Home | History | Annotate | Download | only in Support
      1 //===--- Allocator.cpp - Simple memory allocation abstraction -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the BumpPtrAllocator interface.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Support/Allocator.h"
     15 #include "llvm/Support/Compiler.h"
     16 #include "llvm/Support/DataTypes.h"
     17 #include "llvm/Support/Memory.h"
     18 #include "llvm/Support/Recycler.h"
     19 #include "llvm/Support/raw_ostream.h"
     20 #include <cstring>
     21 
     22 namespace llvm {
     23 
     24 BumpPtrAllocator::BumpPtrAllocator(size_t size, size_t threshold,
     25                                    SlabAllocator &allocator)
     26     : SlabSize(size), SizeThreshold(std::min(size, threshold)),
     27       Allocator(allocator), CurSlab(0), BytesAllocated(0) { }
     28 
     29 BumpPtrAllocator::~BumpPtrAllocator() {
     30   DeallocateSlabs(CurSlab);
     31 }
     32 
     33 /// AlignPtr - Align Ptr to Alignment bytes, rounding up.  Alignment should
     34 /// be a power of two.  This method rounds up, so AlignPtr(7, 4) == 8 and
     35 /// AlignPtr(8, 4) == 8.
     36 char *BumpPtrAllocator::AlignPtr(char *Ptr, size_t Alignment) {
     37   assert(Alignment && (Alignment & (Alignment - 1)) == 0 &&
     38          "Alignment is not a power of two!");
     39 
     40   // Do the alignment.
     41   return (char*)(((uintptr_t)Ptr + Alignment - 1) &
     42                  ~(uintptr_t)(Alignment - 1));
     43 }
     44 
     45 /// StartNewSlab - Allocate a new slab and move the bump pointers over into
     46 /// the new slab.  Modifies CurPtr and End.
     47 void BumpPtrAllocator::StartNewSlab() {
     48   // If we allocated a big number of slabs already it's likely that we're going
     49   // to allocate more. Increase slab size to reduce mallocs and possibly memory
     50   // overhead. The factors are chosen conservatively to avoid overallocation.
     51   if (BytesAllocated >= SlabSize * 128)
     52     SlabSize *= 2;
     53 
     54   MemSlab *NewSlab = Allocator.Allocate(SlabSize);
     55   NewSlab->NextPtr = CurSlab;
     56   CurSlab = NewSlab;
     57   CurPtr = (char*)(CurSlab + 1);
     58   End = ((char*)CurSlab) + CurSlab->Size;
     59 }
     60 
     61 /// DeallocateSlabs - Deallocate all memory slabs after and including this
     62 /// one.
     63 void BumpPtrAllocator::DeallocateSlabs(MemSlab *Slab) {
     64   while (Slab) {
     65     MemSlab *NextSlab = Slab->NextPtr;
     66 #ifndef NDEBUG
     67     // Poison the memory so stale pointers crash sooner.  Note we must
     68     // preserve the Size and NextPtr fields at the beginning.
     69     sys::Memory::setRangeWritable(Slab + 1, Slab->Size - sizeof(MemSlab));
     70     memset(Slab + 1, 0xCD, Slab->Size - sizeof(MemSlab));
     71 #endif
     72     Allocator.Deallocate(Slab);
     73     Slab = NextSlab;
     74   }
     75 }
     76 
     77 /// Reset - Deallocate all but the current slab and reset the current pointer
     78 /// to the beginning of it, freeing all memory allocated so far.
     79 void BumpPtrAllocator::Reset() {
     80   if (!CurSlab)
     81     return;
     82   DeallocateSlabs(CurSlab->NextPtr);
     83   CurSlab->NextPtr = 0;
     84   CurPtr = (char*)(CurSlab + 1);
     85   End = ((char*)CurSlab) + CurSlab->Size;
     86   BytesAllocated = 0;
     87 }
     88 
     89 /// Allocate - Allocate space at the specified alignment.
     90 ///
     91 void *BumpPtrAllocator::Allocate(size_t Size, size_t Alignment) {
     92   if (!CurSlab) // Start a new slab if we haven't allocated one already.
     93     StartNewSlab();
     94 
     95   // Keep track of how many bytes we've allocated.
     96   BytesAllocated += Size;
     97 
     98   // 0-byte alignment means 1-byte alignment.
     99   if (Alignment == 0) Alignment = 1;
    100 
    101   // Allocate the aligned space, going forwards from CurPtr.
    102   char *Ptr = AlignPtr(CurPtr, Alignment);
    103 
    104   // Check if we can hold it.
    105   if (Ptr + Size <= End) {
    106     CurPtr = Ptr + Size;
    107     // Update the allocation point of this memory block in MemorySanitizer.
    108     // Without this, MemorySanitizer messages for values originated from here
    109     // will point to the allocation of the entire slab.
    110     __msan_allocated_memory(Ptr, Size);
    111     return Ptr;
    112   }
    113 
    114   // If Size is really big, allocate a separate slab for it.
    115   size_t PaddedSize = Size + sizeof(MemSlab) + Alignment - 1;
    116   if (PaddedSize > SizeThreshold) {
    117     MemSlab *NewSlab = Allocator.Allocate(PaddedSize);
    118 
    119     // Put the new slab after the current slab, since we are not allocating
    120     // into it.
    121     NewSlab->NextPtr = CurSlab->NextPtr;
    122     CurSlab->NextPtr = NewSlab;
    123 
    124     Ptr = AlignPtr((char*)(NewSlab + 1), Alignment);
    125     assert((uintptr_t)Ptr + Size <= (uintptr_t)NewSlab + NewSlab->Size);
    126     __msan_allocated_memory(Ptr, Size);
    127     return Ptr;
    128   }
    129 
    130   // Otherwise, start a new slab and try again.
    131   StartNewSlab();
    132   Ptr = AlignPtr(CurPtr, Alignment);
    133   CurPtr = Ptr + Size;
    134   assert(CurPtr <= End && "Unable to allocate memory!");
    135   __msan_allocated_memory(Ptr, Size);
    136   return Ptr;
    137 }
    138 
    139 unsigned BumpPtrAllocator::GetNumSlabs() const {
    140   unsigned NumSlabs = 0;
    141   for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
    142     ++NumSlabs;
    143   }
    144   return NumSlabs;
    145 }
    146 
    147 size_t BumpPtrAllocator::getTotalMemory() const {
    148   size_t TotalMemory = 0;
    149   for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
    150     TotalMemory += Slab->Size;
    151   }
    152   return TotalMemory;
    153 }
    154 
    155 void BumpPtrAllocator::PrintStats() const {
    156   unsigned NumSlabs = 0;
    157   size_t TotalMemory = 0;
    158   for (MemSlab *Slab = CurSlab; Slab != 0; Slab = Slab->NextPtr) {
    159     TotalMemory += Slab->Size;
    160     ++NumSlabs;
    161   }
    162 
    163   errs() << "\nNumber of memory regions: " << NumSlabs << '\n'
    164          << "Bytes used: " << BytesAllocated << '\n'
    165          << "Bytes allocated: " << TotalMemory << '\n'
    166          << "Bytes wasted: " << (TotalMemory - BytesAllocated)
    167          << " (includes alignment, etc)\n";
    168 }
    169 
    170 MallocSlabAllocator BumpPtrAllocator::DefaultSlabAllocator =
    171   MallocSlabAllocator();
    172 
    173 SlabAllocator::~SlabAllocator() { }
    174 
    175 MallocSlabAllocator::~MallocSlabAllocator() { }
    176 
    177 MemSlab *MallocSlabAllocator::Allocate(size_t Size) {
    178   MemSlab *Slab = (MemSlab*)Allocator.Allocate(Size, 0);
    179   Slab->Size = Size;
    180   Slab->NextPtr = 0;
    181   return Slab;
    182 }
    183 
    184 void MallocSlabAllocator::Deallocate(MemSlab *Slab) {
    185   Allocator.Deallocate(Slab);
    186 }
    187 
    188 void PrintRecyclerStats(size_t Size,
    189                         size_t Align,
    190                         size_t FreeListSize) {
    191   errs() << "Recycler element size: " << Size << '\n'
    192          << "Recycler element alignment: " << Align << '\n'
    193          << "Number of elements free for recycling: " << FreeListSize << '\n';
    194 }
    195 
    196 }
    197