obj->GetInternalField(i); 2203 SetInternalReference( 2204 js_obj, entry, i, o, js_obj->GetInternalFieldOffset(i)); 2205 } 2206 } 2207 2208 2209 String* V8HeapExplorer::GetConstructorName(JSObject* object) { 2210 Heap* heap = object->GetHeap(); 2211 if (object->IsJSFunction()) return heap->closure_symbol(); 2212 String* constructor_name = object->constructor_name(); 2213 if (constructor_name == heap->Object_symbol()) { 2214 // Look up an immediate "constructor" property, if it is a function, 2215 // return its name. This is for instances of binding objects, which 2216 // have prototype constructor type "Object". 2217 Object* constructor_prop = NULL; 2218 LookupResult result(heap->isolate()); 2219 object->LocalLookupRealNamedProperty(heap->constructor_symbol(), &result); 2220 if (result.IsProperty()) { 2221 constructor_prop = result.GetLazyValue(); 2222 } 2223 if (constructor_prop->IsJSFunction()) { 2224 Object* maybe_name = JSFunction::cast(constructor_prop)->shared()->name(); 2225 if (maybe_name->IsString()) { 2226 String* name = String::cast(maybe_name); 2227 if (name->length() > 0) return name; 2228 } 2229 } 2230 } 2231 return object->constructor_name(); 2232 } 2233 2234 2235 HeapEntry* V8HeapExplorer::GetEntry(Object* obj) { 2236 if (!obj->IsHeapObject()) return NULL; 2237 return filler_->FindOrAddEntry(obj, this); 2238 } 2239 2240 2241 class RootsReferencesExtractor : public ObjectVisitor { 2242 private: 2243 struct IndexTag { 2244 IndexTag(int index, VisitorSynchronization::SyncTag tag) 2245 : index(index), tag(tag) { } 2246 int index; 2247 VisitorSynchronization::SyncTag tag; 2248 }; 2249 2250 public: 2251 RootsReferencesExtractor() 2252 : collecting_all_references_(false), 2253 previous_reference_count_(0) { 2254 } 2255 2256 void VisitPointers(Object** start, Object** end) { 2257 if (collecting_all_references_) { 2258 for (Object** p = start; p < end; p++) all_references_.Add(*p); 2259 } else { 2260 for (Object** p = start; p < end; p++) strong_references_.Add(*p); 2261 } 2262 } 2263 2264 void SetCollectingAllReferences() { collecting_all_references_ = true; } 2265 2266 void FillReferences(V8HeapExplorer* explorer) { 2267 ASSERT(strong_references_.length() <= all_references_.length()); 2268 for (int i = 0; i < reference_tags_.length(); ++i) { 2269 explorer->SetGcRootsReference(reference_tags_[i].tag); 2270 } 2271 int strong_index = 0, all_index = 0, tags_index = 0; 2272 while (all_index < all_references_.length()) { 2273 if (strong_index < strong_references_.length() && 2274 strong_references_[strong_index] == all_references_[all_index]) { 2275 explorer->SetGcSubrootReference(reference_tags_[tags_index].tag, 2276 false, 2277 all_references_[all_index++]); 2278 ++strong_index; 2279 } else { 2280 explorer->SetGcSubrootReference(reference_tags_[tags_index].tag, 2281 true, 2282 all_references_[all_index++]); 2283 } 2284 if (reference_tags_[tags_index].index == all_index) ++tags_index; 2285 } 2286 } 2287 2288 void Synchronize(VisitorSynchronization::SyncTag tag) { 2289 if (collecting_all_references_ && 2290 previous_reference_count_ != all_references_.length()) { 2291 previous_reference_count_ = all_references_.length(); 2292 reference_tags_.Add(IndexTag(previous_reference_count_, tag)); 2293 } 2294 } 2295 2296 private: 2297 bool collecting_all_references_; 2298 List<Object*> strong_references_; 2299 List<Object*> all_references_; 2300 int previous_reference_count_; 2301 List<IndexTag> reference_tags_; 2302 }; 2303 2304 2305 bool V8HeapExplorer::IterateAndExtractReferences( 2306 SnapshotFillerInterface* filler) { 2307 HeapIterator iterator(HeapIterator::kFilterUnreachable); 2308 2309 filler_ = filler; 2310 bool interrupted = false; 2311 2312 // Heap iteration with filtering must be finished in any case. 2313 for (HeapObject* obj = iterator.next(); 2314 obj != NULL; 2315 obj = iterator.next(), progress_->ProgressStep()) { 2316 if (!interrupted) { 2317 ExtractReferences(obj); 2318 if (!progress_->ProgressReport(false)) interrupted = true; 2319 } 2320 } 2321 if (interrupted) { 2322 filler_ = NULL; 2323 return false; 2324 } 2325 SetRootGcRootsReference(); 2326 RootsReferencesExtractor extractor; 2327 heap_->IterateRoots(&extractor, VISIT_ONLY_STRONG); 2328 extractor.SetCollectingAllReferences(); 2329 heap_->IterateRoots(&extractor, VISIT_ALL); 2330 extractor.FillReferences(this); 2331 filler_ = NULL; 2332 return progress_->ProgressReport(false); 2333 } 2334 2335 2336 bool V8HeapExplorer::IterateAndSetObjectNames(SnapshotFillerInterface* filler) { 2337 HeapIterator iterator(HeapIterator::kFilterUnreachable); 2338 filler_ = filler; 2339 for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { 2340 SetObjectName(obj); 2341 } 2342 return true; 2343 } 2344 2345 2346 void V8HeapExplorer::SetObjectName(HeapObject* object) { 2347 if (!object->IsJSObject() || object->IsJSRegExp() || object->IsJSFunction()) { 2348 return; 2349 } 2350 const char* name = collection_->names()->GetName( 2351 GetConstructorName(JSObject::cast(object))); 2352 if (object->IsJSGlobalObject()) { 2353 const char* tag = objects_tags_.GetTag(object); 2354 if (tag != NULL) { 2355 name = collection_->names()->GetFormatted("%s / %s", name, tag); 2356 } 2357 } 2358 GetEntry(object)->set_name(name); 2359 } 2360 2361 2362 void V8HeapExplorer::SetClosureReference(HeapObject* parent_obj, 2363 HeapEntry* parent_entry, 2364 String* reference_name, 2365 Object* child_obj) { 2366 HeapEntry* child_entry = GetEntry(child_obj); 2367 if (child_entry != NULL) { 2368 filler_->SetNamedReference(HeapGraphEdge::kContextVariable, 2369 parent_obj, 2370 parent_entry, 2371 collection_->names()->GetName(reference_name), 2372 child_obj, 2373 child_entry); 2374 } 2375 } 2376 2377 2378 void V8HeapExplorer::SetNativeBindReference(HeapObject* parent_obj, 2379 HeapEntry* parent_entry, 2380 const char* reference_name, 2381 Object* child_obj) { 2382 HeapEntry* child_entry = GetEntry(child_obj); 2383 if (child_entry != NULL) { 2384 filler_->SetNamedReference(HeapGraphEdge::kShortcut, 2385 parent_obj, 2386 parent_entry, 2387 reference_name, 2388 child_obj, 2389 child_entry); 2390 } 2391 } 2392 2393 2394 void V8HeapExplorer::SetElementReference(HeapObject* parent_obj, 2395 HeapEntry* parent_entry, 2396 int index, 2397 Object* child_obj) { 2398 HeapEntry* child_entry = GetEntry(child_obj); 2399 if (child_entry != NULL) { 2400 filler_->SetIndexedReference(HeapGraphEdge::kElement, 2401 parent_obj, 2402 parent_entry, 2403 index, 2404 child_obj, 2405 child_entry); 2406 } 2407 } 2408 2409 2410 void V8HeapExplorer::SetInternalReference(HeapObject* parent_obj, 2411 HeapEntry* parent_entry, 2412 const char* reference_name, 2413 Object* child_obj, 2414 int field_offset) { 2415 HeapEntry* child_entry = GetEntry(child_obj); 2416 if (child_entry != NULL) { 2417 filler_->SetNamedReference(HeapGraphEdge::kInternal, 2418 parent_obj, 2419 parent_entry, 2420 reference_name, 2421 child_obj, 2422 child_entry); 2423 IndexedReferencesExtractor::MarkVisitedField(parent_obj, field_offset); 2424 } 2425 } 2426 2427 2428 void V8HeapExplorer::SetInternalReference(HeapObject* parent_obj, 2429 HeapEntry* parent_entry, 2430 int index, 2431 Object* child_obj, 2432 int field_offset) { 2433 HeapEntry* child_entry = GetEntry(child_obj); 2434 if (child_entry != NULL) { 2435 filler_->SetNamedReference(HeapGraphEdge::kInternal, 2436 parent_obj, 2437 parent_entry, 2438 collection_->names()->GetName(index), 2439 child_obj, 2440 child_entry); 2441 IndexedReferencesExtractor::MarkVisitedField(parent_obj, field_offset); 2442 } 2443 } 2444 2445 2446 void V8HeapExplorer::SetHiddenReference(HeapObject* parent_obj, 2447 HeapEntry* parent_entry, 2448 int index, 2449 Object* child_obj) { 2450 HeapEntry* child_entry = GetEntry(child_obj); 2451 if (child_entry != NULL) { 2452 filler_->SetIndexedReference(HeapGraphEdge::kHidden, 2453 parent_obj, 2454 parent_entry, 2455 index, 2456 child_obj, 2457 child_entry); 2458 } 2459 } 2460 2461 2462 void V8HeapExplorer::SetWeakReference(HeapObject* parent_obj, 2463 HeapEntry* parent_entry, 2464 int index, 2465 Object* child_obj, 2466 int field_offset) { 2467 HeapEntry* child_entry = GetEntry(child_obj); 2468 if (child_entry != NULL) { 2469 filler_->SetIndexedReference(HeapGraphEdge::kWeak, 2470 parent_obj, 2471 parent_entry, 2472 index, 2473 child_obj, 2474 child_entry); 2475 IndexedReferencesExtractor::MarkVisitedField(parent_obj, field_offset); 2476 } 2477 } 2478 2479 2480 void V8HeapExplorer::SetPropertyReference(HeapObject* parent_obj, 2481 HeapEntry* parent_entry, 2482 String* reference_name, 2483 Object* child_obj, 2484 const char* name_format_string, 2485 int field_offset) { 2486 HeapEntry* child_entry = GetEntry(child_obj); 2487 if (child_entry != NULL) { 2488 HeapGraphEdge::Type type = reference_name->length() > 0 ? 2489 HeapGraphEdge::kProperty : HeapGraphEdge::kInternal; 2490 const char* name = name_format_string != NULL ? 2491 collection_->names()->GetFormatted( 2492 name_format_string, 2493 *reference_name->ToCString(DISALLOW_NULLS, 2494 ROBUST_STRING_TRAVERSAL)) : 2495 collection_->names()->GetName(reference_name); 2496 2497 filler_->SetNamedReference(type, 2498 parent_obj, 2499 parent_entry, 2500 name, 2501 child_obj, 2502 child_entry); 2503 IndexedReferencesExtractor::MarkVisitedField(parent_obj, field_offset); 2504 } 2505 } 2506 2507 2508 void V8HeapExplorer::SetPropertyShortcutReference(HeapObject* parent_obj, 2509 HeapEntry* parent_entry, 2510 String* reference_name, 2511 Object* child_obj) { 2512 HeapEntry* child_entry = GetEntry(child_obj); 2513 if (child_entry != NULL) { 2514 filler_->SetNamedReference(HeapGraphEdge::kShortcut, 2515 parent_obj, 2516 parent_entry, 2517 collection_->names()->GetName(reference_name), 2518 child_obj, 2519 child_entry); 2520 } 2521 } 2522 2523 2524 void V8HeapExplorer::SetRootGcRootsReference() { 2525 filler_->SetIndexedAutoIndexReference( 2526 HeapGraphEdge::kElement, 2527 kInternalRootObject, snapshot_->root(), 2528 kGcRootsObject, snapshot_->gc_roots()); 2529 } 2530 2531 2532 void V8HeapExplorer::SetRootShortcutReference(Object* child_obj) { 2533 HeapEntry* child_entry = GetEntry(child_obj); 2534 ASSERT(child_entry != NULL); 2535 filler_->SetNamedAutoIndexReference( 2536 HeapGraphEdge::kShortcut, 2537 kInternalRootObject, snapshot_->root(), 2538 child_obj, child_entry); 2539 } 2540 2541 2542 void V8HeapExplorer::SetGcRootsReference(VisitorSynchronization::SyncTag tag) { 2543 filler_->SetIndexedAutoIndexReference( 2544 HeapGraphEdge::kElement, 2545 kGcRootsObject, snapshot_->gc_roots(), 2546 GetNthGcSubrootObject(tag), snapshot_->gc_subroot(tag)); 2547 } 2548 2549 2550 void V8HeapExplorer::SetGcSubrootReference( 2551 VisitorSynchronization::SyncTag tag, bool is_weak, Object* child_obj) { 2552 HeapEntry* child_entry = GetEntry(child_obj); 2553 if (child_entry != NULL) { 2554 filler_->SetIndexedAutoIndexReference( 2555 is_weak ? HeapGraphEdge::kWeak : HeapGraphEdge::kElement, 2556 GetNthGcSubrootObject(tag), snapshot_->gc_subroot(tag), 2557 child_obj, child_entry); 2558 } 2559 } 2560 2561 2562 void V8HeapExplorer::TagObject(Object* obj, const char* tag) { 2563 if (obj->IsHeapObject() && 2564 !obj->IsOddball() && 2565 obj != heap_->raw_unchecked_empty_byte_array() && 2566 obj != heap_->raw_unchecked_empty_fixed_array() && 2567 obj != heap_->raw_unchecked_empty_descriptor_array()) { 2568 objects_tags_.SetTag(obj, tag); 2569 } 2570 } 2571 2572 2573 class GlobalObjectsEnumerator : public ObjectVisitor { 2574 public: 2575 virtual void VisitPointers(Object** start, Object** end) { 2576 for (Object** p = start; p < end; p++) { 2577 if ((*p)->IsGlobalContext()) { 2578 Context* context = Context::cast(*p); 2579 JSObject* proxy = context->global_proxy(); 2580 if (proxy->IsJSGlobalProxy()) { 2581 Object* global = proxy->map()->prototype(); 2582 if (global->IsJSGlobalObject()) { 2583 objects_.Add(Handle<JSGlobalObject>(JSGlobalObject::cast(global))); 2584 } 2585 } 2586 } 2587 } 2588 } 2589 int count() { return objects_.length(); } 2590 Handle<JSGlobalObject>& at(int i) { return objects_[i]; } 2591 2592 private: 2593 List<Handle<JSGlobalObject> > objects_; 2594 }; 2595 2596 2597 // Modifies heap. Must not be run during heap traversal. 2598 void V8HeapExplorer::TagGlobalObjects() { 2599 HandleScope scope; 2600 Isolate* isolate = Isolate::Current(); 2601 GlobalObjectsEnumerator enumerator; 2602 isolate->global_handles()->IterateAllRoots(&enumerator); 2603 Handle<String> document_string = 2604 isolate->factory()->NewStringFromAscii(CStrVector("document")); 2605 Handle<String> url_string = 2606 isolate->factory()->NewStringFromAscii(CStrVector("URL")); 2607 const char** urls = NewArray<const char*>(enumerator.count()); 2608 for (int i = 0, l = enumerator.count(); i < l; ++i) { 2609 urls[i] = NULL; 2610 HandleScope scope; 2611 Handle<JSGlobalObject> global_obj = enumerator.at(i); 2612 Object* obj_document; 2613 if (global_obj->GetProperty(*document_string)->ToObject(&obj_document) && 2614 obj_document->IsJSObject()) { 2615 JSObject* document = JSObject::cast(obj_document); 2616 Object* obj_url; 2617 if (document->GetProperty(*url_string)->ToObject(&obj_url) && 2618 obj_url->IsString()) { 2619 urls[i] = collection_->names()->GetName(String::cast(obj_url)); 2620 } 2621 } 2622 } 2623 2624 AssertNoAllocation no_allocation; 2625 for (int i = 0, l = enumerator.count(); i < l; ++i) { 2626 objects_tags_.SetTag(*enumerator.at(i), urls[i]); 2627 } 2628 2629 DeleteArray(urls); 2630 } 2631 2632 2633 class GlobalHandlesExtractor : public ObjectVisitor { 2634 public: 2635 explicit GlobalHandlesExtractor(NativeObjectsExplorer* explorer) 2636 : explorer_(explorer) {} 2637 virtual ~GlobalHandlesExtractor() {} 2638 virtual void VisitPointers(Object** start, Object** end) { 2639 UNREACHABLE(); 2640 } 2641 virtual void VisitEmbedderReference(Object** p, uint16_t class_id) { 2642 explorer_->VisitSubtreeWrapper(p, class_id); 2643 } 2644 private: 2645 NativeObjectsExplorer* explorer_; 2646 }; 2647 2648 2649 class BasicHeapEntriesAllocator : public HeapEntriesAllocator { 2650 public: 2651 BasicHeapEntriesAllocator( 2652 HeapSnapshot* snapshot, 2653 HeapEntry::Type entries_type) 2654 : snapshot_(snapshot), 2655 collection_(snapshot_->collection()), 2656 entries_type_(entries_type) { 2657 } 2658 virtual HeapEntry* AllocateEntry( 2659 HeapThing ptr, int children_count, int retainers_count); 2660 private: 2661 HeapSnapshot* snapshot_; 2662 HeapSnapshotsCollection* collection_; 2663 HeapEntry::Type entries_type_; 2664 }; 2665 2666 2667 HeapEntry* BasicHeapEntriesAllocator::AllocateEntry( 2668 HeapThing ptr, int children_count, int retainers_count) { 2669 v8::RetainedObjectInfo* info = reinterpret_cast<v8::RetainedObjectInfo*>(ptr); 2670 intptr_t elements = info->GetElementCount(); 2671 intptr_t size = info->GetSizeInBytes(); 2672 return snapshot_->AddEntry( 2673 entries_type_, 2674 elements != -1 ? 2675 collection_->names()->GetFormatted( 2676 "%s / %" V8_PTR_PREFIX "d entries", 2677 info->GetLabel(), 2678 info->GetElementCount()) : 2679 collection_->names()->GetCopy(info->GetLabel()), 2680 HeapObjectsMap::GenerateId(info), 2681 size != -1 ? static_cast<int>(size) : 0, 2682 children_count, 2683 retainers_count); 2684 } 2685 2686 2687 NativeObjectsExplorer::NativeObjectsExplorer( 2688 HeapSnapshot* snapshot, SnapshottingProgressReportingInterface* progress) 2689 : snapshot_(snapshot), 2690 collection_(snapshot_->collection()), 2691 progress_(progress), 2692 embedder_queried_(false), 2693 objects_by_info_(RetainedInfosMatch), 2694 native_groups_(StringsMatch), 2695 filler_(NULL) { 2696 synthetic_entries_allocator_ = 2697 new BasicHeapEntriesAllocator(snapshot, HeapEntry::kSynthetic); 2698 native_entries_allocator_ = 2699 new BasicHeapEntriesAllocator(snapshot, HeapEntry::kNative); 2700 } 2701 2702 2703 NativeObjectsExplorer::~NativeObjectsExplorer() { 2704 for (HashMap::Entry* p = objects_by_info_.Start(); 2705 p != NULL; 2706 p = objects_by_info_.Next(p)) { 2707 v8::RetainedObjectInfo* info = 2708 reinterpret_cast<v8::RetainedObjectInfo*>(p->key); 2709 info->Dispose(); 2710 List<HeapObject*>* objects = 2711 reinterpret_cast<List<HeapObject*>* >(p->value); 2712 delete objects; 2713 } 2714 for (HashMap::Entry* p = native_groups_.Start(); 2715 p != NULL; 2716 p = native_groups_.Next(p)) { 2717 v8::RetainedObjectInfo* info = 2718 reinterpret_cast<v8::RetainedObjectInfo*>(p->value); 2719 info->Dispose(); 2720 } 2721 delete synthetic_entries_allocator_; 2722 delete native_entries_allocator_; 2723 } 2724 2725 2726 int NativeObjectsExplorer::EstimateObjectsCount() { 2727 FillRetainedObjects(); 2728 return objects_by_info_.occupancy(); 2729 } 2730 2731 2732 void NativeObjectsExplorer::FillRetainedObjects() { 2733 if (embedder_queried_) return; 2734 Isolate* isolate = Isolate::Current(); 2735 // Record objects that are joined into ObjectGroups. 2736 isolate->heap()->CallGlobalGCPrologueCallback(); 2737 List<ObjectGroup*>* groups = isolate->global_handles()->object_groups(); 2738 for (int i = 0; i < groups->length(); ++i) { 2739 ObjectGroup* group = groups->at(i); 2740 if (group->info_ == NULL) continue; 2741 List<HeapObject*>* list = GetListMaybeDisposeInfo(group->info_); 2742 for (size_t j = 0; j < group->length_; ++j) { 2743 HeapObject* obj = HeapObject::cast(*group->objects_[j]); 2744 list->Add(obj); 2745 in_groups_.Insert(obj); 2746 } 2747 group->info_ = NULL; // Acquire info object ownership. 2748 } 2749 isolate->global_handles()->RemoveObjectGroups(); 2750 isolate->heap()->CallGlobalGCEpilogueCallback(); 2751 // Record objects that are not in ObjectGroups, but have class ID. 2752 GlobalHandlesExtractor extractor(this); 2753 isolate->global_handles()->IterateAllRootsWithClassIds(&extractor); 2754 embedder_queried_ = true; 2755 } 2756 2757 void NativeObjectsExplorer::FillImplicitReferences() { 2758 Isolate* isolate = Isolate::Current(); 2759 List<ImplicitRefGroup*>* groups = 2760 isolate->global_handles()->implicit_ref_groups(); 2761 for (int i = 0; i < groups->length(); ++i) { 2762 ImplicitRefGroup* group = groups->at(i); 2763 HeapObject* parent = *group->parent_; 2764 HeapEntry* parent_entry = 2765 filler_->FindOrAddEntry(parent, native_entries_allocator_); 2766 ASSERT(parent_entry != NULL); 2767 Object*** children = group->children_; 2768 for (size_t j = 0; j < group->length_; ++j) { 2769 Object* child = *children[j]; 2770 HeapEntry* child_entry = 2771 filler_->FindOrAddEntry(child, native_entries_allocator_); 2772 filler_->SetNamedReference( 2773 HeapGraphEdge::kInternal, 2774 parent, parent_entry, 2775 "native", 2776 child, child_entry); 2777 } 2778 } 2779 } 2780 2781 List<HeapObject*>* NativeObjectsExplorer::GetListMaybeDisposeInfo( 2782 v8::RetainedObjectInfo* info) { 2783 HashMap::Entry* entry = 2784 objects_by_info_.Lookup(info, InfoHash(info), true); 2785 if (entry->value != NULL) { 2786 info->Dispose(); 2787 } else { 2788 entry->value = new List<HeapObject*>(4); 2789 } 2790 return reinterpret_cast<List<HeapObject*>* >(entry->value); 2791 } 2792 2793 2794 bool NativeObjectsExplorer::IterateAndExtractReferences( 2795 SnapshotFillerInterface* filler) { 2796 filler_ = filler; 2797 FillRetainedObjects(); 2798 FillImplicitReferences(); 2799 if (EstimateObjectsCount() > 0) { 2800 for (HashMap::Entry* p = objects_by_info_.Start(); 2801 p != NULL; 2802 p = objects_by_info_.Next(p)) { 2803 v8::RetainedObjectInfo* info = 2804 reinterpret_cast<v8::RetainedObjectInfo*>(p->key); 2805 SetNativeRootReference(info); 2806 List<HeapObject*>* objects = 2807 reinterpret_cast<List<HeapObject*>* >(p->value); 2808 for (int i = 0; i < objects->length(); ++i) { 2809 SetWrapperNativeReferences(objects->at(i), info); 2810 } 2811 } 2812 SetRootNativeRootsReference(); 2813 } 2814 filler_ = NULL; 2815 return true; 2816 } 2817 2818 2819 class NativeGroupRetainedObjectInfo : public v8::RetainedObjectInfo { 2820 public: 2821 explicit NativeGroupRetainedObjectInfo(const char* label) 2822 : disposed_(false), 2823 hash_(reinterpret_cast<intptr_t>(label)), 2824 label_(label) { 2825 } 2826 2827 virtual ~NativeGroupRetainedObjectInfo() {} 2828 virtual void Dispose() { 2829 CHECK(!disposed_); 2830 disposed_ = true; 2831 delete this; 2832 } 2833 virtual bool IsEquivalent(RetainedObjectInfo* other) { 2834 return hash_ == other->GetHash() && !strcmp(label_, other->GetLabel()); 2835 } 2836 virtual intptr_t GetHash() { return hash_; } 2837 virtual const char* GetLabel() { return label_; } 2838 2839 private: 2840 bool disposed_; 2841 intptr_t hash_; 2842 const char* label_; 2843 }; 2844 2845 2846 NativeGroupRetainedObjectInfo* NativeObjectsExplorer::FindOrAddGroupInfo( 2847 const char* label) { 2848 const char* label_copy = collection_->names()->GetCopy(label); 2849 uint32_t hash = HashSequentialString(label_copy, 2850 static_cast<int>(strlen(label_copy)), 2851 HEAP->HashSeed()); 2852 HashMap::Entry* entry = native_groups_.Lookup(const_cast<char*>(label_copy), 2853 hash, true); 2854 if (entry->value == NULL) 2855 entry->value = new NativeGroupRetainedObjectInfo(label); 2856 return static_cast<NativeGroupRetainedObjectInfo*>(entry->value); 2857 } 2858 2859 2860 void NativeObjectsExplorer::SetNativeRootReference( 2861 v8::RetainedObjectInfo* info) { 2862 HeapEntry* child_entry = 2863 filler_->FindOrAddEntry(info, native_entries_allocator_); 2864 ASSERT(child_entry != NULL); 2865 NativeGroupRetainedObjectInfo* group_info = 2866 FindOrAddGroupInfo(info->GetGroupLabel()); 2867 HeapEntry* group_entry = 2868 filler_->FindOrAddEntry(group_info, synthetic_entries_allocator_); 2869 filler_->SetNamedAutoIndexReference( 2870 HeapGraphEdge::kInternal, 2871 group_info, group_entry, 2872 info, child_entry); 2873 } 2874 2875 2876 void NativeObjectsExplorer::SetWrapperNativeReferences( 2877 HeapObject* wrapper, v8::RetainedObjectInfo* info) { 2878 HeapEntry* wrapper_entry = filler_->FindEntry(wrapper); 2879 ASSERT(wrapper_entry != NULL); 2880 HeapEntry* info_entry = 2881 filler_->FindOrAddEntry(info, native_entries_allocator_); 2882 ASSERT(info_entry != NULL); 2883 filler_->SetNamedReference(HeapGraphEdge::kInternal, 2884 wrapper, wrapper_entry, 2885 "native", 2886 info, info_entry); 2887 filler_->SetIndexedAutoIndexReference(HeapGraphEdge::kElement, 2888 info, info_entry, 2889 wrapper, wrapper_entry); 2890 } 2891 2892 2893 void NativeObjectsExplorer::SetRootNativeRootsReference() { 2894 for (HashMap::Entry* entry = native_groups_.Start(); 2895 entry; 2896 entry = native_groups_.Next(entry)) { 2897 NativeGroupRetainedObjectInfo* group_info = 2898 static_cast<NativeGroupRetainedObjectInfo*>(entry->value); 2899 HeapEntry* group_entry = 2900 filler_->FindOrAddEntry(group_info, native_entries_allocator_); 2901 ASSERT(group_entry != NULL); 2902 filler_->SetIndexedAutoIndexReference( 2903 HeapGraphEdge::kElement, 2904 V8HeapExplorer::kInternalRootObject, snapshot_->root(), 2905 group_info, group_entry); 2906 } 2907 } 2908 2909 2910 void NativeObjectsExplorer::VisitSubtreeWrapper(Object** p, uint16_t class_id) { 2911 if (in_groups_.Contains(*p)) return; 2912 Isolate* isolate = Isolate::Current(); 2913 v8::RetainedObjectInfo* info = 2914 isolate->heap_profiler()->ExecuteWrapperClassCallback(class_id, p); 2915 if (info == NULL) return; 2916 GetListMaybeDisposeInfo(info)->Add(HeapObject::cast(*p)); 2917 } 2918 2919 2920 class SnapshotCounter : public SnapshotFillerInterface { 2921 public: 2922 explicit SnapshotCounter(HeapEntriesMap* entries) : entries_(entries) { } 2923 HeapEntry* AddEntry(HeapThing ptr, HeapEntriesAllocator* allocator) { 2924 entries_->Pair(ptr, allocator, HeapEntriesMap::kHeapEntryPlaceholder); 2925 return HeapEntriesMap::kHeapEntryPlaceholder; 2926 } 2927 HeapEntry* FindEntry(HeapThing ptr) { 2928 return entries_->Map(ptr); 2929 } 2930 HeapEntry* FindOrAddEntry(HeapThing ptr, HeapEntriesAllocator* allocator) { 2931 HeapEntry* entry = FindEntry(ptr); 2932 return entry != NULL ? entry : AddEntry(ptr, allocator); 2933 } 2934 void SetIndexedReference(HeapGraphEdge::Type, 2935 HeapThing parent_ptr, 2936 HeapEntry*, 2937 int, 2938 HeapThing child_ptr, 2939 HeapEntry*) { 2940 entries_->CountReference(parent_ptr, child_ptr); 2941 } 2942 void SetIndexedAutoIndexReference(HeapGraphEdge::Type, 2943 HeapThing parent_ptr, 2944 HeapEntry*, 2945 HeapThing child_ptr, 2946 HeapEntry*) { 2947 entries_->CountReference(parent_ptr, child_ptr); 2948 } 2949 void SetNamedReference(HeapGraphEdge::Type, 2950 HeapThing parent_ptr, 2951 HeapEntry*, 2952 const char*, 2953 HeapThing child_ptr, 2954 HeapEntry*) { 2955 entries_->CountReference(parent_ptr, child_ptr); 2956 } 2957 void SetNamedAutoIndexReference(HeapGraphEdge::Type, 2958 HeapThing parent_ptr, 2959 HeapEntry*, 2960 HeapThing child_ptr, 2961 HeapEntry*) { 2962 entries_->CountReference(parent_ptr, child_ptr); 2963 } 2964 2965 private: 2966 HeapEntriesMap* entries_; 2967 }; 2968 2969 2970 class SnapshotFiller : public SnapshotFillerInterface { 2971 public: 2972 explicit SnapshotFiller(HeapSnapshot* snapshot, HeapEntriesMap* entries) 2973 : snapshot_(snapshot), 2974 collection_(snapshot->collection()), 2975 entries_(entries) { } 2976 HeapEntry* AddEntry(HeapThing ptr, HeapEntriesAllocator* allocator) { 2977 UNREACHABLE(); 2978 return NULL; 2979 } 2980 HeapEntry* FindEntry(HeapThing ptr) { 2981 return entries_->Map(ptr); 2982 } 2983 HeapEntry* FindOrAddEntry(HeapThing ptr, HeapEntriesAllocator* allocator) { 2984 HeapEntry* entry = FindEntry(ptr); 2985 return entry != NULL ? entry : AddEntry(ptr, allocator); 2986 } 2987 void SetIndexedReference(HeapGraphEdge::Type type, 2988 HeapThing parent_ptr, 2989 HeapEntry* parent_entry, 2990 int index, 2991 HeapThing child_ptr, 2992 HeapEntry* child_entry) { 2993 int child_index, retainer_index; 2994 entries_->CountReference( 2995 parent_ptr, child_ptr, &child_index, &retainer_index); 2996 parent_entry->SetIndexedReference( 2997 type, child_index, index, child_entry, retainer_index); 2998 } 2999 void SetIndexedAutoIndexReference(HeapGraphEdge::Type type, 3000 HeapThing parent_ptr, 3001 HeapEntry* parent_entry, 3002 HeapThing child_ptr, 3003 HeapEntry* child_entry) { 3004 int child_index, retainer_index; 3005 entries_->CountReference( 3006 parent_ptr, child_ptr, &child_index, &retainer_index); 3007 parent_entry->SetIndexedReference( 3008 type, child_index, child_index + 1, child_entry, retainer_index); 3009 } 3010 void SetNamedReference(HeapGraphEdge::Type type, 3011 HeapThing parent_ptr, 3012 HeapEntry* parent_entry, 3013 const char* reference_name, 3014 HeapThing child_ptr, 3015 HeapEntry* child_entry) { 3016 int child_index, retainer_index; 3017 entries_->CountReference( 3018 parent_ptr, child_ptr, &child_index, &retainer_index); 3019 parent_entry->SetNamedReference( 3020 type, child_index, reference_name, child_entry, retainer_index); 3021 } 3022 void SetNamedAutoIndexReference(HeapGraphEdge::Type type, 3023 HeapThing parent_ptr, 3024 HeapEntry* parent_entry, 3025 HeapThing child_ptr, 3026 HeapEntry* child_entry) { 3027 int child_index, retainer_index; 3028 entries_->CountReference( 3029 parent_ptr, child_ptr, &child_index, &retainer_index); 3030 parent_entry->SetNamedReference(type, 3031 child_index, 3032 collection_->names()->GetName(child_index + 1), 3033 child_entry, 3034 retainer_index); 3035 } 3036 3037 private: 3038 HeapSnapshot* snapshot_; 3039 HeapSnapshotsCollection* collection_; 3040 HeapEntriesMap* entries_; 3041 }; 3042 3043 3044 HeapSnapshotGenerator::HeapSnapshotGenerator(HeapSnapshot* snapshot, 3045 v8::ActivityControl* control) 3046 : snapshot_(snapshot), 3047 control_(control), 3048 v8_heap_explorer_(snapshot_, this), 3049 dom_explorer_(snapshot_, this) { 3050 } 3051 3052 3053 bool HeapSnapshotGenerator::GenerateSnapshot() { 3054 v8_heap_explorer_.TagGlobalObjects(); 3055 3056 // TODO(1562) Profiler assumes that any object that is in the heap after 3057 // full GC is reachable from the root when computing dominators. 3058 // This is not true for weakly reachable objects. 3059 // As a temporary solution we call GC twice. 3060 Isolate::Current()->heap()->CollectAllGarbage( 3061 Heap::kMakeHeapIterableMask, 3062 "HeapSnapshotGenerator::GenerateSnapshot"); 3063 Isolate::Current()->heap()->CollectAllGarbage( 3064 Heap::kMakeHeapIterableMask, 3065 "HeapSnapshotGenerator::GenerateSnapshot"); 3066 3067 #ifdef DEBUG 3068 Heap* debug_heap = Isolate::Current()->heap(); 3069 ASSERT(!debug_heap->old_data_space()->was_swept_conservatively()); 3070 ASSERT(!debug_heap->old_pointer_space()->was_swept_conservatively()); 3071 ASSERT(!debug_heap->code_space()->was_swept_conservatively()); 3072 ASSERT(!debug_heap->cell_space()->was_swept_conservatively()); 3073 ASSERT(!debug_heap->map_space()->was_swept_conservatively()); 3074 #endif 3075 3076 // The following code uses heap iterators, so we want the heap to be 3077 // stable. It should follow TagGlobalObjects as that can allocate. 3078 AssertNoAllocation no_alloc; 3079 3080 #ifdef DEBUG 3081 debug_heap->Verify(); 3082 #endif 3083 3084 SetProgressTotal(2); // 2 passes. 3085 3086 #ifdef DEBUG 3087 debug_heap->Verify(); 3088 #endif 3089 3090 // Pass 1. Iterate heap contents to count entries and references. 3091 if (!CountEntriesAndReferences()) return false; 3092 3093 #ifdef DEBUG 3094 debug_heap->Verify(); 3095 #endif 3096 3097 // Allocate memory for entries and references. 3098 snapshot_->AllocateEntries(entries_.entries_count(), 3099 entries_.total_children_count(), 3100 entries_.total_retainers_count()); 3101 3102 // Allocate heap objects to entries hash map. 3103 entries_.AllocateEntries(); 3104 3105 // Pass 2. Fill references. 3106 if (!FillReferences()) return false; 3107 3108 if (!SetEntriesDominators()) return false; 3109 if (!CalculateRetainedSizes()) return false; 3110 3111 progress_counter_ = progress_total_; 3112 if (!ProgressReport(true)) return false; 3113 return true; 3114 } 3115 3116 3117 void HeapSnapshotGenerator::ProgressStep() { 3118 ++progress_counter_; 3119 } 3120 3121 3122 bool HeapSnapshotGenerator::ProgressReport(bool force) { 3123 const int kProgressReportGranularity = 10000; 3124 if (control_ != NULL 3125 && (force || progress_counter_ % kProgressReportGranularity == 0)) { 3126 return 3127 control_->ReportProgressValue(progress_counter_, progress_total_) == 3128 v8::ActivityControl::kContinue; 3129 } 3130 return true; 3131 } 3132 3133 3134 void HeapSnapshotGenerator::SetProgressTotal(int iterations_count) { 3135 if (control_ == NULL) return; 3136 HeapIterator iterator(HeapIterator::kFilterUnreachable); 3137 progress_total_ = ( 3138 v8_heap_explorer_.EstimateObjectsCount(&iterator) + 3139 dom_explorer_.EstimateObjectsCount()) * iterations_count; 3140 progress_counter_ = 0; 3141 } 3142 3143 3144 bool HeapSnapshotGenerator::CountEntriesAndReferences() { 3145 SnapshotCounter counter(&entries_); 3146 v8_heap_explorer_.AddRootEntries(&counter); 3147 return v8_heap_explorer_.IterateAndExtractReferences(&counter) 3148 && dom_explorer_.IterateAndExtractReferences(&counter); 3149 } 3150 3151 3152 bool HeapSnapshotGenerator::FillReferences() { 3153 SnapshotFiller filler(snapshot_, &entries_); 3154 // IterateAndExtractReferences cannot set object names because 3155 // it makes call to JSObject::LocalLookupRealNamedProperty which 3156 // in turn may relocate objects in property maps thus changing the heap 3157 // layout and affecting retainer counts. This is not acceptable because 3158 // number of retainers must not change between count and fill passes. 3159 // To avoid this there's a separate postpass that set object names. 3160 return v8_heap_explorer_.IterateAndExtractReferences(&filler) 3161 && dom_explorer_.IterateAndExtractReferences(&filler) 3162 && v8_heap_explorer_.IterateAndSetObjectNames(&filler); 3163 } 3164 3165 3166 void HeapSnapshotGenerator::FillReversePostorderIndexes( 3167 Vector<HeapEntry*>* entries) { 3168 snapshot_->ClearPaint(); 3169 int current_entry = 0; 3170 List<HeapEntry*> nodes_to_visit; 3171 nodes_to_visit.Add(snapshot_->root()); 3172 snapshot_->root()->paint(); 3173 while (!nodes_to_visit.is_empty()) { 3174 HeapEntry* entry = nodes_to_visit.last(); 3175 Vector<HeapGraphEdge> children = entry->children(); 3176 bool has_new_edges = false; 3177 for (int i = 0; i < children.length(); ++i) { 3178 if (children[i].type() == HeapGraphEdge::kShortcut) continue; 3179 HeapEntry* child = children[i].to(); 3180 if (!child->painted()) { 3181 nodes_to_visit.Add(child); 3182 child->paint(); 3183 has_new_edges = true; 3184 } 3185 } 3186 if (!has_new_edges) { 3187 entry->set_ordered_index(current_entry); 3188 (*entries)[current_entry++] = entry; 3189 nodes_to_visit.RemoveLast(); 3190 } 3191 } 3192 ASSERT_EQ(current_entry, entries->length()); 3193 } 3194 3195 3196 static int Intersect(int i1, int i2, const Vector<int>& dominators) { 3197 int finger1 = i1, finger2 = i2; 3198 while (finger1 != finger2) { 3199 while (finger1 < finger2) finger1 = dominators[finger1]; 3200 while (finger2 < finger1) finger2 = dominators[finger2]; 3201 } 3202 return finger1; 3203 } 3204 3205 3206 // The algorithm is based on the article: 3207 // K. Cooper, T. Harvey and K. Kennedy "A Simple, Fast Dominance Algorithm" 3208 // Softw. Pract. Exper. 4 (2001), pp. 1-10. 3209 bool HeapSnapshotGenerator::BuildDominatorTree( 3210 const Vector<HeapEntry*>& entries, 3211 Vector<int>* dominators) { 3212 if (entries.length() == 0) return true; 3213 const int entries_length = entries.length(), root_index = entries_length - 1; 3214 static const int kNoDominator = -1; 3215 for (int i = 0; i < root_index; ++i) (*dominators)[i] = kNoDominator; 3216 (*dominators)[root_index] = root_index; 3217 3218 // The affected array is used to mark entries which dominators 3219 // have to be racalculated because of changes in their retainers. 3220 ScopedVector<bool> affected(entries_length); 3221 for (int i = 0; i < affected.length(); ++i) affected[i] = false; 3222 // Mark the root direct children as affected. 3223 Vector<HeapGraphEdge> children = entries[root_index]->children(); 3224 for (int i = 0; i < children.length(); ++i) { 3225 affected[children[i].to()->ordered_index()] = true; 3226 } 3227 3228 bool changed = true; 3229 while (changed) { 3230 changed = false; 3231 if (!ProgressReport(true)) return false; 3232 for (int i = root_index - 1; i >= 0; --i) { 3233 if (!affected[i]) continue; 3234 affected[i] = false; 3235 // If dominator of the entry has already been set to root, 3236 // then it can't propagate any further. 3237 if ((*dominators)[i] == root_index) continue; 3238 int new_idom_index = kNoDominator; 3239 Vector<HeapGraphEdge*> rets = entries[i]->retainers(); 3240 for (int j = 0; j < rets.length(); ++j) { 3241 if (rets[j]->type() == HeapGraphEdge::kShortcut) continue; 3242 int ret_index = rets[j]->From()->ordered_index(); 3243 if (dominators->at(ret_index) != kNoDominator) { 3244 new_idom_index = new_idom_index == kNoDominator 3245 ? ret_index 3246 : Intersect(ret_index, new_idom_index, *dominators); 3247 // If idom has already reached the root, it doesn't make sense 3248 // to check other retainers. 3249 if (new_idom_index == root_index) break; 3250 } 3251 } 3252 if (new_idom_index != kNoDominator 3253 && dominators->at(i) != new_idom_index) { 3254 (*dominators)[i] = new_idom_index; 3255 changed = true; 3256 Vector<HeapGraphEdge> children = entries[i]->children(); 3257 for (int j = 0; j < children.length(); ++j) { 3258 affected[children[j].to()->ordered_index()] = true; 3259 } 3260 } 3261 } 3262 } 3263 return true; 3264 } 3265 3266 3267 bool HeapSnapshotGenerator::SetEntriesDominators() { 3268 // This array is used for maintaining reverse postorder of nodes. 3269 ScopedVector<HeapEntry*> ordered_entries(snapshot_->entries()->length()); 3270 FillReversePostorderIndexes(&ordered_entries); 3271 ScopedVector<int> dominators(ordered_entries.length()); 3272 if (!BuildDominatorTree(ordered_entries, &dominators)) return false; 3273 for (int i = 0; i < ordered_entries.length(); ++i) { 3274 ASSERT(dominators[i] >= 0); 3275 ordered_entries[i]->set_dominator(ordered_entries[dominators[i]]); 3276 } 3277 return true; 3278 } 3279 3280 3281 bool HeapSnapshotGenerator::CalculateRetainedSizes() { 3282 // As for the dominators tree we only know parent nodes, not 3283 // children, to sum up total sizes we "bubble" node's self size 3284 // adding it to all of its parents. 3285 List<HeapEntry*>& entries = *snapshot_->entries(); 3286 for (int i = 0; i < entries.length(); ++i) { 3287 HeapEntry* entry = entries[i]; 3288 entry->set_retained_size(entry->self_size()); 3289 } 3290 for (int i = 0; i < entries.length(); ++i) { 3291 HeapEntry* entry = entries[i]; 3292 int entry_size = entry->self_size(); 3293 for (HeapEntry* dominator = entry->dominator(); 3294 dominator != entry; 3295 entry = dominator, dominator = entry->dominator()) { 3296 dominator->add_retained_size(entry_size); 3297 } 3298 } 3299 return true; 3300 } 3301 3302 3303 template<int bytes> struct MaxDecimalDigitsIn; 3304 template<> struct MaxDecimalDigitsIn<4> { 3305 static const int kSigned = 11; 3306 static const int kUnsigned = 10; 3307 }; 3308 template<> struct MaxDecimalDigitsIn<8> { 3309 static const int kSigned = 20; 3310 static const int kUnsigned = 20; 3311 }; 3312 3313 3314 class OutputStreamWriter { 3315 public: 3316 explicit OutputStreamWriter(v8::OutputStream* stream) 3317 : stream_(stream), 3318 chunk_size_(stream->GetChunkSize()), 3319 chunk_(chunk_size_), 3320 chunk_pos_(0), 3321 aborted_(false) { 3322 ASSERT(chunk_size_ > 0); 3323 } 3324 bool aborted() { return aborted_; } 3325 void AddCharacter(char c) { 3326 ASSERT(c != '\0'); 3327 ASSERT(chunk_pos_ < chunk_size_); 3328 chunk_[chunk_pos_++] = c; 3329 MaybeWriteChunk(); 3330 } 3331 void AddString(const char* s) { 3332 AddSubstring(s, StrLength(s)); 3333 } 3334 void AddSubstring(const char* s, int n) { 3335 if (n <= 0) return; 3336 ASSERT(static_cast<size_t>(n) <= strlen(s)); 3337 const char* s_end = s + n; 3338 while (s < s_end) { 3339 int s_chunk_size = Min( 3340 chunk_size_ - chunk_pos_, static_cast<int>(s_end - s)); 3341 ASSERT(s_chunk_size > 0); 3342 memcpy(chunk_.start() + chunk_pos_, s, s_chunk_size); 3343 s += s_chunk_size; 3344 chunk_pos_ += s_chunk_size; 3345 MaybeWriteChunk(); 3346 } 3347 } 3348 void AddNumber(int n) { AddNumberImpl<int>(n, "%d"); } 3349 void AddNumber(unsigned n) { AddNumberImpl<unsigned>(n, "%u"); } 3350 void AddNumber(uint64_t n) { AddNumberImpl<uint64_t>(n, "%llu"); } 3351 void Finalize() { 3352 if (aborted_) return; 3353 ASSERT(chunk_pos_ < chunk_size_); 3354 if (chunk_pos_ != 0) { 3355 WriteChunk(); 3356 } 3357 stream_->EndOfStream(); 3358 } 3359 3360 private: 3361 template<typename T> 3362 void AddNumberImpl(T n, const char* format) { 3363 // Buffer for the longest value plus trailing \0 3364 static const int kMaxNumberSize = 3365 MaxDecimalDigitsIn<sizeof(T)>::kUnsigned + 1; 3366 if (chunk_size_ - chunk_pos_ >= kMaxNumberSize) { 3367 int result = OS::SNPrintF( 3368 chunk_.SubVector(chunk_pos_, chunk_size_), format, n); 3369 ASSERT(result != -1); 3370 chunk_pos_ += result; 3371 MaybeWriteChunk(); 3372 } else { 3373 EmbeddedVector<char, kMaxNumberSize> buffer; 3374 int result = OS::SNPrintF(buffer, format, n); 3375 USE(result); 3376 ASSERT(result != -1); 3377 AddString(buffer.start()); 3378 } 3379 } 3380 void MaybeWriteChunk() { 3381 ASSERT(chunk_pos_ <= chunk_size_); 3382 if (chunk_pos_ == chunk_size_) { 3383 WriteChunk(); 3384 } 3385 } 3386 void WriteChunk() { 3387 if (aborted_) return; 3388 if (stream_->WriteAsciiChunk(chunk_.start(), chunk_pos_) == 3389 v8::OutputStream::kAbort) aborted_ = true; 3390 chunk_pos_ = 0; 3391 } 3392 3393 v8::OutputStream* stream_; 3394 int chunk_size_; 3395 ScopedVector<char> chunk_; 3396 int chunk_pos_; 3397 bool aborted_; 3398 }; 3399 3400 3401 void HeapSnapshotJSONSerializer::Serialize(v8::OutputStream* stream) { 3402 ASSERT(writer_ == NULL); 3403 writer_ = new OutputStreamWriter(stream); 3404 3405 HeapSnapshot* original_snapshot = NULL; 3406 if (snapshot_->raw_entries_size() >= 3407 SnapshotSizeConstants<kPointerSize>::kMaxSerializableSnapshotRawSize) { 3408 // The snapshot is too big. Serialize a fake snapshot. 3409 original_snapshot = snapshot_; 3410 snapshot_ = CreateFakeSnapshot(); 3411 } 3412 // Since nodes graph is cyclic, we need the first pass to enumerate 3413 // them. Strings can be serialized in one pass. 3414 EnumerateNodes(); 3415 SerializeImpl(); 3416 3417 delete writer_; 3418 writer_ = NULL; 3419 3420 if (original_snapshot != NULL) { 3421 delete snapshot_; 3422 snapshot_ = original_snapshot; 3423 } 3424 } 3425 3426 3427 HeapSnapshot* HeapSnapshotJSONSerializer::CreateFakeSnapshot() { 3428 HeapSnapshot* result = new HeapSnapshot(snapshot_->collection(), 3429 HeapSnapshot::kFull, 3430 snapshot_->title(), 3431 snapshot_->uid()); 3432 result->AllocateEntries(2, 1, 0); 3433 HeapEntry* root = result->AddRootEntry(1); 3434 const char* text = snapshot_->collection()->names()->GetFormatted( 3435 "The snapshot is too big. " 3436 "Maximum snapshot size is %" V8_PTR_PREFIX "u MB. " 3437 "Actual snapshot size is %" V8_PTR_PREFIX "u MB.", 3438 SnapshotSizeConstants<kPointerSize>::kMaxSerializableSnapshotRawSize / MB, 3439 (snapshot_->raw_entries_size() + MB - 1) / MB); 3440 HeapEntry* message = result->AddEntry( 3441 HeapEntry::kString, text, 0, 4, 0, 0); 3442 root->SetUnidirElementReference(0, 1, message); 3443 result->SetDominatorsToSelf(); 3444 return result; 3445 } 3446 3447 3448 void HeapSnapshotJSONSerializer::SerializeImpl() { 3449 writer_->AddCharacter('{'); 3450 writer_->AddString("\"snapshot\":{"); 3451 SerializeSnapshot(); 3452 if (writer_->aborted()) return; 3453 writer_->AddString("},\n"); 3454 writer_->AddString("\"nodes\":["); 3455 SerializeNodes(); 3456 if (writer_->aborted()) return; 3457 writer_->AddString("],\n"); 3458 writer_->AddString("\"strings\":["); 3459 SerializeStrings(); 3460 if (writer_->aborted()) return; 3461 writer_->AddCharacter(']'); 3462 writer_->AddCharacter('}'); 3463 writer_->Finalize(); 3464 } 3465 3466 3467 class HeapSnapshotJSONSerializerEnumerator { 3468 public: 3469 explicit HeapSnapshotJSONSerializerEnumerator(HeapSnapshotJSONSerializer* s) 3470 : s_(s) { 3471 } 3472 void Apply(HeapEntry** entry) { 3473 s_->GetNodeId(*entry); 3474 } 3475 private: 3476 HeapSnapshotJSONSerializer* s_; 3477 }; 3478 3479 void HeapSnapshotJSONSerializer::EnumerateNodes() { 3480 GetNodeId(snapshot_->root()); // Make sure root gets the first id. 3481 HeapSnapshotJSONSerializerEnumerator iter(this); 3482 snapshot_->IterateEntries(&iter); 3483 } 3484 3485 3486 int HeapSnapshotJSONSerializer::GetNodeId(HeapEntry* entry) { 3487 HashMap::Entry* cache_entry = nodes_.Lookup(entry, ObjectHash(entry), true); 3488 if (cache_entry->value == NULL) { 3489 cache_entry->value = reinterpret_cast<void*>(next_node_id_++); 3490 } 3491 return static_cast<int>(reinterpret_cast<intptr_t>(cache_entry->value)); 3492 } 3493 3494 3495 int HeapSnapshotJSONSerializer::GetStringId(const char* s) { 3496 HashMap::Entry* cache_entry = strings_.Lookup( 3497 const_cast<char*>(s), ObjectHash(s), true); 3498 if (cache_entry->value == NULL) { 3499 cache_entry->value = reinterpret_cast<void*>(next_string_id_++); 3500 } 3501 return static_cast<int>(reinterpret_cast<intptr_t>(cache_entry->value)); 3502 } 3503 3504 3505 void HeapSnapshotJSONSerializer::SerializeEdge(HeapGraphEdge* edge) { 3506 // The buffer needs space for 3 ints, 3 commas and \0 3507 static const int kBufferSize = 3508 MaxDecimalDigitsIn<sizeof(int)>::kSigned * 3 + 3 + 1; // NOLINT 3509 EmbeddedVector<char, kBufferSize> buffer; 3510 int edge_name_or_index = edge->type() == HeapGraphEdge::kElement 3511 || edge->type() == HeapGraphEdge::kHidden 3512 || edge->type() == HeapGraphEdge::kWeak 3513 ? edge->index() : GetStringId(edge->name()); 3514 STATIC_CHECK(sizeof(int) == sizeof(edge->type())); // NOLINT 3515 STATIC_CHECK(sizeof(int) == sizeof(edge_name_or_index)); // NOLINT 3516 STATIC_CHECK(sizeof(int) == sizeof(GetNodeId(edge->to()))); // NOLINT 3517 int result = OS::SNPrintF(buffer, ",%d,%d,%d", 3518 edge->type(), edge_name_or_index, GetNodeId(edge->to())); 3519 USE(result); 3520 ASSERT(result != -1); 3521 writer_->AddString(buffer.start()); 3522 } 3523 3524 3525 void HeapSnapshotJSONSerializer::SerializeNode(HeapEntry* entry) { 3526 // The buffer needs space for 6 ints, 1 uint32_t, 7 commas, \n and \0 3527 static const int kBufferSize = 3528 6 * MaxDecimalDigitsIn<sizeof(int)>::kSigned // NOLINT 3529 + MaxDecimalDigitsIn<sizeof(uint32_t)>::kUnsigned // NOLINT 3530 + 7 + 1 + 1; 3531 EmbeddedVector<char, kBufferSize> buffer; 3532 Vector<HeapGraphEdge> children = entry->children(); 3533 STATIC_CHECK(sizeof(int) == sizeof(entry->type())); // NOLINT 3534 STATIC_CHECK(sizeof(int) == sizeof(GetStringId(entry->name()))); // NOLINT 3535 STATIC_CHECK(sizeof(unsigned) == sizeof(entry->id())); // NOLINT 3536 STATIC_CHECK(sizeof(int) == sizeof(entry->self_size())); // NOLINT 3537 STATIC_CHECK(sizeof(int) == sizeof(entry->retained_size())); // NOLINT 3538 STATIC_CHECK(sizeof(int) == sizeof(GetNodeId(entry->dominator()))); // NOLINT 3539 STATIC_CHECK(sizeof(int) == sizeof(children.length())); // NOLINT 3540 int result = OS::SNPrintF(buffer, "\n,%d,%d,%u,%d,%d,%d,%d", 3541 entry->type(), 3542 GetStringId(entry->name()), 3543 entry->id(), 3544 entry->self_size(), 3545 entry->retained_size(), 3546 GetNodeId(entry->dominator()), 3547 children.length()); 3548 USE(result); 3549 ASSERT(result != -1); 3550 writer_->AddString(buffer.start()); 3551 for (int i = 0; i < children.length(); ++i) { 3552 SerializeEdge(&children[i]); 3553 if (writer_->aborted()) return; 3554 } 3555 } 3556 3557 3558 void HeapSnapshotJSONSerializer::SerializeNodes() { 3559 // The first (zero) item of nodes array is an object describing node 3560 // serialization layout. We use a set of macros to improve 3561 // readability. 3562 #define JSON_A(s) "["s"]" 3563 #define JSON_O(s) "{"s"}" 3564 #define JSON_S(s) "\""s"\"" 3565 writer_->AddString(JSON_O( 3566 JSON_S("fields") ":" JSON_A( 3567 JSON_S("type") 3568 "," JSON_S("name") 3569 "," JSON_S("id") 3570 "," JSON_S("self_size") 3571 "," JSON_S("retained_size") 3572 "," JSON_S("dominator") 3573 "," JSON_S("children_count") 3574 "," JSON_S("children")) 3575 "," JSON_S("types") ":" JSON_A( 3576 JSON_A( 3577 JSON_S("hidden") 3578 "," JSON_S("array") 3579 "," JSON_S("string") 3580 "," JSON_S("object") 3581 "," JSON_S("code") 3582 "," JSON_S("closure") 3583 "," JSON_S("regexp") 3584 "," JSON_S("number") 3585 "," JSON_S("native") 3586 "," JSON_S("synthetic")) 3587 "," JSON_S("string") 3588 "," JSON_S("number") 3589 "," JSON_S("number") 3590 "," JSON_S("number") 3591 "," JSON_S("number") 3592 "," JSON_S("number") 3593 "," JSON_O( 3594 JSON_S("fields") ":" JSON_A( 3595 JSON_S("type") 3596 "," JSON_S("name_or_index") 3597 "," JSON_S("to_node")) 3598 "," JSON_S("types") ":" JSON_A( 3599 JSON_A( 3600 JSON_S("context") 3601 "," JSON_S("element") 3602 "," JSON_S("property") 3603 "," JSON_S("internal") 3604 "," JSON_S("hidden") 3605 "," JSON_S("shortcut") 3606 "," JSON_S("weak")) 3607 "," JSON_S("string_or_number") 3608 "," JSON_S("node")))))); 3609 #undef JSON_S 3610 #undef JSON_O 3611 #undef JSON_A 3612 3613 const int node_fields_count = 7; 3614 // type,name,id,self_size,retained_size,dominator,children_count. 3615 const int edge_fields_count = 3; // type,name|index,to_node. 3616 List<HashMap::Entry*> sorted_nodes; 3617 SortHashMap(&nodes_, &sorted_nodes); 3618 // Rewrite node ids, so they refer to actual array positions. 3619 if (sorted_nodes.length() > 1) { 3620 // Nodes start from array index 1. 3621 int prev_value = 1; 3622 sorted_nodes[0]->value = reinterpret_cast<void*>(prev_value); 3623 for (int i = 1; i < sorted_nodes.length(); ++i) { 3624 HeapEntry* prev_heap_entry = 3625 reinterpret_cast<HeapEntry*>(sorted_nodes[i-1]->key); 3626 prev_value += node_fields_count + 3627 prev_heap_entry->children().length() * edge_fields_count; 3628 sorted_nodes[i]->value = reinterpret_cast<void*>(prev_value); 3629 } 3630 } 3631 for (int i = 0; i < sorted_nodes.length(); ++i) { 3632 SerializeNode(reinterpret_cast<HeapEntry*>(sorted_nodes[i]->key)); 3633 if (writer_->aborted()) return; 3634 } 3635 } 3636 3637 3638 void HeapSnapshotJSONSerializer::SerializeSnapshot() { 3639 writer_->AddString("\"title\":\""); 3640 writer_->AddString(snapshot_->title()); 3641 writer_->AddString("\""); 3642 writer_->AddString(",\"uid\":"); 3643 writer_->AddNumber(snapshot_->uid()); 3644 } 3645 3646 3647 static void WriteUChar(OutputStreamWriter* w, unibrow::uchar u) { 3648 static const char hex_chars[] = "0123456789ABCDEF"; 3649 w->AddString("\\u"); 3650 w->AddCharacter(hex_chars[(u >> 12) & 0xf]); 3651 w->AddCharacter(hex_chars[(u >> 8) & 0xf]); 3652 w->AddCharacter(hex_chars[(u >> 4) & 0xf]); 3653 w->AddCharacter(hex_chars[u & 0xf]); 3654 } 3655 3656 void HeapSnapshotJSONSerializer::SerializeString(const unsigned char* s) { 3657 writer_->AddCharacter('\n'); 3658 writer_->AddCharacter('\"'); 3659 for ( ; *s != '\0'; ++s) { 3660 switch (*s) { 3661 case '\b': 3662 writer_->AddString("\\b"); 3663 continue; 3664 case '\f': 3665 writer_->AddString("\\f"); 3666 continue; 3667 case '\n': 3668 writer_->AddString("\\n"); 3669 continue; 3670 case '\r': 3671 writer_->AddString("\\r"); 3672 continue; 3673 case '\t': 3674 writer_->AddString("\\t"); 3675 continue; 3676 case '\"': 3677 case '\\': 3678 writer_->AddCharacter('\\'); 3679 writer_->AddCharacter(*s); 3680 continue; 3681 default: 3682 if (*s > 31 && *s < 128) { 3683 writer_->AddCharacter(*s); 3684 } else if (*s <= 31) { 3685 // Special character with no dedicated literal. 3686 WriteUChar(writer_, *s); 3687 } else { 3688 // Convert UTF-8 into \u UTF-16 literal. 3689 unsigned length = 1, cursor = 0; 3690 for ( ; length <= 4 && *(s + length) != '\0'; ++length) { } 3691 unibrow::uchar c = unibrow::Utf8::CalculateValue(s, length, &cursor); 3692 if (c != unibrow::Utf8::kBadChar) { 3693 WriteUChar(writer_, c); 3694 ASSERT(cursor != 0); 3695 s += cursor - 1; 3696 } else { 3697 writer_->AddCharacter('?'); 3698 } 3699 } 3700 } 3701 } 3702 writer_->AddCharacter('\"'); 3703 } 3704 3705 3706 void HeapSnapshotJSONSerializer::SerializeStrings() { 3707 List<HashMap::Entry*> sorted_strings; 3708 SortHashMap(&strings_, &sorted_strings); 3709 writer_->AddString("\"<dummy>\""); 3710 for (int i = 0; i < sorted_strings.length(); ++i) { 3711 writer_->AddCharacter(','); 3712 SerializeString( 3713 reinterpret_cast<const unsigned char*>(sorted_strings[i]->key)); 3714 if (writer_->aborted()) return; 3715 } 3716 } 3717 3718 3719 template<typename T> 3720 inline static int SortUsingEntryValue(const T* x, const T* y) { 3721 uintptr_t x_uint = reinterpret_cast<uintptr_t>((*x)->value); 3722 uintptr_t y_uint = reinterpret_cast<uintptr_t>((*y)->value); 3723 if (x_uint > y_uint) { 3724 return 1; 3725 } else if (x_uint == y_uint) { 3726 return 0; 3727 } else { 3728 return -1; 3729 } 3730 } 3731 3732 3733 void HeapSnapshotJSONSerializer::SortHashMap( 3734 HashMap* map, List<HashMap::Entry*>* sorted_entries) { 3735 for (HashMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) 3736 sorted_entries->Add(p); 3737 sorted_entries->Sort(SortUsingEntryValue); 3738 } 3739 3740 } } // namespace v8::internal 3741