Home | History | Annotate | Download | only in IR
      1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the Value class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_IR_VALUE_H
     15 #define LLVM_IR_VALUE_H
     16 
     17 #include "llvm/IR/Use.h"
     18 #include "llvm/Support/Casting.h"
     19 #include "llvm/Support/CBindingWrapping.h"
     20 #include "llvm/Support/Compiler.h"
     21 #include "llvm-c/Core.h"
     22 
     23 namespace llvm {
     24 
     25 class Constant;
     26 class Argument;
     27 class Instruction;
     28 class BasicBlock;
     29 class GlobalValue;
     30 class Function;
     31 class GlobalVariable;
     32 class GlobalAlias;
     33 class InlineAsm;
     34 class ValueSymbolTable;
     35 template<typename ValueTy> class StringMapEntry;
     36 typedef StringMapEntry<Value*> ValueName;
     37 class raw_ostream;
     38 class AssemblyAnnotationWriter;
     39 class ValueHandleBase;
     40 class LLVMContext;
     41 class Twine;
     42 class MDNode;
     43 class Type;
     44 class StringRef;
     45 
     46 //===----------------------------------------------------------------------===//
     47 //                                 Value Class
     48 //===----------------------------------------------------------------------===//
     49 
     50 /// This is a very important LLVM class. It is the base class of all values
     51 /// computed by a program that may be used as operands to other values. Value is
     52 /// the super class of other important classes such as Instruction and Function.
     53 /// All Values have a Type. Type is not a subclass of Value. Some values can
     54 /// have a name and they belong to some Module.  Setting the name on the Value
     55 /// automatically updates the module's symbol table.
     56 ///
     57 /// Every value has a "use list" that keeps track of which other Values are
     58 /// using this Value.  A Value can also have an arbitrary number of ValueHandle
     59 /// objects that watch it and listen to RAUW and Destroy events.  See
     60 /// llvm/Support/ValueHandle.h for details.
     61 ///
     62 /// @brief LLVM Value Representation
     63 class Value {
     64   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
     65   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
     66 protected:
     67   /// SubclassOptionalData - This member is similar to SubclassData, however it
     68   /// is for holding information which may be used to aid optimization, but
     69   /// which may be cleared to zero without affecting conservative
     70   /// interpretation.
     71   unsigned char SubclassOptionalData : 7;
     72 
     73 private:
     74   /// SubclassData - This member is defined by this class, but is not used for
     75   /// anything.  Subclasses can use it to hold whatever state they find useful.
     76   /// This field is initialized to zero by the ctor.
     77   unsigned short SubclassData;
     78 
     79   Type *VTy;
     80   Use *UseList;
     81 
     82   friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
     83   friend class ValueHandleBase;
     84   ValueName *Name;
     85 
     86   void operator=(const Value &) LLVM_DELETED_FUNCTION;
     87   Value(const Value &) LLVM_DELETED_FUNCTION;
     88 
     89 protected:
     90   /// printCustom - Value subclasses can override this to implement custom
     91   /// printing behavior.
     92   virtual void printCustom(raw_ostream &O) const;
     93 
     94   Value(Type *Ty, unsigned scid);
     95 public:
     96   virtual ~Value();
     97 
     98   /// dump - Support for debugging, callable in GDB: V->dump()
     99   //
    100   void dump() const;
    101 
    102   /// print - Implement operator<< on Value.
    103   ///
    104   void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
    105 
    106   /// All values are typed, get the type of this value.
    107   ///
    108   Type *getType() const { return VTy; }
    109 
    110   /// All values hold a context through their type.
    111   LLVMContext &getContext() const;
    112 
    113   // All values can potentially be named.
    114   bool hasName() const { return Name != 0 && SubclassID != MDStringVal; }
    115   ValueName *getValueName() const { return Name; }
    116   void setValueName(ValueName *VN) { Name = VN; }
    117 
    118   /// getName() - Return a constant reference to the value's name. This is cheap
    119   /// and guaranteed to return the same reference as long as the value is not
    120   /// modified.
    121   StringRef getName() const;
    122 
    123   /// setName() - Change the name of the value, choosing a new unique name if
    124   /// the provided name is taken.
    125   ///
    126   /// \param Name The new name; or "" if the value's name should be removed.
    127   void setName(const Twine &Name);
    128 
    129 
    130   /// takeName - transfer the name from V to this value, setting V's name to
    131   /// empty.  It is an error to call V->takeName(V).
    132   void takeName(Value *V);
    133 
    134   /// replaceAllUsesWith - Go through the uses list for this definition and make
    135   /// each use point to "V" instead of "this".  After this completes, 'this's
    136   /// use list is guaranteed to be empty.
    137   ///
    138   void replaceAllUsesWith(Value *V);
    139 
    140   //----------------------------------------------------------------------
    141   // Methods for handling the chain of uses of this Value.
    142   //
    143   typedef value_use_iterator<User>       use_iterator;
    144   typedef value_use_iterator<const User> const_use_iterator;
    145 
    146   bool               use_empty() const { return UseList == 0; }
    147   use_iterator       use_begin()       { return use_iterator(UseList); }
    148   const_use_iterator use_begin() const { return const_use_iterator(UseList); }
    149   use_iterator       use_end()         { return use_iterator(0);   }
    150   const_use_iterator use_end()   const { return const_use_iterator(0);   }
    151   User              *use_back()        { return *use_begin(); }
    152   const User        *use_back()  const { return *use_begin(); }
    153 
    154   /// hasOneUse - Return true if there is exactly one user of this value.  This
    155   /// is specialized because it is a common request and does not require
    156   /// traversing the whole use list.
    157   ///
    158   bool hasOneUse() const {
    159     const_use_iterator I = use_begin(), E = use_end();
    160     if (I == E) return false;
    161     return ++I == E;
    162   }
    163 
    164   /// hasNUses - Return true if this Value has exactly N users.
    165   ///
    166   bool hasNUses(unsigned N) const;
    167 
    168   /// hasNUsesOrMore - Return true if this value has N users or more.  This is
    169   /// logically equivalent to getNumUses() >= N.
    170   ///
    171   bool hasNUsesOrMore(unsigned N) const;
    172 
    173   bool isUsedInBasicBlock(const BasicBlock *BB) const;
    174 
    175   /// getNumUses - This method computes the number of uses of this Value.  This
    176   /// is a linear time operation.  Use hasOneUse, hasNUses, or hasNUsesOrMore
    177   /// to check for specific values.
    178   unsigned getNumUses() const;
    179 
    180   /// addUse - This method should only be used by the Use class.
    181   ///
    182   void addUse(Use &U) { U.addToList(&UseList); }
    183 
    184   /// An enumeration for keeping track of the concrete subclass of Value that
    185   /// is actually instantiated. Values of this enumeration are kept in the
    186   /// Value classes SubclassID field. They are used for concrete type
    187   /// identification.
    188   enum ValueTy {
    189     ArgumentVal,              // This is an instance of Argument
    190     BasicBlockVal,            // This is an instance of BasicBlock
    191     FunctionVal,              // This is an instance of Function
    192     GlobalAliasVal,           // This is an instance of GlobalAlias
    193     GlobalVariableVal,        // This is an instance of GlobalVariable
    194     UndefValueVal,            // This is an instance of UndefValue
    195     BlockAddressVal,          // This is an instance of BlockAddress
    196     ConstantExprVal,          // This is an instance of ConstantExpr
    197     ConstantAggregateZeroVal, // This is an instance of ConstantAggregateZero
    198     ConstantDataArrayVal,     // This is an instance of ConstantDataArray
    199     ConstantDataVectorVal,    // This is an instance of ConstantDataVector
    200     ConstantIntVal,           // This is an instance of ConstantInt
    201     ConstantFPVal,            // This is an instance of ConstantFP
    202     ConstantArrayVal,         // This is an instance of ConstantArray
    203     ConstantStructVal,        // This is an instance of ConstantStruct
    204     ConstantVectorVal,        // This is an instance of ConstantVector
    205     ConstantPointerNullVal,   // This is an instance of ConstantPointerNull
    206     MDNodeVal,                // This is an instance of MDNode
    207     MDStringVal,              // This is an instance of MDString
    208     InlineAsmVal,             // This is an instance of InlineAsm
    209     PseudoSourceValueVal,     // This is an instance of PseudoSourceValue
    210     FixedStackPseudoSourceValueVal, // This is an instance of
    211                                     // FixedStackPseudoSourceValue
    212     InstructionVal,           // This is an instance of Instruction
    213     // Enum values starting at InstructionVal are used for Instructions;
    214     // don't add new values here!
    215 
    216     // Markers:
    217     ConstantFirstVal = FunctionVal,
    218     ConstantLastVal  = ConstantPointerNullVal
    219   };
    220 
    221   /// getValueID - Return an ID for the concrete type of this object.  This is
    222   /// used to implement the classof checks.  This should not be used for any
    223   /// other purpose, as the values may change as LLVM evolves.  Also, note that
    224   /// for instructions, the Instruction's opcode is added to InstructionVal. So
    225   /// this means three things:
    226   /// # there is no value with code InstructionVal (no opcode==0).
    227   /// # there are more possible values for the value type than in ValueTy enum.
    228   /// # the InstructionVal enumerator must be the highest valued enumerator in
    229   ///   the ValueTy enum.
    230   unsigned getValueID() const {
    231     return SubclassID;
    232   }
    233 
    234   /// getRawSubclassOptionalData - Return the raw optional flags value
    235   /// contained in this value. This should only be used when testing two
    236   /// Values for equivalence.
    237   unsigned getRawSubclassOptionalData() const {
    238     return SubclassOptionalData;
    239   }
    240 
    241   /// clearSubclassOptionalData - Clear the optional flags contained in
    242   /// this value.
    243   void clearSubclassOptionalData() {
    244     SubclassOptionalData = 0;
    245   }
    246 
    247   /// hasSameSubclassOptionalData - Test whether the optional flags contained
    248   /// in this value are equal to the optional flags in the given value.
    249   bool hasSameSubclassOptionalData(const Value *V) const {
    250     return SubclassOptionalData == V->SubclassOptionalData;
    251   }
    252 
    253   /// intersectOptionalDataWith - Clear any optional flags in this value
    254   /// that are not also set in the given value.
    255   void intersectOptionalDataWith(const Value *V) {
    256     SubclassOptionalData &= V->SubclassOptionalData;
    257   }
    258 
    259   /// hasValueHandle - Return true if there is a value handle associated with
    260   /// this value.
    261   bool hasValueHandle() const { return HasValueHandle; }
    262 
    263   /// \brief This method strips off any unneeded pointer casts,
    264   /// all-zero GEPs and aliases from the specified value, returning the original
    265   /// uncasted value. If this is called on a non-pointer value, it returns
    266   /// 'this'.
    267   Value *stripPointerCasts();
    268   const Value *stripPointerCasts() const {
    269     return const_cast<Value*>(this)->stripPointerCasts();
    270   }
    271 
    272   /// \brief This method strips off any unneeded pointer casts and
    273   /// all-zero GEPs from the specified value, returning the original
    274   /// uncasted value. If this is called on a non-pointer value, it returns
    275   /// 'this'.
    276   Value *stripPointerCastsNoFollowAliases();
    277   const Value *stripPointerCastsNoFollowAliases() const {
    278     return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
    279   }
    280 
    281   /// stripInBoundsConstantOffsets - This method strips off unneeded pointer casts and
    282   /// all-constant GEPs from the specified value, returning the original
    283   /// pointer value. If this is called on a non-pointer value, it returns
    284   /// 'this'.
    285   Value *stripInBoundsConstantOffsets();
    286   const Value *stripInBoundsConstantOffsets() const {
    287     return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
    288   }
    289 
    290   /// stripInBoundsOffsets - This method strips off unneeded pointer casts and
    291   /// any in-bounds Offsets from the specified value, returning the original
    292   /// pointer value. If this is called on a non-pointer value, it returns
    293   /// 'this'.
    294   Value *stripInBoundsOffsets();
    295   const Value *stripInBoundsOffsets() const {
    296     return const_cast<Value*>(this)->stripInBoundsOffsets();
    297   }
    298 
    299   /// isDereferenceablePointer - Test if this value is always a pointer to
    300   /// allocated and suitably aligned memory for a simple load or store.
    301   bool isDereferenceablePointer() const;
    302 
    303   /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
    304   /// return the value in the PHI node corresponding to PredBB.  If not, return
    305   /// ourself.  This is useful if you want to know the value something has in a
    306   /// predecessor block.
    307   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
    308 
    309   const Value *DoPHITranslation(const BasicBlock *CurBB,
    310                                 const BasicBlock *PredBB) const{
    311     return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
    312   }
    313 
    314   /// MaximumAlignment - This is the greatest alignment value supported by
    315   /// load, store, and alloca instructions, and global values.
    316   static const unsigned MaximumAlignment = 1u << 29;
    317 
    318   /// mutateType - Mutate the type of this Value to be of the specified type.
    319   /// Note that this is an extremely dangerous operation which can create
    320   /// completely invalid IR very easily.  It is strongly recommended that you
    321   /// recreate IR objects with the right types instead of mutating them in
    322   /// place.
    323   void mutateType(Type *Ty) {
    324     VTy = Ty;
    325   }
    326 
    327 protected:
    328   unsigned short getSubclassDataFromValue() const { return SubclassData; }
    329   void setValueSubclassData(unsigned short D) { SubclassData = D; }
    330 };
    331 
    332 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
    333   V.print(OS);
    334   return OS;
    335 }
    336 
    337 void Use::set(Value *V) {
    338   if (Val) removeFromList();
    339   Val = V;
    340   if (V) V->addUse(*this);
    341 }
    342 
    343 
    344 // isa - Provide some specializations of isa so that we don't have to include
    345 // the subtype header files to test to see if the value is a subclass...
    346 //
    347 template <> struct isa_impl<Constant, Value> {
    348   static inline bool doit(const Value &Val) {
    349     return Val.getValueID() >= Value::ConstantFirstVal &&
    350       Val.getValueID() <= Value::ConstantLastVal;
    351   }
    352 };
    353 
    354 template <> struct isa_impl<Argument, Value> {
    355   static inline bool doit (const Value &Val) {
    356     return Val.getValueID() == Value::ArgumentVal;
    357   }
    358 };
    359 
    360 template <> struct isa_impl<InlineAsm, Value> {
    361   static inline bool doit(const Value &Val) {
    362     return Val.getValueID() == Value::InlineAsmVal;
    363   }
    364 };
    365 
    366 template <> struct isa_impl<Instruction, Value> {
    367   static inline bool doit(const Value &Val) {
    368     return Val.getValueID() >= Value::InstructionVal;
    369   }
    370 };
    371 
    372 template <> struct isa_impl<BasicBlock, Value> {
    373   static inline bool doit(const Value &Val) {
    374     return Val.getValueID() == Value::BasicBlockVal;
    375   }
    376 };
    377 
    378 template <> struct isa_impl<Function, Value> {
    379   static inline bool doit(const Value &Val) {
    380     return Val.getValueID() == Value::FunctionVal;
    381   }
    382 };
    383 
    384 template <> struct isa_impl<GlobalVariable, Value> {
    385   static inline bool doit(const Value &Val) {
    386     return Val.getValueID() == Value::GlobalVariableVal;
    387   }
    388 };
    389 
    390 template <> struct isa_impl<GlobalAlias, Value> {
    391   static inline bool doit(const Value &Val) {
    392     return Val.getValueID() == Value::GlobalAliasVal;
    393   }
    394 };
    395 
    396 template <> struct isa_impl<GlobalValue, Value> {
    397   static inline bool doit(const Value &Val) {
    398     return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
    399       isa<GlobalAlias>(Val);
    400   }
    401 };
    402 
    403 template <> struct isa_impl<MDNode, Value> {
    404   static inline bool doit(const Value &Val) {
    405     return Val.getValueID() == Value::MDNodeVal;
    406   }
    407 };
    408 
    409 // Value* is only 4-byte aligned.
    410 template<>
    411 class PointerLikeTypeTraits<Value*> {
    412   typedef Value* PT;
    413 public:
    414   static inline void *getAsVoidPointer(PT P) { return P; }
    415   static inline PT getFromVoidPointer(void *P) {
    416     return static_cast<PT>(P);
    417   }
    418   enum { NumLowBitsAvailable = 2 };
    419 };
    420 
    421 // Create wrappers for C Binding types (see CBindingWrapping.h).
    422 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
    423 
    424 /* Specialized opaque value conversions.
    425  */
    426 inline Value **unwrap(LLVMValueRef *Vals) {
    427   return reinterpret_cast<Value**>(Vals);
    428 }
    429 
    430 template<typename T>
    431 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
    432 #ifdef DEBUG
    433   for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
    434     cast<T>(*I);
    435 #endif
    436   (void)Length;
    437   return reinterpret_cast<T**>(Vals);
    438 }
    439 
    440 inline LLVMValueRef *wrap(const Value **Vals) {
    441   return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
    442 }
    443 
    444 } // End llvm namespace
    445 
    446 #endif
    447