1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15 #define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGValue.h" 20 #include "EHScopeStack.h" 21 #include "CodeGenModule.h" 22 #include "clang/AST/CharUnits.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/Type.h" 26 #include "clang/Basic/ABI.h" 27 #include "clang/Basic/CapturedStmt.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Frontend/CodeGenOptions.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ValueHandle.h" 35 36 namespace llvm { 37 class BasicBlock; 38 class LLVMContext; 39 class MDNode; 40 class Module; 41 class SwitchInst; 42 class Twine; 43 class Value; 44 class CallSite; 45 } 46 47 namespace clang { 48 class ASTContext; 49 class BlockDecl; 50 class CXXDestructorDecl; 51 class CXXForRangeStmt; 52 class CXXTryStmt; 53 class Decl; 54 class LabelDecl; 55 class EnumConstantDecl; 56 class FunctionDecl; 57 class FunctionProtoType; 58 class LabelStmt; 59 class ObjCContainerDecl; 60 class ObjCInterfaceDecl; 61 class ObjCIvarDecl; 62 class ObjCMethodDecl; 63 class ObjCImplementationDecl; 64 class ObjCPropertyImplDecl; 65 class TargetInfo; 66 class TargetCodeGenInfo; 67 class VarDecl; 68 class ObjCForCollectionStmt; 69 class ObjCAtTryStmt; 70 class ObjCAtThrowStmt; 71 class ObjCAtSynchronizedStmt; 72 class ObjCAutoreleasePoolStmt; 73 74 namespace CodeGen { 75 class CodeGenTypes; 76 class CGFunctionInfo; 77 class CGRecordLayout; 78 class CGBlockInfo; 79 class CGCXXABI; 80 class BlockFlags; 81 class BlockFieldFlags; 82 83 /// The kind of evaluation to perform on values of a particular 84 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 85 /// CGExprAgg? 86 /// 87 /// TODO: should vectors maybe be split out into their own thing? 88 enum TypeEvaluationKind { 89 TEK_Scalar, 90 TEK_Complex, 91 TEK_Aggregate 92 }; 93 94 /// CodeGenFunction - This class organizes the per-function state that is used 95 /// while generating LLVM code. 96 class CodeGenFunction : public CodeGenTypeCache { 97 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 98 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 99 100 friend class CGCXXABI; 101 public: 102 /// A jump destination is an abstract label, branching to which may 103 /// require a jump out through normal cleanups. 104 struct JumpDest { 105 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 106 JumpDest(llvm::BasicBlock *Block, 107 EHScopeStack::stable_iterator Depth, 108 unsigned Index) 109 : Block(Block), ScopeDepth(Depth), Index(Index) {} 110 111 bool isValid() const { return Block != 0; } 112 llvm::BasicBlock *getBlock() const { return Block; } 113 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 114 unsigned getDestIndex() const { return Index; } 115 116 // This should be used cautiously. 117 void setScopeDepth(EHScopeStack::stable_iterator depth) { 118 ScopeDepth = depth; 119 } 120 121 private: 122 llvm::BasicBlock *Block; 123 EHScopeStack::stable_iterator ScopeDepth; 124 unsigned Index; 125 }; 126 127 CodeGenModule &CGM; // Per-module state. 128 const TargetInfo &Target; 129 130 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 131 CGBuilderTy Builder; 132 133 /// CurFuncDecl - Holds the Decl for the current outermost 134 /// non-closure context. 135 const Decl *CurFuncDecl; 136 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 137 const Decl *CurCodeDecl; 138 const CGFunctionInfo *CurFnInfo; 139 QualType FnRetTy; 140 llvm::Function *CurFn; 141 142 /// CurGD - The GlobalDecl for the current function being compiled. 143 GlobalDecl CurGD; 144 145 /// PrologueCleanupDepth - The cleanup depth enclosing all the 146 /// cleanups associated with the parameters. 147 EHScopeStack::stable_iterator PrologueCleanupDepth; 148 149 /// ReturnBlock - Unified return block. 150 JumpDest ReturnBlock; 151 152 /// ReturnValue - The temporary alloca to hold the return value. This is null 153 /// iff the function has no return value. 154 llvm::Value *ReturnValue; 155 156 /// AllocaInsertPoint - This is an instruction in the entry block before which 157 /// we prefer to insert allocas. 158 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 159 160 /// \brief API for captured statement code generation. 161 class CGCapturedStmtInfo { 162 public: 163 explicit CGCapturedStmtInfo(const CapturedStmt &S, 164 CapturedRegionKind K = CR_Default) 165 : Kind(K), ThisValue(0), CXXThisFieldDecl(0) { 166 167 RecordDecl::field_iterator Field = 168 S.getCapturedRecordDecl()->field_begin(); 169 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 170 E = S.capture_end(); 171 I != E; ++I, ++Field) { 172 if (I->capturesThis()) 173 CXXThisFieldDecl = *Field; 174 else 175 CaptureFields[I->getCapturedVar()] = *Field; 176 } 177 } 178 179 virtual ~CGCapturedStmtInfo(); 180 181 CapturedRegionKind getKind() const { return Kind; } 182 183 void setContextValue(llvm::Value *V) { ThisValue = V; } 184 // \brief Retrieve the value of the context parameter. 185 llvm::Value *getContextValue() const { return ThisValue; } 186 187 /// \brief Lookup the captured field decl for a variable. 188 const FieldDecl *lookup(const VarDecl *VD) const { 189 return CaptureFields.lookup(VD); 190 } 191 192 bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; } 193 FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 194 195 /// \brief Emit the captured statement body. 196 virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) { 197 CGF.EmitStmt(S); 198 } 199 200 /// \brief Get the name of the capture helper. 201 virtual StringRef getHelperName() const { return "__captured_stmt"; } 202 203 private: 204 /// \brief The kind of captured statement being generated. 205 CapturedRegionKind Kind; 206 207 /// \brief Keep the map between VarDecl and FieldDecl. 208 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 209 210 /// \brief The base address of the captured record, passed in as the first 211 /// argument of the parallel region function. 212 llvm::Value *ThisValue; 213 214 /// \brief Captured 'this' type. 215 FieldDecl *CXXThisFieldDecl; 216 }; 217 CGCapturedStmtInfo *CapturedStmtInfo; 218 219 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 220 /// potentially higher performance penalties. 221 unsigned char BoundsChecking; 222 223 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 224 /// calls to EmitTypeCheck can be skipped. 225 bool SanitizePerformTypeCheck; 226 227 /// \brief Sanitizer options to use for this function. 228 const SanitizerOptions *SanOpts; 229 230 /// In ARC, whether we should autorelease the return value. 231 bool AutoreleaseResult; 232 233 const CodeGen::CGBlockInfo *BlockInfo; 234 llvm::Value *BlockPointer; 235 236 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 237 FieldDecl *LambdaThisCaptureField; 238 239 /// \brief A mapping from NRVO variables to the flags used to indicate 240 /// when the NRVO has been applied to this variable. 241 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 242 243 EHScopeStack EHStack; 244 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 245 246 /// Header for data within LifetimeExtendedCleanupStack. 247 struct LifetimeExtendedCleanupHeader { 248 /// The size of the following cleanup object. 249 size_t Size : 29; 250 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 251 unsigned Kind : 3; 252 253 size_t getSize() const { return Size; } 254 CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); } 255 }; 256 257 /// i32s containing the indexes of the cleanup destinations. 258 llvm::AllocaInst *NormalCleanupDest; 259 260 unsigned NextCleanupDestIndex; 261 262 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 263 CGBlockInfo *FirstBlockInfo; 264 265 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 266 llvm::BasicBlock *EHResumeBlock; 267 268 /// The exception slot. All landing pads write the current exception pointer 269 /// into this alloca. 270 llvm::Value *ExceptionSlot; 271 272 /// The selector slot. Under the MandatoryCleanup model, all landing pads 273 /// write the current selector value into this alloca. 274 llvm::AllocaInst *EHSelectorSlot; 275 276 /// Emits a landing pad for the current EH stack. 277 llvm::BasicBlock *EmitLandingPad(); 278 279 llvm::BasicBlock *getInvokeDestImpl(); 280 281 template <class T> 282 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 283 return DominatingValue<T>::save(*this, value); 284 } 285 286 public: 287 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 288 /// rethrows. 289 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 290 291 /// A class controlling the emission of a finally block. 292 class FinallyInfo { 293 /// Where the catchall's edge through the cleanup should go. 294 JumpDest RethrowDest; 295 296 /// A function to call to enter the catch. 297 llvm::Constant *BeginCatchFn; 298 299 /// An i1 variable indicating whether or not the @finally is 300 /// running for an exception. 301 llvm::AllocaInst *ForEHVar; 302 303 /// An i8* variable into which the exception pointer to rethrow 304 /// has been saved. 305 llvm::AllocaInst *SavedExnVar; 306 307 public: 308 void enter(CodeGenFunction &CGF, const Stmt *Finally, 309 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 310 llvm::Constant *rethrowFn); 311 void exit(CodeGenFunction &CGF); 312 }; 313 314 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 315 /// current full-expression. Safe against the possibility that 316 /// we're currently inside a conditionally-evaluated expression. 317 template <class T, class A0> 318 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 319 // If we're not in a conditional branch, or if none of the 320 // arguments requires saving, then use the unconditional cleanup. 321 if (!isInConditionalBranch()) 322 return EHStack.pushCleanup<T>(kind, a0); 323 324 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 325 326 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 327 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 328 initFullExprCleanup(); 329 } 330 331 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 332 /// current full-expression. Safe against the possibility that 333 /// we're currently inside a conditionally-evaluated expression. 334 template <class T, class A0, class A1> 335 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 336 // If we're not in a conditional branch, or if none of the 337 // arguments requires saving, then use the unconditional cleanup. 338 if (!isInConditionalBranch()) 339 return EHStack.pushCleanup<T>(kind, a0, a1); 340 341 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 342 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 343 344 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 345 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 346 initFullExprCleanup(); 347 } 348 349 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 350 /// current full-expression. Safe against the possibility that 351 /// we're currently inside a conditionally-evaluated expression. 352 template <class T, class A0, class A1, class A2> 353 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 354 // If we're not in a conditional branch, or if none of the 355 // arguments requires saving, then use the unconditional cleanup. 356 if (!isInConditionalBranch()) { 357 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 358 } 359 360 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 361 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 362 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 363 364 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 365 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 366 initFullExprCleanup(); 367 } 368 369 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 370 /// current full-expression. Safe against the possibility that 371 /// we're currently inside a conditionally-evaluated expression. 372 template <class T, class A0, class A1, class A2, class A3> 373 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 374 // If we're not in a conditional branch, or if none of the 375 // arguments requires saving, then use the unconditional cleanup. 376 if (!isInConditionalBranch()) { 377 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 378 } 379 380 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 381 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 382 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 383 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 384 385 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 386 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 387 a2_saved, a3_saved); 388 initFullExprCleanup(); 389 } 390 391 /// \brief Queue a cleanup to be pushed after finishing the current 392 /// full-expression. 393 template <class T, class A0, class A1, class A2, class A3> 394 void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 395 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 396 397 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 398 399 size_t OldSize = LifetimeExtendedCleanupStack.size(); 400 LifetimeExtendedCleanupStack.resize( 401 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 402 403 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 404 new (Buffer) LifetimeExtendedCleanupHeader(Header); 405 new (Buffer + sizeof(Header)) T(a0, a1, a2, a3); 406 } 407 408 /// Set up the last cleaup that was pushed as a conditional 409 /// full-expression cleanup. 410 void initFullExprCleanup(); 411 412 /// PushDestructorCleanup - Push a cleanup to call the 413 /// complete-object destructor of an object of the given type at the 414 /// given address. Does nothing if T is not a C++ class type with a 415 /// non-trivial destructor. 416 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 417 418 /// PushDestructorCleanup - Push a cleanup to call the 419 /// complete-object variant of the given destructor on the object at 420 /// the given address. 421 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 422 llvm::Value *Addr); 423 424 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 425 /// process all branch fixups. 426 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 427 428 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 429 /// The block cannot be reactivated. Pops it if it's the top of the 430 /// stack. 431 /// 432 /// \param DominatingIP - An instruction which is known to 433 /// dominate the current IP (if set) and which lies along 434 /// all paths of execution between the current IP and the 435 /// the point at which the cleanup comes into scope. 436 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 437 llvm::Instruction *DominatingIP); 438 439 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 440 /// Cannot be used to resurrect a deactivated cleanup. 441 /// 442 /// \param DominatingIP - An instruction which is known to 443 /// dominate the current IP (if set) and which lies along 444 /// all paths of execution between the current IP and the 445 /// the point at which the cleanup comes into scope. 446 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 447 llvm::Instruction *DominatingIP); 448 449 /// \brief Enters a new scope for capturing cleanups, all of which 450 /// will be executed once the scope is exited. 451 class RunCleanupsScope { 452 EHScopeStack::stable_iterator CleanupStackDepth; 453 size_t LifetimeExtendedCleanupStackSize; 454 bool OldDidCallStackSave; 455 protected: 456 bool PerformCleanup; 457 private: 458 459 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 460 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 461 462 protected: 463 CodeGenFunction& CGF; 464 465 public: 466 /// \brief Enter a new cleanup scope. 467 explicit RunCleanupsScope(CodeGenFunction &CGF) 468 : PerformCleanup(true), CGF(CGF) 469 { 470 CleanupStackDepth = CGF.EHStack.stable_begin(); 471 LifetimeExtendedCleanupStackSize = 472 CGF.LifetimeExtendedCleanupStack.size(); 473 OldDidCallStackSave = CGF.DidCallStackSave; 474 CGF.DidCallStackSave = false; 475 } 476 477 /// \brief Exit this cleanup scope, emitting any accumulated 478 /// cleanups. 479 ~RunCleanupsScope() { 480 if (PerformCleanup) { 481 CGF.DidCallStackSave = OldDidCallStackSave; 482 CGF.PopCleanupBlocks(CleanupStackDepth, 483 LifetimeExtendedCleanupStackSize); 484 } 485 } 486 487 /// \brief Determine whether this scope requires any cleanups. 488 bool requiresCleanups() const { 489 return CGF.EHStack.stable_begin() != CleanupStackDepth; 490 } 491 492 /// \brief Force the emission of cleanups now, instead of waiting 493 /// until this object is destroyed. 494 void ForceCleanup() { 495 assert(PerformCleanup && "Already forced cleanup"); 496 CGF.DidCallStackSave = OldDidCallStackSave; 497 CGF.PopCleanupBlocks(CleanupStackDepth, 498 LifetimeExtendedCleanupStackSize); 499 PerformCleanup = false; 500 } 501 }; 502 503 class LexicalScope: protected RunCleanupsScope { 504 SourceRange Range; 505 SmallVector<const LabelDecl*, 4> Labels; 506 LexicalScope *ParentScope; 507 508 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 509 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 510 511 public: 512 /// \brief Enter a new cleanup scope. 513 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 514 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 515 CGF.CurLexicalScope = this; 516 if (CGDebugInfo *DI = CGF.getDebugInfo()) 517 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 518 } 519 520 void addLabel(const LabelDecl *label) { 521 assert(PerformCleanup && "adding label to dead scope?"); 522 Labels.push_back(label); 523 } 524 525 /// \brief Exit this cleanup scope, emitting any accumulated 526 /// cleanups. 527 ~LexicalScope() { 528 if (CGDebugInfo *DI = CGF.getDebugInfo()) 529 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 530 531 // If we should perform a cleanup, force them now. Note that 532 // this ends the cleanup scope before rescoping any labels. 533 if (PerformCleanup) ForceCleanup(); 534 } 535 536 /// \brief Force the emission of cleanups now, instead of waiting 537 /// until this object is destroyed. 538 void ForceCleanup() { 539 CGF.CurLexicalScope = ParentScope; 540 RunCleanupsScope::ForceCleanup(); 541 542 if (!Labels.empty()) 543 rescopeLabels(); 544 } 545 546 void rescopeLabels(); 547 }; 548 549 550 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 551 /// that have been added. 552 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 553 554 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 555 /// that have been added, then adds all lifetime-extended cleanups from 556 /// the given position to the stack. 557 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 558 size_t OldLifetimeExtendedStackSize); 559 560 void ResolveBranchFixups(llvm::BasicBlock *Target); 561 562 /// The given basic block lies in the current EH scope, but may be a 563 /// target of a potentially scope-crossing jump; get a stable handle 564 /// to which we can perform this jump later. 565 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 566 return JumpDest(Target, 567 EHStack.getInnermostNormalCleanup(), 568 NextCleanupDestIndex++); 569 } 570 571 /// The given basic block lies in the current EH scope, but may be a 572 /// target of a potentially scope-crossing jump; get a stable handle 573 /// to which we can perform this jump later. 574 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 575 return getJumpDestInCurrentScope(createBasicBlock(Name)); 576 } 577 578 /// EmitBranchThroughCleanup - Emit a branch from the current insert 579 /// block through the normal cleanup handling code (if any) and then 580 /// on to \arg Dest. 581 void EmitBranchThroughCleanup(JumpDest Dest); 582 583 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 584 /// specified destination obviously has no cleanups to run. 'false' is always 585 /// a conservatively correct answer for this method. 586 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 587 588 /// popCatchScope - Pops the catch scope at the top of the EHScope 589 /// stack, emitting any required code (other than the catch handlers 590 /// themselves). 591 void popCatchScope(); 592 593 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 594 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 595 596 /// An object to manage conditionally-evaluated expressions. 597 class ConditionalEvaluation { 598 llvm::BasicBlock *StartBB; 599 600 public: 601 ConditionalEvaluation(CodeGenFunction &CGF) 602 : StartBB(CGF.Builder.GetInsertBlock()) {} 603 604 void begin(CodeGenFunction &CGF) { 605 assert(CGF.OutermostConditional != this); 606 if (!CGF.OutermostConditional) 607 CGF.OutermostConditional = this; 608 } 609 610 void end(CodeGenFunction &CGF) { 611 assert(CGF.OutermostConditional != 0); 612 if (CGF.OutermostConditional == this) 613 CGF.OutermostConditional = 0; 614 } 615 616 /// Returns a block which will be executed prior to each 617 /// evaluation of the conditional code. 618 llvm::BasicBlock *getStartingBlock() const { 619 return StartBB; 620 } 621 }; 622 623 /// isInConditionalBranch - Return true if we're currently emitting 624 /// one branch or the other of a conditional expression. 625 bool isInConditionalBranch() const { return OutermostConditional != 0; } 626 627 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 628 assert(isInConditionalBranch()); 629 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 630 new llvm::StoreInst(value, addr, &block->back()); 631 } 632 633 /// An RAII object to record that we're evaluating a statement 634 /// expression. 635 class StmtExprEvaluation { 636 CodeGenFunction &CGF; 637 638 /// We have to save the outermost conditional: cleanups in a 639 /// statement expression aren't conditional just because the 640 /// StmtExpr is. 641 ConditionalEvaluation *SavedOutermostConditional; 642 643 public: 644 StmtExprEvaluation(CodeGenFunction &CGF) 645 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 646 CGF.OutermostConditional = 0; 647 } 648 649 ~StmtExprEvaluation() { 650 CGF.OutermostConditional = SavedOutermostConditional; 651 CGF.EnsureInsertPoint(); 652 } 653 }; 654 655 /// An object which temporarily prevents a value from being 656 /// destroyed by aggressive peephole optimizations that assume that 657 /// all uses of a value have been realized in the IR. 658 class PeepholeProtection { 659 llvm::Instruction *Inst; 660 friend class CodeGenFunction; 661 662 public: 663 PeepholeProtection() : Inst(0) {} 664 }; 665 666 /// A non-RAII class containing all the information about a bound 667 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 668 /// this which makes individual mappings very simple; using this 669 /// class directly is useful when you have a variable number of 670 /// opaque values or don't want the RAII functionality for some 671 /// reason. 672 class OpaqueValueMappingData { 673 const OpaqueValueExpr *OpaqueValue; 674 bool BoundLValue; 675 CodeGenFunction::PeepholeProtection Protection; 676 677 OpaqueValueMappingData(const OpaqueValueExpr *ov, 678 bool boundLValue) 679 : OpaqueValue(ov), BoundLValue(boundLValue) {} 680 public: 681 OpaqueValueMappingData() : OpaqueValue(0) {} 682 683 static bool shouldBindAsLValue(const Expr *expr) { 684 // gl-values should be bound as l-values for obvious reasons. 685 // Records should be bound as l-values because IR generation 686 // always keeps them in memory. Expressions of function type 687 // act exactly like l-values but are formally required to be 688 // r-values in C. 689 return expr->isGLValue() || 690 expr->getType()->isRecordType() || 691 expr->getType()->isFunctionType(); 692 } 693 694 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 695 const OpaqueValueExpr *ov, 696 const Expr *e) { 697 if (shouldBindAsLValue(ov)) 698 return bind(CGF, ov, CGF.EmitLValue(e)); 699 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 700 } 701 702 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 703 const OpaqueValueExpr *ov, 704 const LValue &lv) { 705 assert(shouldBindAsLValue(ov)); 706 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 707 return OpaqueValueMappingData(ov, true); 708 } 709 710 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 711 const OpaqueValueExpr *ov, 712 const RValue &rv) { 713 assert(!shouldBindAsLValue(ov)); 714 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 715 716 OpaqueValueMappingData data(ov, false); 717 718 // Work around an extremely aggressive peephole optimization in 719 // EmitScalarConversion which assumes that all other uses of a 720 // value are extant. 721 data.Protection = CGF.protectFromPeepholes(rv); 722 723 return data; 724 } 725 726 bool isValid() const { return OpaqueValue != 0; } 727 void clear() { OpaqueValue = 0; } 728 729 void unbind(CodeGenFunction &CGF) { 730 assert(OpaqueValue && "no data to unbind!"); 731 732 if (BoundLValue) { 733 CGF.OpaqueLValues.erase(OpaqueValue); 734 } else { 735 CGF.OpaqueRValues.erase(OpaqueValue); 736 CGF.unprotectFromPeepholes(Protection); 737 } 738 } 739 }; 740 741 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 742 class OpaqueValueMapping { 743 CodeGenFunction &CGF; 744 OpaqueValueMappingData Data; 745 746 public: 747 static bool shouldBindAsLValue(const Expr *expr) { 748 return OpaqueValueMappingData::shouldBindAsLValue(expr); 749 } 750 751 /// Build the opaque value mapping for the given conditional 752 /// operator if it's the GNU ?: extension. This is a common 753 /// enough pattern that the convenience operator is really 754 /// helpful. 755 /// 756 OpaqueValueMapping(CodeGenFunction &CGF, 757 const AbstractConditionalOperator *op) : CGF(CGF) { 758 if (isa<ConditionalOperator>(op)) 759 // Leave Data empty. 760 return; 761 762 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 763 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 764 e->getCommon()); 765 } 766 767 OpaqueValueMapping(CodeGenFunction &CGF, 768 const OpaqueValueExpr *opaqueValue, 769 LValue lvalue) 770 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 771 } 772 773 OpaqueValueMapping(CodeGenFunction &CGF, 774 const OpaqueValueExpr *opaqueValue, 775 RValue rvalue) 776 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 777 } 778 779 void pop() { 780 Data.unbind(CGF); 781 Data.clear(); 782 } 783 784 ~OpaqueValueMapping() { 785 if (Data.isValid()) Data.unbind(CGF); 786 } 787 }; 788 789 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 790 /// number that holds the value. 791 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 792 793 /// BuildBlockByrefAddress - Computes address location of the 794 /// variable which is declared as __block. 795 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 796 const VarDecl *V); 797 private: 798 CGDebugInfo *DebugInfo; 799 bool DisableDebugInfo; 800 801 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 802 /// calling llvm.stacksave for multiple VLAs in the same scope. 803 bool DidCallStackSave; 804 805 /// IndirectBranch - The first time an indirect goto is seen we create a block 806 /// with an indirect branch. Every time we see the address of a label taken, 807 /// we add the label to the indirect goto. Every subsequent indirect goto is 808 /// codegen'd as a jump to the IndirectBranch's basic block. 809 llvm::IndirectBrInst *IndirectBranch; 810 811 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 812 /// decls. 813 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 814 DeclMapTy LocalDeclMap; 815 816 /// LabelMap - This keeps track of the LLVM basic block for each C label. 817 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 818 819 // BreakContinueStack - This keeps track of where break and continue 820 // statements should jump to. 821 struct BreakContinue { 822 BreakContinue(JumpDest Break, JumpDest Continue) 823 : BreakBlock(Break), ContinueBlock(Continue) {} 824 825 JumpDest BreakBlock; 826 JumpDest ContinueBlock; 827 }; 828 SmallVector<BreakContinue, 8> BreakContinueStack; 829 830 /// SwitchInsn - This is nearest current switch instruction. It is null if 831 /// current context is not in a switch. 832 llvm::SwitchInst *SwitchInsn; 833 834 /// CaseRangeBlock - This block holds if condition check for last case 835 /// statement range in current switch instruction. 836 llvm::BasicBlock *CaseRangeBlock; 837 838 /// OpaqueLValues - Keeps track of the current set of opaque value 839 /// expressions. 840 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 841 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 842 843 // VLASizeMap - This keeps track of the associated size for each VLA type. 844 // We track this by the size expression rather than the type itself because 845 // in certain situations, like a const qualifier applied to an VLA typedef, 846 // multiple VLA types can share the same size expression. 847 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 848 // enter/leave scopes. 849 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 850 851 /// A block containing a single 'unreachable' instruction. Created 852 /// lazily by getUnreachableBlock(). 853 llvm::BasicBlock *UnreachableBlock; 854 855 /// Counts of the number return expressions in the function. 856 unsigned NumReturnExprs; 857 858 /// Count the number of simple (constant) return expressions in the function. 859 unsigned NumSimpleReturnExprs; 860 861 /// The last regular (non-return) debug location (breakpoint) in the function. 862 SourceLocation LastStopPoint; 863 864 public: 865 /// A scope within which we are constructing the fields of an object which 866 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 867 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 868 class FieldConstructionScope { 869 public: 870 FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This) 871 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 872 CGF.CXXDefaultInitExprThis = This; 873 } 874 ~FieldConstructionScope() { 875 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 876 } 877 878 private: 879 CodeGenFunction &CGF; 880 llvm::Value *OldCXXDefaultInitExprThis; 881 }; 882 883 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 884 /// is overridden to be the object under construction. 885 class CXXDefaultInitExprScope { 886 public: 887 CXXDefaultInitExprScope(CodeGenFunction &CGF) 888 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) { 889 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis; 890 } 891 ~CXXDefaultInitExprScope() { 892 CGF.CXXThisValue = OldCXXThisValue; 893 } 894 895 public: 896 CodeGenFunction &CGF; 897 llvm::Value *OldCXXThisValue; 898 }; 899 900 private: 901 /// CXXThisDecl - When generating code for a C++ member function, 902 /// this will hold the implicit 'this' declaration. 903 ImplicitParamDecl *CXXABIThisDecl; 904 llvm::Value *CXXABIThisValue; 905 llvm::Value *CXXThisValue; 906 907 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 908 /// this expression. 909 llvm::Value *CXXDefaultInitExprThis; 910 911 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 912 /// destructor, this will hold the implicit argument (e.g. VTT). 913 ImplicitParamDecl *CXXStructorImplicitParamDecl; 914 llvm::Value *CXXStructorImplicitParamValue; 915 916 /// OutermostConditional - Points to the outermost active 917 /// conditional control. This is used so that we know if a 918 /// temporary should be destroyed conditionally. 919 ConditionalEvaluation *OutermostConditional; 920 921 /// The current lexical scope. 922 LexicalScope *CurLexicalScope; 923 924 /// The current source location that should be used for exception 925 /// handling code. 926 SourceLocation CurEHLocation; 927 928 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 929 /// type as well as the field number that contains the actual data. 930 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 931 unsigned> > ByRefValueInfo; 932 933 llvm::BasicBlock *TerminateLandingPad; 934 llvm::BasicBlock *TerminateHandler; 935 llvm::BasicBlock *TrapBB; 936 937 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 938 /// In the kernel metadata node, reference the kernel function and metadata 939 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 940 /// - A node for the vec_type_hint(<type>) qualifier contains string 941 /// "vec_type_hint", an undefined value of the <type> data type, 942 /// and a Boolean that is true if the <type> is integer and signed. 943 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 944 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 945 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 946 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 947 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 948 llvm::Function *Fn); 949 950 public: 951 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 952 ~CodeGenFunction(); 953 954 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 955 ASTContext &getContext() const { return CGM.getContext(); } 956 /// Returns true if DebugInfo is actually initialized. 957 bool maybeInitializeDebugInfo() { 958 if (CGM.getModuleDebugInfo()) { 959 DebugInfo = CGM.getModuleDebugInfo(); 960 return true; 961 } 962 return false; 963 } 964 CGDebugInfo *getDebugInfo() { 965 if (DisableDebugInfo) 966 return NULL; 967 return DebugInfo; 968 } 969 void disableDebugInfo() { DisableDebugInfo = true; } 970 void enableDebugInfo() { DisableDebugInfo = false; } 971 972 bool shouldUseFusedARCCalls() { 973 return CGM.getCodeGenOpts().OptimizationLevel == 0; 974 } 975 976 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 977 978 /// Returns a pointer to the function's exception object and selector slot, 979 /// which is assigned in every landing pad. 980 llvm::Value *getExceptionSlot(); 981 llvm::Value *getEHSelectorSlot(); 982 983 /// Returns the contents of the function's exception object and selector 984 /// slots. 985 llvm::Value *getExceptionFromSlot(); 986 llvm::Value *getSelectorFromSlot(); 987 988 llvm::Value *getNormalCleanupDestSlot(); 989 990 llvm::BasicBlock *getUnreachableBlock() { 991 if (!UnreachableBlock) { 992 UnreachableBlock = createBasicBlock("unreachable"); 993 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 994 } 995 return UnreachableBlock; 996 } 997 998 llvm::BasicBlock *getInvokeDest() { 999 if (!EHStack.requiresLandingPad()) return 0; 1000 return getInvokeDestImpl(); 1001 } 1002 1003 const TargetInfo &getTarget() const { return Target; } 1004 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1005 1006 //===--------------------------------------------------------------------===// 1007 // Cleanups 1008 //===--------------------------------------------------------------------===// 1009 1010 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1011 1012 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1013 llvm::Value *arrayEndPointer, 1014 QualType elementType, 1015 Destroyer *destroyer); 1016 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1017 llvm::Value *arrayEnd, 1018 QualType elementType, 1019 Destroyer *destroyer); 1020 1021 void pushDestroy(QualType::DestructionKind dtorKind, 1022 llvm::Value *addr, QualType type); 1023 void pushEHDestroy(QualType::DestructionKind dtorKind, 1024 llvm::Value *addr, QualType type); 1025 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1026 Destroyer *destroyer, bool useEHCleanupForArray); 1027 void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr, 1028 QualType type, Destroyer *destroyer, 1029 bool useEHCleanupForArray); 1030 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1031 bool useEHCleanupForArray); 1032 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1033 QualType type, 1034 Destroyer *destroyer, 1035 bool useEHCleanupForArray); 1036 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1037 QualType type, Destroyer *destroyer, 1038 bool checkZeroLength, bool useEHCleanup); 1039 1040 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1041 1042 /// Determines whether an EH cleanup is required to destroy a type 1043 /// with the given destruction kind. 1044 bool needsEHCleanup(QualType::DestructionKind kind) { 1045 switch (kind) { 1046 case QualType::DK_none: 1047 return false; 1048 case QualType::DK_cxx_destructor: 1049 case QualType::DK_objc_weak_lifetime: 1050 return getLangOpts().Exceptions; 1051 case QualType::DK_objc_strong_lifetime: 1052 return getLangOpts().Exceptions && 1053 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1054 } 1055 llvm_unreachable("bad destruction kind"); 1056 } 1057 1058 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1059 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1060 } 1061 1062 //===--------------------------------------------------------------------===// 1063 // Objective-C 1064 //===--------------------------------------------------------------------===// 1065 1066 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1067 1068 void StartObjCMethod(const ObjCMethodDecl *MD, 1069 const ObjCContainerDecl *CD, 1070 SourceLocation StartLoc); 1071 1072 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1073 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1074 const ObjCPropertyImplDecl *PID); 1075 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1076 const ObjCPropertyImplDecl *propImpl, 1077 const ObjCMethodDecl *GetterMothodDecl, 1078 llvm::Constant *AtomicHelperFn); 1079 1080 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1081 ObjCMethodDecl *MD, bool ctor); 1082 1083 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1084 /// for the given property. 1085 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1086 const ObjCPropertyImplDecl *PID); 1087 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1088 const ObjCPropertyImplDecl *propImpl, 1089 llvm::Constant *AtomicHelperFn); 1090 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1091 bool IvarTypeWithAggrGCObjects(QualType Ty); 1092 1093 //===--------------------------------------------------------------------===// 1094 // Block Bits 1095 //===--------------------------------------------------------------------===// 1096 1097 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1098 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1099 static void destroyBlockInfos(CGBlockInfo *info); 1100 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1101 const CGBlockInfo &Info, 1102 llvm::StructType *, 1103 llvm::Constant *BlockVarLayout); 1104 1105 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1106 const CGBlockInfo &Info, 1107 const DeclMapTy &ldm, 1108 bool IsLambdaConversionToBlock); 1109 1110 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1111 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1112 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1113 const ObjCPropertyImplDecl *PID); 1114 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1115 const ObjCPropertyImplDecl *PID); 1116 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1117 1118 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1119 1120 class AutoVarEmission; 1121 1122 void emitByrefStructureInit(const AutoVarEmission &emission); 1123 void enterByrefCleanup(const AutoVarEmission &emission); 1124 1125 llvm::Value *LoadBlockStruct() { 1126 assert(BlockPointer && "no block pointer set!"); 1127 return BlockPointer; 1128 } 1129 1130 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1131 void AllocateBlockDecl(const DeclRefExpr *E); 1132 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1133 llvm::Type *BuildByRefType(const VarDecl *var); 1134 1135 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1136 const CGFunctionInfo &FnInfo); 1137 void StartFunction(GlobalDecl GD, 1138 QualType RetTy, 1139 llvm::Function *Fn, 1140 const CGFunctionInfo &FnInfo, 1141 const FunctionArgList &Args, 1142 SourceLocation StartLoc); 1143 1144 void EmitConstructorBody(FunctionArgList &Args); 1145 void EmitDestructorBody(FunctionArgList &Args); 1146 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1147 void EmitFunctionBody(FunctionArgList &Args); 1148 1149 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1150 CallArgList &CallArgs); 1151 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1152 void EmitLambdaBlockInvokeBody(); 1153 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1154 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1155 1156 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1157 /// emission when possible. 1158 void EmitReturnBlock(); 1159 1160 /// FinishFunction - Complete IR generation of the current function. It is 1161 /// legal to call this function even if there is no current insertion point. 1162 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1163 1164 /// GenerateThunk - Generate a thunk for the given method. 1165 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1166 GlobalDecl GD, const ThunkInfo &Thunk); 1167 1168 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1169 GlobalDecl GD, const ThunkInfo &Thunk); 1170 1171 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1172 FunctionArgList &Args); 1173 1174 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1175 ArrayRef<VarDecl *> ArrayIndexes); 1176 1177 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1178 /// subobject. 1179 /// 1180 void InitializeVTablePointer(BaseSubobject Base, 1181 const CXXRecordDecl *NearestVBase, 1182 CharUnits OffsetFromNearestVBase, 1183 llvm::Constant *VTable, 1184 const CXXRecordDecl *VTableClass); 1185 1186 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1187 void InitializeVTablePointers(BaseSubobject Base, 1188 const CXXRecordDecl *NearestVBase, 1189 CharUnits OffsetFromNearestVBase, 1190 bool BaseIsNonVirtualPrimaryBase, 1191 llvm::Constant *VTable, 1192 const CXXRecordDecl *VTableClass, 1193 VisitedVirtualBasesSetTy& VBases); 1194 1195 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1196 1197 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1198 /// to by This. 1199 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1200 1201 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1202 /// given phase of destruction for a destructor. The end result 1203 /// should call destructors on members and base classes in reverse 1204 /// order of their construction. 1205 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1206 1207 /// ShouldInstrumentFunction - Return true if the current function should be 1208 /// instrumented with __cyg_profile_func_* calls 1209 bool ShouldInstrumentFunction(); 1210 1211 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1212 /// instrumentation function with the current function and the call site, if 1213 /// function instrumentation is enabled. 1214 void EmitFunctionInstrumentation(const char *Fn); 1215 1216 /// EmitMCountInstrumentation - Emit call to .mcount. 1217 void EmitMCountInstrumentation(); 1218 1219 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1220 /// arguments for the given function. This is also responsible for naming the 1221 /// LLVM function arguments. 1222 void EmitFunctionProlog(const CGFunctionInfo &FI, 1223 llvm::Function *Fn, 1224 const FunctionArgList &Args); 1225 1226 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1227 /// given temporary. 1228 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc); 1229 1230 /// EmitStartEHSpec - Emit the start of the exception spec. 1231 void EmitStartEHSpec(const Decl *D); 1232 1233 /// EmitEndEHSpec - Emit the end of the exception spec. 1234 void EmitEndEHSpec(const Decl *D); 1235 1236 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1237 llvm::BasicBlock *getTerminateLandingPad(); 1238 1239 /// getTerminateHandler - Return a handler (not a landing pad, just 1240 /// a catch handler) that just calls terminate. This is used when 1241 /// a terminate scope encloses a try. 1242 llvm::BasicBlock *getTerminateHandler(); 1243 1244 llvm::Type *ConvertTypeForMem(QualType T); 1245 llvm::Type *ConvertType(QualType T); 1246 llvm::Type *ConvertType(const TypeDecl *T) { 1247 return ConvertType(getContext().getTypeDeclType(T)); 1248 } 1249 1250 /// LoadObjCSelf - Load the value of self. This function is only valid while 1251 /// generating code for an Objective-C method. 1252 llvm::Value *LoadObjCSelf(); 1253 1254 /// TypeOfSelfObject - Return type of object that this self represents. 1255 QualType TypeOfSelfObject(); 1256 1257 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1258 /// an aggregate LLVM type or is void. 1259 static TypeEvaluationKind getEvaluationKind(QualType T); 1260 1261 static bool hasScalarEvaluationKind(QualType T) { 1262 return getEvaluationKind(T) == TEK_Scalar; 1263 } 1264 1265 static bool hasAggregateEvaluationKind(QualType T) { 1266 return getEvaluationKind(T) == TEK_Aggregate; 1267 } 1268 1269 /// createBasicBlock - Create an LLVM basic block. 1270 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1271 llvm::Function *parent = 0, 1272 llvm::BasicBlock *before = 0) { 1273 #ifdef NDEBUG 1274 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1275 #else 1276 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1277 #endif 1278 } 1279 1280 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1281 /// label maps to. 1282 JumpDest getJumpDestForLabel(const LabelDecl *S); 1283 1284 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1285 /// another basic block, simplify it. This assumes that no other code could 1286 /// potentially reference the basic block. 1287 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1288 1289 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1290 /// adding a fall-through branch from the current insert block if 1291 /// necessary. It is legal to call this function even if there is no current 1292 /// insertion point. 1293 /// 1294 /// IsFinished - If true, indicates that the caller has finished emitting 1295 /// branches to the given block and does not expect to emit code into it. This 1296 /// means the block can be ignored if it is unreachable. 1297 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1298 1299 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1300 /// near its uses, and leave the insertion point in it. 1301 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1302 1303 /// EmitBranch - Emit a branch to the specified basic block from the current 1304 /// insert block, taking care to avoid creation of branches from dummy 1305 /// blocks. It is legal to call this function even if there is no current 1306 /// insertion point. 1307 /// 1308 /// This function clears the current insertion point. The caller should follow 1309 /// calls to this function with calls to Emit*Block prior to generation new 1310 /// code. 1311 void EmitBranch(llvm::BasicBlock *Block); 1312 1313 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1314 /// indicates that the current code being emitted is unreachable. 1315 bool HaveInsertPoint() const { 1316 return Builder.GetInsertBlock() != 0; 1317 } 1318 1319 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1320 /// emitted IR has a place to go. Note that by definition, if this function 1321 /// creates a block then that block is unreachable; callers may do better to 1322 /// detect when no insertion point is defined and simply skip IR generation. 1323 void EnsureInsertPoint() { 1324 if (!HaveInsertPoint()) 1325 EmitBlock(createBasicBlock()); 1326 } 1327 1328 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1329 /// specified stmt yet. 1330 void ErrorUnsupported(const Stmt *S, const char *Type, 1331 bool OmitOnError=false); 1332 1333 //===--------------------------------------------------------------------===// 1334 // Helpers 1335 //===--------------------------------------------------------------------===// 1336 1337 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1338 CharUnits Alignment = CharUnits()) { 1339 return LValue::MakeAddr(V, T, Alignment, getContext(), 1340 CGM.getTBAAInfo(T)); 1341 } 1342 1343 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1344 CharUnits Alignment; 1345 if (!T->isIncompleteType()) 1346 Alignment = getContext().getTypeAlignInChars(T); 1347 return LValue::MakeAddr(V, T, Alignment, getContext(), 1348 CGM.getTBAAInfo(T)); 1349 } 1350 1351 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1352 /// block. The caller is responsible for setting an appropriate alignment on 1353 /// the alloca. 1354 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1355 const Twine &Name = "tmp"); 1356 1357 /// InitTempAlloca - Provide an initial value for the given alloca. 1358 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1359 1360 /// CreateIRTemp - Create a temporary IR object of the given type, with 1361 /// appropriate alignment. This routine should only be used when an temporary 1362 /// value needs to be stored into an alloca (for example, to avoid explicit 1363 /// PHI construction), but the type is the IR type, not the type appropriate 1364 /// for storing in memory. 1365 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1366 1367 /// CreateMemTemp - Create a temporary memory object of the given type, with 1368 /// appropriate alignment. 1369 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1370 1371 /// CreateAggTemp - Create a temporary memory object for the given 1372 /// aggregate type. 1373 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1374 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1375 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1376 T.getQualifiers(), 1377 AggValueSlot::IsNotDestructed, 1378 AggValueSlot::DoesNotNeedGCBarriers, 1379 AggValueSlot::IsNotAliased); 1380 } 1381 1382 /// Emit a cast to void* in the appropriate address space. 1383 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1384 1385 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1386 /// expression and compare the result against zero, returning an Int1Ty value. 1387 llvm::Value *EvaluateExprAsBool(const Expr *E); 1388 1389 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1390 void EmitIgnoredExpr(const Expr *E); 1391 1392 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1393 /// any type. The result is returned as an RValue struct. If this is an 1394 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1395 /// the result should be returned. 1396 /// 1397 /// \param ignoreResult True if the resulting value isn't used. 1398 RValue EmitAnyExpr(const Expr *E, 1399 AggValueSlot aggSlot = AggValueSlot::ignored(), 1400 bool ignoreResult = false); 1401 1402 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1403 // or the value of the expression, depending on how va_list is defined. 1404 llvm::Value *EmitVAListRef(const Expr *E); 1405 1406 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1407 /// always be accessible even if no aggregate location is provided. 1408 RValue EmitAnyExprToTemp(const Expr *E); 1409 1410 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1411 /// arbitrary expression into the given memory location. 1412 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1413 Qualifiers Quals, bool IsInitializer); 1414 1415 /// EmitExprAsInit - Emits the code necessary to initialize a 1416 /// location in memory with the given initializer. 1417 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1418 LValue lvalue, bool capturedByInit); 1419 1420 /// hasVolatileMember - returns true if aggregate type has a volatile 1421 /// member. 1422 bool hasVolatileMember(QualType T) { 1423 if (const RecordType *RT = T->getAs<RecordType>()) { 1424 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1425 return RD->hasVolatileMember(); 1426 } 1427 return false; 1428 } 1429 /// EmitAggregateCopy - Emit an aggregate assignment. 1430 /// 1431 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1432 /// This is required for correctness when assigning non-POD structures in C++. 1433 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1434 QualType EltTy) { 1435 bool IsVolatile = hasVolatileMember(EltTy); 1436 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1437 true); 1438 } 1439 1440 /// EmitAggregateCopy - Emit an aggregate copy. 1441 /// 1442 /// \param isVolatile - True iff either the source or the destination is 1443 /// volatile. 1444 /// \param isAssignment - If false, allow padding to be copied. This often 1445 /// yields more efficient. 1446 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1447 QualType EltTy, bool isVolatile=false, 1448 CharUnits Alignment = CharUnits::Zero(), 1449 bool isAssignment = false); 1450 1451 /// StartBlock - Start new block named N. If insert block is a dummy block 1452 /// then reuse it. 1453 void StartBlock(const char *N); 1454 1455 /// GetAddrOfLocalVar - Return the address of a local variable. 1456 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1457 llvm::Value *Res = LocalDeclMap[VD]; 1458 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1459 return Res; 1460 } 1461 1462 /// getOpaqueLValueMapping - Given an opaque value expression (which 1463 /// must be mapped to an l-value), return its mapping. 1464 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1465 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1466 1467 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1468 it = OpaqueLValues.find(e); 1469 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1470 return it->second; 1471 } 1472 1473 /// getOpaqueRValueMapping - Given an opaque value expression (which 1474 /// must be mapped to an r-value), return its mapping. 1475 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1476 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1477 1478 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1479 it = OpaqueRValues.find(e); 1480 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1481 return it->second; 1482 } 1483 1484 /// getAccessedFieldNo - Given an encoded value and a result number, return 1485 /// the input field number being accessed. 1486 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1487 1488 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1489 llvm::BasicBlock *GetIndirectGotoBlock(); 1490 1491 /// EmitNullInitialization - Generate code to set a value of the given type to 1492 /// null, If the type contains data member pointers, they will be initialized 1493 /// to -1 in accordance with the Itanium C++ ABI. 1494 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1495 1496 // EmitVAArg - Generate code to get an argument from the passed in pointer 1497 // and update it accordingly. The return value is a pointer to the argument. 1498 // FIXME: We should be able to get rid of this method and use the va_arg 1499 // instruction in LLVM instead once it works well enough. 1500 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1501 1502 /// emitArrayLength - Compute the length of an array, even if it's a 1503 /// VLA, and drill down to the base element type. 1504 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1505 QualType &baseType, 1506 llvm::Value *&addr); 1507 1508 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1509 /// the given variably-modified type and store them in the VLASizeMap. 1510 /// 1511 /// This function can be called with a null (unreachable) insert point. 1512 void EmitVariablyModifiedType(QualType Ty); 1513 1514 /// getVLASize - Returns an LLVM value that corresponds to the size, 1515 /// in non-variably-sized elements, of a variable length array type, 1516 /// plus that largest non-variably-sized element type. Assumes that 1517 /// the type has already been emitted with EmitVariablyModifiedType. 1518 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1519 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1520 1521 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1522 /// generating code for an C++ member function. 1523 llvm::Value *LoadCXXThis() { 1524 assert(CXXThisValue && "no 'this' value for this function"); 1525 return CXXThisValue; 1526 } 1527 1528 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1529 /// virtual bases. 1530 // FIXME: Every place that calls LoadCXXVTT is something 1531 // that needs to be abstracted properly. 1532 llvm::Value *LoadCXXVTT() { 1533 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1534 return CXXStructorImplicitParamValue; 1535 } 1536 1537 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1538 /// for a constructor/destructor. 1539 llvm::Value *LoadCXXStructorImplicitParam() { 1540 assert(CXXStructorImplicitParamValue && 1541 "no implicit argument value for this function"); 1542 return CXXStructorImplicitParamValue; 1543 } 1544 1545 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1546 /// complete class to the given direct base. 1547 llvm::Value * 1548 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1549 const CXXRecordDecl *Derived, 1550 const CXXRecordDecl *Base, 1551 bool BaseIsVirtual); 1552 1553 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1554 /// load of 'this' and returns address of the base class. 1555 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1556 const CXXRecordDecl *Derived, 1557 CastExpr::path_const_iterator PathBegin, 1558 CastExpr::path_const_iterator PathEnd, 1559 bool NullCheckValue); 1560 1561 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1562 const CXXRecordDecl *Derived, 1563 CastExpr::path_const_iterator PathBegin, 1564 CastExpr::path_const_iterator PathEnd, 1565 bool NullCheckValue); 1566 1567 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1568 /// base constructor/destructor with virtual bases. 1569 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1570 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1571 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1572 bool Delegating); 1573 1574 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1575 CXXCtorType CtorType, 1576 const FunctionArgList &Args); 1577 // It's important not to confuse this and the previous function. Delegating 1578 // constructors are the C++0x feature. The constructor delegate optimization 1579 // is used to reduce duplication in the base and complete consturctors where 1580 // they are substantially the same. 1581 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1582 const FunctionArgList &Args); 1583 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1584 bool ForVirtualBase, bool Delegating, 1585 llvm::Value *This, 1586 CallExpr::const_arg_iterator ArgBeg, 1587 CallExpr::const_arg_iterator ArgEnd); 1588 1589 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1590 llvm::Value *This, llvm::Value *Src, 1591 CallExpr::const_arg_iterator ArgBeg, 1592 CallExpr::const_arg_iterator ArgEnd); 1593 1594 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1595 const ConstantArrayType *ArrayTy, 1596 llvm::Value *ArrayPtr, 1597 CallExpr::const_arg_iterator ArgBeg, 1598 CallExpr::const_arg_iterator ArgEnd, 1599 bool ZeroInitialization = false); 1600 1601 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1602 llvm::Value *NumElements, 1603 llvm::Value *ArrayPtr, 1604 CallExpr::const_arg_iterator ArgBeg, 1605 CallExpr::const_arg_iterator ArgEnd, 1606 bool ZeroInitialization = false); 1607 1608 static Destroyer destroyCXXObject; 1609 1610 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1611 bool ForVirtualBase, bool Delegating, 1612 llvm::Value *This); 1613 1614 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1615 llvm::Value *NewPtr, llvm::Value *NumElements); 1616 1617 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1618 llvm::Value *Ptr); 1619 1620 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1621 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1622 1623 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1624 QualType DeleteTy); 1625 1626 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1627 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1628 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1629 1630 /// \brief Situations in which we might emit a check for the suitability of a 1631 /// pointer or glvalue. 1632 enum TypeCheckKind { 1633 /// Checking the operand of a load. Must be suitably sized and aligned. 1634 TCK_Load, 1635 /// Checking the destination of a store. Must be suitably sized and aligned. 1636 TCK_Store, 1637 /// Checking the bound value in a reference binding. Must be suitably sized 1638 /// and aligned, but is not required to refer to an object (until the 1639 /// reference is used), per core issue 453. 1640 TCK_ReferenceBinding, 1641 /// Checking the object expression in a non-static data member access. Must 1642 /// be an object within its lifetime. 1643 TCK_MemberAccess, 1644 /// Checking the 'this' pointer for a call to a non-static member function. 1645 /// Must be an object within its lifetime. 1646 TCK_MemberCall, 1647 /// Checking the 'this' pointer for a constructor call. 1648 TCK_ConstructorCall, 1649 /// Checking the operand of a static_cast to a derived pointer type. Must be 1650 /// null or an object within its lifetime. 1651 TCK_DowncastPointer, 1652 /// Checking the operand of a static_cast to a derived reference type. Must 1653 /// be an object within its lifetime. 1654 TCK_DowncastReference 1655 }; 1656 1657 /// \brief Emit a check that \p V is the address of storage of the 1658 /// appropriate size and alignment for an object of type \p Type. 1659 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1660 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1661 1662 /// \brief Emit a check that \p Base points into an array object, which 1663 /// we can access at index \p Index. \p Accessed should be \c false if we 1664 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1665 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1666 QualType IndexType, bool Accessed); 1667 1668 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1669 bool isInc, bool isPre); 1670 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1671 bool isInc, bool isPre); 1672 //===--------------------------------------------------------------------===// 1673 // Declaration Emission 1674 //===--------------------------------------------------------------------===// 1675 1676 /// EmitDecl - Emit a declaration. 1677 /// 1678 /// This function can be called with a null (unreachable) insert point. 1679 void EmitDecl(const Decl &D); 1680 1681 /// EmitVarDecl - Emit a local variable declaration. 1682 /// 1683 /// This function can be called with a null (unreachable) insert point. 1684 void EmitVarDecl(const VarDecl &D); 1685 1686 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1687 LValue lvalue, bool capturedByInit); 1688 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1689 1690 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1691 llvm::Value *Address); 1692 1693 /// EmitAutoVarDecl - Emit an auto variable declaration. 1694 /// 1695 /// This function can be called with a null (unreachable) insert point. 1696 void EmitAutoVarDecl(const VarDecl &D); 1697 1698 class AutoVarEmission { 1699 friend class CodeGenFunction; 1700 1701 const VarDecl *Variable; 1702 1703 /// The alignment of the variable. 1704 CharUnits Alignment; 1705 1706 /// The address of the alloca. Null if the variable was emitted 1707 /// as a global constant. 1708 llvm::Value *Address; 1709 1710 llvm::Value *NRVOFlag; 1711 1712 /// True if the variable is a __block variable. 1713 bool IsByRef; 1714 1715 /// True if the variable is of aggregate type and has a constant 1716 /// initializer. 1717 bool IsConstantAggregate; 1718 1719 /// Non-null if we should use lifetime annotations. 1720 llvm::Value *SizeForLifetimeMarkers; 1721 1722 struct Invalid {}; 1723 AutoVarEmission(Invalid) : Variable(0) {} 1724 1725 AutoVarEmission(const VarDecl &variable) 1726 : Variable(&variable), Address(0), NRVOFlag(0), 1727 IsByRef(false), IsConstantAggregate(false), 1728 SizeForLifetimeMarkers(0) {} 1729 1730 bool wasEmittedAsGlobal() const { return Address == 0; } 1731 1732 public: 1733 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1734 1735 bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; } 1736 llvm::Value *getSizeForLifetimeMarkers() const { 1737 assert(useLifetimeMarkers()); 1738 return SizeForLifetimeMarkers; 1739 } 1740 1741 /// Returns the raw, allocated address, which is not necessarily 1742 /// the address of the object itself. 1743 llvm::Value *getAllocatedAddress() const { 1744 return Address; 1745 } 1746 1747 /// Returns the address of the object within this declaration. 1748 /// Note that this does not chase the forwarding pointer for 1749 /// __block decls. 1750 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1751 if (!IsByRef) return Address; 1752 1753 return CGF.Builder.CreateStructGEP(Address, 1754 CGF.getByRefValueLLVMField(Variable), 1755 Variable->getNameAsString()); 1756 } 1757 }; 1758 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1759 void EmitAutoVarInit(const AutoVarEmission &emission); 1760 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1761 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1762 QualType::DestructionKind dtorKind); 1763 1764 void EmitStaticVarDecl(const VarDecl &D, 1765 llvm::GlobalValue::LinkageTypes Linkage); 1766 1767 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1768 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1769 1770 /// protectFromPeepholes - Protect a value that we're intending to 1771 /// store to the side, but which will probably be used later, from 1772 /// aggressive peepholing optimizations that might delete it. 1773 /// 1774 /// Pass the result to unprotectFromPeepholes to declare that 1775 /// protection is no longer required. 1776 /// 1777 /// There's no particular reason why this shouldn't apply to 1778 /// l-values, it's just that no existing peepholes work on pointers. 1779 PeepholeProtection protectFromPeepholes(RValue rvalue); 1780 void unprotectFromPeepholes(PeepholeProtection protection); 1781 1782 //===--------------------------------------------------------------------===// 1783 // Statement Emission 1784 //===--------------------------------------------------------------------===// 1785 1786 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1787 void EmitStopPoint(const Stmt *S); 1788 1789 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1790 /// this function even if there is no current insertion point. 1791 /// 1792 /// This function may clear the current insertion point; callers should use 1793 /// EnsureInsertPoint if they wish to subsequently generate code without first 1794 /// calling EmitBlock, EmitBranch, or EmitStmt. 1795 void EmitStmt(const Stmt *S); 1796 1797 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1798 /// necessarily require an insertion point or debug information; typically 1799 /// because the statement amounts to a jump or a container of other 1800 /// statements. 1801 /// 1802 /// \return True if the statement was handled. 1803 bool EmitSimpleStmt(const Stmt *S); 1804 1805 llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1806 AggValueSlot AVS = AggValueSlot::ignored()); 1807 llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S, 1808 bool GetLast = false, 1809 AggValueSlot AVS = 1810 AggValueSlot::ignored()); 1811 1812 /// EmitLabel - Emit the block for the given label. It is legal to call this 1813 /// function even if there is no current insertion point. 1814 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1815 1816 void EmitLabelStmt(const LabelStmt &S); 1817 void EmitAttributedStmt(const AttributedStmt &S); 1818 void EmitGotoStmt(const GotoStmt &S); 1819 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1820 void EmitIfStmt(const IfStmt &S); 1821 void EmitWhileStmt(const WhileStmt &S); 1822 void EmitDoStmt(const DoStmt &S); 1823 void EmitForStmt(const ForStmt &S); 1824 void EmitReturnStmt(const ReturnStmt &S); 1825 void EmitDeclStmt(const DeclStmt &S); 1826 void EmitBreakStmt(const BreakStmt &S); 1827 void EmitContinueStmt(const ContinueStmt &S); 1828 void EmitSwitchStmt(const SwitchStmt &S); 1829 void EmitDefaultStmt(const DefaultStmt &S); 1830 void EmitCaseStmt(const CaseStmt &S); 1831 void EmitCaseStmtRange(const CaseStmt &S); 1832 void EmitAsmStmt(const AsmStmt &S); 1833 1834 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1835 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1836 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1837 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1838 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1839 1840 llvm::Constant *getUnwindResumeFn(); 1841 llvm::Constant *getUnwindResumeOrRethrowFn(); 1842 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1843 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1844 1845 void EmitCXXTryStmt(const CXXTryStmt &S); 1846 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1847 1848 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 1849 llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD, 1850 const RecordDecl *RD); 1851 1852 //===--------------------------------------------------------------------===// 1853 // LValue Expression Emission 1854 //===--------------------------------------------------------------------===// 1855 1856 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1857 RValue GetUndefRValue(QualType Ty); 1858 1859 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1860 /// and issue an ErrorUnsupported style diagnostic (using the 1861 /// provided Name). 1862 RValue EmitUnsupportedRValue(const Expr *E, 1863 const char *Name); 1864 1865 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1866 /// an ErrorUnsupported style diagnostic (using the provided Name). 1867 LValue EmitUnsupportedLValue(const Expr *E, 1868 const char *Name); 1869 1870 /// EmitLValue - Emit code to compute a designator that specifies the location 1871 /// of the expression. 1872 /// 1873 /// This can return one of two things: a simple address or a bitfield 1874 /// reference. In either case, the LLVM Value* in the LValue structure is 1875 /// guaranteed to be an LLVM pointer type. 1876 /// 1877 /// If this returns a bitfield reference, nothing about the pointee type of 1878 /// the LLVM value is known: For example, it may not be a pointer to an 1879 /// integer. 1880 /// 1881 /// If this returns a normal address, and if the lvalue's C type is fixed 1882 /// size, this method guarantees that the returned pointer type will point to 1883 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1884 /// variable length type, this is not possible. 1885 /// 1886 LValue EmitLValue(const Expr *E); 1887 1888 /// \brief Same as EmitLValue but additionally we generate checking code to 1889 /// guard against undefined behavior. This is only suitable when we know 1890 /// that the address will be used to access the object. 1891 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 1892 1893 RValue convertTempToRValue(llvm::Value *addr, QualType type); 1894 1895 void EmitAtomicInit(Expr *E, LValue lvalue); 1896 1897 RValue EmitAtomicLoad(LValue lvalue, 1898 AggValueSlot slot = AggValueSlot::ignored()); 1899 1900 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 1901 1902 /// EmitToMemory - Change a scalar value from its value 1903 /// representation to its in-memory representation. 1904 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1905 1906 /// EmitFromMemory - Change a scalar value from its memory 1907 /// representation to its value representation. 1908 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1909 1910 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1911 /// care to appropriately convert from the memory representation to 1912 /// the LLVM value representation. 1913 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1914 unsigned Alignment, QualType Ty, 1915 llvm::MDNode *TBAAInfo = 0, 1916 QualType TBAABaseTy = QualType(), 1917 uint64_t TBAAOffset = 0); 1918 1919 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1920 /// care to appropriately convert from the memory representation to 1921 /// the LLVM value representation. The l-value must be a simple 1922 /// l-value. 1923 llvm::Value *EmitLoadOfScalar(LValue lvalue); 1924 1925 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1926 /// care to appropriately convert from the memory representation to 1927 /// the LLVM value representation. 1928 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1929 bool Volatile, unsigned Alignment, QualType Ty, 1930 llvm::MDNode *TBAAInfo = 0, bool isInit = false, 1931 QualType TBAABaseTy = QualType(), 1932 uint64_t TBAAOffset = 0); 1933 1934 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1935 /// care to appropriately convert from the memory representation to 1936 /// the LLVM value representation. The l-value must be a simple 1937 /// l-value. The isInit flag indicates whether this is an initialization. 1938 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 1939 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 1940 1941 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 1942 /// this method emits the address of the lvalue, then loads the result as an 1943 /// rvalue, returning the rvalue. 1944 RValue EmitLoadOfLValue(LValue V); 1945 RValue EmitLoadOfExtVectorElementLValue(LValue V); 1946 RValue EmitLoadOfBitfieldLValue(LValue LV); 1947 1948 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1949 /// lvalue, where both are guaranteed to the have the same type, and that type 1950 /// is 'Ty'. 1951 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 1952 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 1953 1954 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 1955 /// EmitStoreThroughLValue. 1956 /// 1957 /// \param Result [out] - If non-null, this will be set to a Value* for the 1958 /// bit-field contents after the store, appropriate for use as the result of 1959 /// an assignment to the bit-field. 1960 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1961 llvm::Value **Result=0); 1962 1963 /// Emit an l-value for an assignment (simple or compound) of complex type. 1964 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 1965 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 1966 LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E, 1967 llvm::Value *&Result); 1968 1969 // Note: only available for agg return types 1970 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 1971 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 1972 // Note: only available for agg return types 1973 LValue EmitCallExprLValue(const CallExpr *E); 1974 // Note: only available for agg return types 1975 LValue EmitVAArgExprLValue(const VAArgExpr *E); 1976 LValue EmitDeclRefLValue(const DeclRefExpr *E); 1977 LValue EmitStringLiteralLValue(const StringLiteral *E); 1978 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 1979 LValue EmitPredefinedLValue(const PredefinedExpr *E); 1980 LValue EmitUnaryOpLValue(const UnaryOperator *E); 1981 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 1982 bool Accessed = false); 1983 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 1984 LValue EmitMemberExpr(const MemberExpr *E); 1985 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 1986 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 1987 LValue EmitInitListLValue(const InitListExpr *E); 1988 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 1989 LValue EmitCastLValue(const CastExpr *E); 1990 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 1991 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 1992 1993 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 1994 1995 class ConstantEmission { 1996 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 1997 ConstantEmission(llvm::Constant *C, bool isReference) 1998 : ValueAndIsReference(C, isReference) {} 1999 public: 2000 ConstantEmission() {} 2001 static ConstantEmission forReference(llvm::Constant *C) { 2002 return ConstantEmission(C, true); 2003 } 2004 static ConstantEmission forValue(llvm::Constant *C) { 2005 return ConstantEmission(C, false); 2006 } 2007 2008 LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2009 2010 bool isReference() const { return ValueAndIsReference.getInt(); } 2011 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2012 assert(isReference()); 2013 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2014 refExpr->getType()); 2015 } 2016 2017 llvm::Constant *getValue() const { 2018 assert(!isReference()); 2019 return ValueAndIsReference.getPointer(); 2020 } 2021 }; 2022 2023 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2024 2025 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2026 AggValueSlot slot = AggValueSlot::ignored()); 2027 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2028 2029 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2030 const ObjCIvarDecl *Ivar); 2031 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2032 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2033 2034 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2035 /// if the Field is a reference, this will return the address of the reference 2036 /// and not the address of the value stored in the reference. 2037 LValue EmitLValueForFieldInitialization(LValue Base, 2038 const FieldDecl* Field); 2039 2040 LValue EmitLValueForIvar(QualType ObjectTy, 2041 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2042 unsigned CVRQualifiers); 2043 2044 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2045 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2046 LValue EmitLambdaLValue(const LambdaExpr *E); 2047 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2048 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2049 2050 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2051 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2052 LValue EmitStmtExprLValue(const StmtExpr *E); 2053 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2054 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2055 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2056 2057 //===--------------------------------------------------------------------===// 2058 // Scalar Expression Emission 2059 //===--------------------------------------------------------------------===// 2060 2061 /// EmitCall - Generate a call of the given function, expecting the given 2062 /// result type, and using the given argument list which specifies both the 2063 /// LLVM arguments and the types they were derived from. 2064 /// 2065 /// \param TargetDecl - If given, the decl of the function in a direct call; 2066 /// used to set attributes on the call (noreturn, etc.). 2067 RValue EmitCall(const CGFunctionInfo &FnInfo, 2068 llvm::Value *Callee, 2069 ReturnValueSlot ReturnValue, 2070 const CallArgList &Args, 2071 const Decl *TargetDecl = 0, 2072 llvm::Instruction **callOrInvoke = 0); 2073 2074 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2075 ReturnValueSlot ReturnValue, 2076 CallExpr::const_arg_iterator ArgBeg, 2077 CallExpr::const_arg_iterator ArgEnd, 2078 const Decl *TargetDecl = 0); 2079 RValue EmitCallExpr(const CallExpr *E, 2080 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2081 2082 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2083 const Twine &name = ""); 2084 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2085 ArrayRef<llvm::Value*> args, 2086 const Twine &name = ""); 2087 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2088 const Twine &name = ""); 2089 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2090 ArrayRef<llvm::Value*> args, 2091 const Twine &name = ""); 2092 2093 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2094 ArrayRef<llvm::Value *> Args, 2095 const Twine &Name = ""); 2096 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2097 const Twine &Name = ""); 2098 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2099 ArrayRef<llvm::Value*> args, 2100 const Twine &name = ""); 2101 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2102 const Twine &name = ""); 2103 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2104 ArrayRef<llvm::Value*> args); 2105 2106 llvm::Value *BuildVirtualCall(GlobalDecl GD, llvm::Value *This, 2107 llvm::Type *Ty); 2108 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2109 NestedNameSpecifier *Qual, 2110 llvm::Type *Ty); 2111 2112 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2113 CXXDtorType Type, 2114 const CXXRecordDecl *RD); 2115 2116 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2117 SourceLocation CallLoc, 2118 llvm::Value *Callee, 2119 ReturnValueSlot ReturnValue, 2120 llvm::Value *This, 2121 llvm::Value *ImplicitParam, 2122 QualType ImplicitParamTy, 2123 CallExpr::const_arg_iterator ArgBeg, 2124 CallExpr::const_arg_iterator ArgEnd); 2125 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2126 ReturnValueSlot ReturnValue); 2127 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2128 ReturnValueSlot ReturnValue); 2129 2130 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2131 const CXXMethodDecl *MD, 2132 llvm::Value *This); 2133 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2134 const CXXMethodDecl *MD, 2135 ReturnValueSlot ReturnValue); 2136 2137 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2138 ReturnValueSlot ReturnValue); 2139 2140 2141 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2142 unsigned BuiltinID, const CallExpr *E); 2143 2144 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2145 2146 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2147 /// is unhandled by the current target. 2148 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2149 2150 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2151 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2152 llvm::Value *EmitNeonCall(llvm::Function *F, 2153 SmallVectorImpl<llvm::Value*> &O, 2154 const char *name, 2155 unsigned shift = 0, bool rightshift = false); 2156 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2157 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2158 bool negateForRightShift); 2159 2160 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2161 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2162 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2163 2164 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2165 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2166 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2167 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2168 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2169 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2170 const ObjCMethodDecl *MethodWithObjects); 2171 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2172 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2173 ReturnValueSlot Return = ReturnValueSlot()); 2174 2175 /// Retrieves the default cleanup kind for an ARC cleanup. 2176 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2177 CleanupKind getARCCleanupKind() { 2178 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2179 ? NormalAndEHCleanup : NormalCleanup; 2180 } 2181 2182 // ARC primitives. 2183 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2184 void EmitARCDestroyWeak(llvm::Value *addr); 2185 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2186 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2187 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2188 bool ignored); 2189 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2190 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2191 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2192 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2193 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2194 bool resultIgnored); 2195 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2196 bool resultIgnored); 2197 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2198 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2199 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2200 void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); 2201 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2202 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2203 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2204 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2205 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2206 2207 std::pair<LValue,llvm::Value*> 2208 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2209 std::pair<LValue,llvm::Value*> 2210 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2211 2212 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2213 2214 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2215 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2216 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2217 2218 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2219 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2220 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2221 2222 void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values); 2223 2224 static Destroyer destroyARCStrongImprecise; 2225 static Destroyer destroyARCStrongPrecise; 2226 static Destroyer destroyARCWeak; 2227 2228 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2229 llvm::Value *EmitObjCAutoreleasePoolPush(); 2230 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2231 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2232 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2233 2234 /// \brief Emits a reference binding to the passed in expression. 2235 RValue EmitReferenceBindingToExpr(const Expr *E); 2236 2237 //===--------------------------------------------------------------------===// 2238 // Expression Emission 2239 //===--------------------------------------------------------------------===// 2240 2241 // Expressions are broken into three classes: scalar, complex, aggregate. 2242 2243 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2244 /// scalar type, returning the result. 2245 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2246 2247 /// EmitScalarConversion - Emit a conversion from the specified type to the 2248 /// specified destination type, both of which are LLVM scalar types. 2249 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2250 QualType DstTy); 2251 2252 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2253 /// complex type to the specified destination type, where the destination type 2254 /// is an LLVM scalar type. 2255 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2256 QualType DstTy); 2257 2258 2259 /// EmitAggExpr - Emit the computation of the specified expression 2260 /// of aggregate type. The result is computed into the given slot, 2261 /// which may be null to indicate that the value is not needed. 2262 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2263 2264 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2265 /// aggregate type into a temporary LValue. 2266 LValue EmitAggExprToLValue(const Expr *E); 2267 2268 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2269 /// pointers. 2270 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2271 QualType Ty); 2272 2273 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2274 /// make sure it survives garbage collection until this point. 2275 void EmitExtendGCLifetime(llvm::Value *object); 2276 2277 /// EmitComplexExpr - Emit the computation of the specified expression of 2278 /// complex type, returning the result. 2279 ComplexPairTy EmitComplexExpr(const Expr *E, 2280 bool IgnoreReal = false, 2281 bool IgnoreImag = false); 2282 2283 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2284 /// type and place its result into the specified l-value. 2285 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2286 2287 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2288 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2289 2290 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2291 ComplexPairTy EmitLoadOfComplex(LValue src); 2292 2293 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2294 /// a static local variable. 2295 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2296 const char *Separator, 2297 llvm::GlobalValue::LinkageTypes Linkage); 2298 2299 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2300 /// global variable that has already been created for it. If the initializer 2301 /// has a different type than GV does, this may free GV and return a different 2302 /// one. Otherwise it just returns GV. 2303 llvm::GlobalVariable * 2304 AddInitializerToStaticVarDecl(const VarDecl &D, 2305 llvm::GlobalVariable *GV); 2306 2307 2308 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2309 /// variable with global storage. 2310 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2311 bool PerformInit); 2312 2313 /// Call atexit() with a function that passes the given argument to 2314 /// the given function. 2315 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2316 2317 /// Emit code in this function to perform a guarded variable 2318 /// initialization. Guarded initializations are used when it's not 2319 /// possible to prove that an initialization will be done exactly 2320 /// once, e.g. with a static local variable or a static data member 2321 /// of a class template. 2322 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2323 bool PerformInit); 2324 2325 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2326 /// variables. 2327 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2328 ArrayRef<llvm::Constant *> Decls, 2329 llvm::GlobalVariable *Guard = 0); 2330 2331 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2332 /// variables. 2333 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2334 const std::vector<std::pair<llvm::WeakVH, 2335 llvm::Constant*> > &DtorsAndObjects); 2336 2337 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2338 const VarDecl *D, 2339 llvm::GlobalVariable *Addr, 2340 bool PerformInit); 2341 2342 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2343 2344 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2345 const Expr *Exp); 2346 2347 void enterFullExpression(const ExprWithCleanups *E) { 2348 if (E->getNumObjects() == 0) return; 2349 enterNonTrivialFullExpression(E); 2350 } 2351 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2352 2353 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2354 2355 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2356 2357 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2358 2359 //===--------------------------------------------------------------------===// 2360 // Annotations Emission 2361 //===--------------------------------------------------------------------===// 2362 2363 /// Emit an annotation call (intrinsic or builtin). 2364 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2365 llvm::Value *AnnotatedVal, 2366 StringRef AnnotationStr, 2367 SourceLocation Location); 2368 2369 /// Emit local annotations for the local variable V, declared by D. 2370 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2371 2372 /// Emit field annotations for the given field & value. Returns the 2373 /// annotation result. 2374 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2375 2376 //===--------------------------------------------------------------------===// 2377 // Internal Helpers 2378 //===--------------------------------------------------------------------===// 2379 2380 /// ContainsLabel - Return true if the statement contains a label in it. If 2381 /// this statement is not executed normally, it not containing a label means 2382 /// that we can just remove the code. 2383 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2384 2385 /// containsBreak - Return true if the statement contains a break out of it. 2386 /// If the statement (recursively) contains a switch or loop with a break 2387 /// inside of it, this is fine. 2388 static bool containsBreak(const Stmt *S); 2389 2390 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2391 /// to a constant, or if it does but contains a label, return false. If it 2392 /// constant folds return true and set the boolean result in Result. 2393 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2394 2395 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2396 /// to a constant, or if it does but contains a label, return false. If it 2397 /// constant folds return true and set the folded value. 2398 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2399 2400 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2401 /// if statement) to the specified blocks. Based on the condition, this might 2402 /// try to simplify the codegen of the conditional based on the branch. 2403 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2404 llvm::BasicBlock *FalseBlock); 2405 2406 /// \brief Emit a description of a type in a format suitable for passing to 2407 /// a runtime sanitizer handler. 2408 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2409 2410 /// \brief Convert a value into a format suitable for passing to a runtime 2411 /// sanitizer handler. 2412 llvm::Value *EmitCheckValue(llvm::Value *V); 2413 2414 /// \brief Emit a description of a source location in a format suitable for 2415 /// passing to a runtime sanitizer handler. 2416 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2417 2418 /// \brief Specify under what conditions this check can be recovered 2419 enum CheckRecoverableKind { 2420 /// Always terminate program execution if this check fails 2421 CRK_Unrecoverable, 2422 /// Check supports recovering, allows user to specify which 2423 CRK_Recoverable, 2424 /// Runtime conditionally aborts, always need to support recovery. 2425 CRK_AlwaysRecoverable 2426 }; 2427 2428 /// \brief Create a basic block that will call a handler function in a 2429 /// sanitizer runtime with the provided arguments, and create a conditional 2430 /// branch to it. 2431 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2432 ArrayRef<llvm::Constant *> StaticArgs, 2433 ArrayRef<llvm::Value *> DynamicArgs, 2434 CheckRecoverableKind Recoverable); 2435 2436 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2437 /// conditional branch to it, for the -ftrapv checks. 2438 void EmitTrapCheck(llvm::Value *Checked); 2439 2440 /// EmitCallArg - Emit a single call argument. 2441 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2442 2443 /// EmitDelegateCallArg - We are performing a delegate call; that 2444 /// is, the current function is delegating to another one. Produce 2445 /// a r-value suitable for passing the given parameter. 2446 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2447 2448 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2449 /// point operation, expressed as the maximum relative error in ulp. 2450 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2451 2452 private: 2453 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2454 void EmitReturnOfRValue(RValue RV, QualType Ty); 2455 2456 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2457 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2458 /// 2459 /// \param AI - The first function argument of the expansion. 2460 /// \return The argument following the last expanded function 2461 /// argument. 2462 llvm::Function::arg_iterator 2463 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2464 llvm::Function::arg_iterator AI); 2465 2466 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2467 /// Ty, into individual arguments on the provided vector \arg Args. See 2468 /// ABIArgInfo::Expand. 2469 void ExpandTypeToArgs(QualType Ty, RValue Src, 2470 SmallVectorImpl<llvm::Value *> &Args, 2471 llvm::FunctionType *IRFuncTy); 2472 2473 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2474 const Expr *InputExpr, std::string &ConstraintStr); 2475 2476 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2477 LValue InputValue, QualType InputType, 2478 std::string &ConstraintStr); 2479 2480 /// EmitCallArgs - Emit call arguments for a function. 2481 /// The CallArgTypeInfo parameter is used for iterating over the known 2482 /// argument types of the function being called. 2483 template<typename T> 2484 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2485 CallExpr::const_arg_iterator ArgBeg, 2486 CallExpr::const_arg_iterator ArgEnd, 2487 bool ForceColumnInfo = false) { 2488 CGDebugInfo *DI = getDebugInfo(); 2489 SourceLocation CallLoc; 2490 if (DI) CallLoc = DI->getLocation(); 2491 2492 CallExpr::const_arg_iterator Arg = ArgBeg; 2493 2494 // First, use the argument types that the type info knows about 2495 if (CallArgTypeInfo) { 2496 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2497 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2498 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2499 QualType ArgType = *I; 2500 #ifndef NDEBUG 2501 QualType ActualArgType = Arg->getType(); 2502 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2503 QualType ActualBaseType = 2504 ActualArgType->getAs<PointerType>()->getPointeeType(); 2505 QualType ArgBaseType = 2506 ArgType->getAs<PointerType>()->getPointeeType(); 2507 if (ArgBaseType->isVariableArrayType()) { 2508 if (const VariableArrayType *VAT = 2509 getContext().getAsVariableArrayType(ActualBaseType)) { 2510 if (!VAT->getSizeExpr()) 2511 ActualArgType = ArgType; 2512 } 2513 } 2514 } 2515 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2516 getTypePtr() == 2517 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2518 "type mismatch in call argument!"); 2519 #endif 2520 EmitCallArg(Args, *Arg, ArgType); 2521 2522 // Each argument expression could modify the debug 2523 // location. Restore it. 2524 if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo); 2525 } 2526 2527 // Either we've emitted all the call args, or we have a call to a 2528 // variadic function. 2529 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2530 "Extra arguments in non-variadic function!"); 2531 2532 } 2533 2534 // If we still have any arguments, emit them using the type of the argument. 2535 for (; Arg != ArgEnd; ++Arg) { 2536 EmitCallArg(Args, *Arg, Arg->getType()); 2537 2538 // Restore the debug location. 2539 if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo); 2540 } 2541 } 2542 2543 const TargetCodeGenInfo &getTargetHooks() const { 2544 return CGM.getTargetCodeGenInfo(); 2545 } 2546 2547 void EmitDeclMetadata(); 2548 2549 CodeGenModule::ByrefHelpers * 2550 buildByrefHelpers(llvm::StructType &byrefType, 2551 const AutoVarEmission &emission); 2552 2553 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2554 2555 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2556 /// value and compute our best estimate of the alignment of the pointee. 2557 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2558 }; 2559 2560 /// Helper class with most of the code for saving a value for a 2561 /// conditional expression cleanup. 2562 struct DominatingLLVMValue { 2563 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2564 2565 /// Answer whether the given value needs extra work to be saved. 2566 static bool needsSaving(llvm::Value *value) { 2567 // If it's not an instruction, we don't need to save. 2568 if (!isa<llvm::Instruction>(value)) return false; 2569 2570 // If it's an instruction in the entry block, we don't need to save. 2571 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2572 return (block != &block->getParent()->getEntryBlock()); 2573 } 2574 2575 /// Try to save the given value. 2576 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2577 if (!needsSaving(value)) return saved_type(value, false); 2578 2579 // Otherwise we need an alloca. 2580 llvm::Value *alloca = 2581 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2582 CGF.Builder.CreateStore(value, alloca); 2583 2584 return saved_type(alloca, true); 2585 } 2586 2587 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2588 if (!value.getInt()) return value.getPointer(); 2589 return CGF.Builder.CreateLoad(value.getPointer()); 2590 } 2591 }; 2592 2593 /// A partial specialization of DominatingValue for llvm::Values that 2594 /// might be llvm::Instructions. 2595 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2596 typedef T *type; 2597 static type restore(CodeGenFunction &CGF, saved_type value) { 2598 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2599 } 2600 }; 2601 2602 /// A specialization of DominatingValue for RValue. 2603 template <> struct DominatingValue<RValue> { 2604 typedef RValue type; 2605 class saved_type { 2606 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2607 AggregateAddress, ComplexAddress }; 2608 2609 llvm::Value *Value; 2610 Kind K; 2611 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2612 2613 public: 2614 static bool needsSaving(RValue value); 2615 static saved_type save(CodeGenFunction &CGF, RValue value); 2616 RValue restore(CodeGenFunction &CGF); 2617 2618 // implementations in CGExprCXX.cpp 2619 }; 2620 2621 static bool needsSaving(type value) { 2622 return saved_type::needsSaving(value); 2623 } 2624 static saved_type save(CodeGenFunction &CGF, type value) { 2625 return saved_type::save(CGF, value); 2626 } 2627 static type restore(CodeGenFunction &CGF, saved_type value) { 2628 return value.restore(CGF); 2629 } 2630 }; 2631 2632 } // end namespace CodeGen 2633 } // end namespace clang 2634 2635 #endif 2636