1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // This defines a set of argument wrappers and related factory methods that 6 // can be used specify the refcounting and reference semantics of arguments 7 // that are bound by the Bind() function in base/bind.h. 8 // 9 // It also defines a set of simple functions and utilities that people want 10 // when using Callback<> and Bind(). 11 // 12 // 13 // ARGUMENT BINDING WRAPPERS 14 // 15 // The wrapper functions are base::Unretained(), base::Owned(), bass::Passed(), 16 // base::ConstRef(), and base::IgnoreResult(). 17 // 18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable 19 // refcounting on arguments that are refcounted objects. 20 // 21 // Owned() transfers ownership of an object to the Callback resulting from 22 // bind; the object will be deleted when the Callback is deleted. 23 // 24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr) 25 // through a Callback. Logically, this signifies a destructive transfer of 26 // the state of the argument into the target function. Invoking 27 // Callback::Run() twice on a Callback that was created with a Passed() 28 // argument will CHECK() because the first invocation would have already 29 // transferred ownership to the target function. 30 // 31 // ConstRef() allows binding a constant reference to an argument rather 32 // than a copy. 33 // 34 // IgnoreResult() is used to adapt a function or Callback with a return type to 35 // one with a void return. This is most useful if you have a function with, 36 // say, a pesky ignorable bool return that you want to use with PostTask or 37 // something else that expect a Callback with a void return. 38 // 39 // EXAMPLE OF Unretained(): 40 // 41 // class Foo { 42 // public: 43 // void func() { cout << "Foo:f" << endl; } 44 // }; 45 // 46 // // In some function somewhere. 47 // Foo foo; 48 // Closure foo_callback = 49 // Bind(&Foo::func, Unretained(&foo)); 50 // foo_callback.Run(); // Prints "Foo:f". 51 // 52 // Without the Unretained() wrapper on |&foo|, the above call would fail 53 // to compile because Foo does not support the AddRef() and Release() methods. 54 // 55 // 56 // EXAMPLE OF Owned(): 57 // 58 // void foo(int* arg) { cout << *arg << endl } 59 // 60 // int* pn = new int(1); 61 // Closure foo_callback = Bind(&foo, Owned(pn)); 62 // 63 // foo_callback.Run(); // Prints "1" 64 // foo_callback.Run(); // Prints "1" 65 // *n = 2; 66 // foo_callback.Run(); // Prints "2" 67 // 68 // foo_callback.Reset(); // |pn| is deleted. Also will happen when 69 // // |foo_callback| goes out of scope. 70 // 71 // Without Owned(), someone would have to know to delete |pn| when the last 72 // reference to the Callback is deleted. 73 // 74 // 75 // EXAMPLE OF ConstRef(): 76 // 77 // void foo(int arg) { cout << arg << endl } 78 // 79 // int n = 1; 80 // Closure no_ref = Bind(&foo, n); 81 // Closure has_ref = Bind(&foo, ConstRef(n)); 82 // 83 // no_ref.Run(); // Prints "1" 84 // has_ref.Run(); // Prints "1" 85 // 86 // n = 2; 87 // no_ref.Run(); // Prints "1" 88 // has_ref.Run(); // Prints "2" 89 // 90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all 91 // its bound callbacks. 92 // 93 // 94 // EXAMPLE OF IgnoreResult(): 95 // 96 // int DoSomething(int arg) { cout << arg << endl; } 97 // 98 // // Assign to a Callback with a void return type. 99 // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething)); 100 // cb->Run(1); // Prints "1". 101 // 102 // // Prints "1" on |ml|. 103 // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1); 104 // 105 // 106 // EXAMPLE OF Passed(): 107 // 108 // void TakesOwnership(scoped_ptr<Foo> arg) { } 109 // scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); } 110 // 111 // scoped_ptr<Foo> f(new Foo()); 112 // 113 // // |cb| is given ownership of Foo(). |f| is now NULL. 114 // // You can use f.Pass() in place of &f, but it's more verbose. 115 // Closure cb = Bind(&TakesOwnership, Passed(&f)); 116 // 117 // // Run was never called so |cb| still owns Foo() and deletes 118 // // it on Reset(). 119 // cb.Reset(); 120 // 121 // // |cb| is given a new Foo created by CreateFoo(). 122 // cb = Bind(&TakesOwnership, Passed(CreateFoo())); 123 // 124 // // |arg| in TakesOwnership() is given ownership of Foo(). |cb| 125 // // no longer owns Foo() and, if reset, would not delete Foo(). 126 // cb.Run(); // Foo() is now transferred to |arg| and deleted. 127 // cb.Run(); // This CHECK()s since Foo() already been used once. 128 // 129 // Passed() is particularly useful with PostTask() when you are transferring 130 // ownership of an argument into a task, but don't necessarily know if the 131 // task will always be executed. This can happen if the task is cancellable 132 // or if it is posted to a MessageLoopProxy. 133 // 134 // 135 // SIMPLE FUNCTIONS AND UTILITIES. 136 // 137 // DoNothing() - Useful for creating a Closure that does nothing when called. 138 // DeletePointer<T>() - Useful for creating a Closure that will delete a 139 // pointer when invoked. Only use this when necessary. 140 // In most cases MessageLoop::DeleteSoon() is a better 141 // fit. 142 // ScopedClosureRunner - Scoper object that runs the wrapped closure when it 143 // goes out of scope. It's conceptually similar to 144 // scoped_ptr<> but calls Run() instead of deleting 145 // the pointer. 146 147 #ifndef BASE_BIND_HELPERS_H_ 148 #define BASE_BIND_HELPERS_H_ 149 150 #include "base/basictypes.h" 151 #include "base/callback.h" 152 #include "base/memory/weak_ptr.h" 153 #include "base/template_util.h" 154 155 namespace base { 156 namespace internal { 157 158 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T 159 // for the existence of AddRef() and Release() functions of the correct 160 // signature. 161 // 162 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error 163 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence 164 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison 165 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions 166 // 167 // The last link in particular show the method used below. 168 // 169 // For SFINAE to work with inherited methods, we need to pull some extra tricks 170 // with multiple inheritance. In the more standard formulation, the overloads 171 // of Check would be: 172 // 173 // template <typename C> 174 // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*); 175 // 176 // template <typename C> 177 // No NotTheCheckWeWant(...); 178 // 179 // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes); 180 // 181 // The problem here is that template resolution will not match 182 // C::TargetFunc if TargetFunc does not exist directly in C. That is, if 183 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match, 184 // |value| will be false. This formulation only checks for whether or 185 // not TargetFunc exist directly in the class being introspected. 186 // 187 // To get around this, we play a dirty trick with multiple inheritance. 188 // First, We create a class BaseMixin that declares each function that we 189 // want to probe for. Then we create a class Base that inherits from both T 190 // (the class we wish to probe) and BaseMixin. Note that the function 191 // signature in BaseMixin does not need to match the signature of the function 192 // we are probing for; thus it's easiest to just use void(void). 193 // 194 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an 195 // ambiguous resolution between BaseMixin and T. This lets us write the 196 // following: 197 // 198 // template <typename C> 199 // No GoodCheck(Helper<&C::TargetFunc>*); 200 // 201 // template <typename C> 202 // Yes GoodCheck(...); 203 // 204 // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes); 205 // 206 // Notice here that the variadic version of GoodCheck() returns Yes here 207 // instead of No like the previous one. Also notice that we calculate |value| 208 // by specializing GoodCheck() on Base instead of T. 209 // 210 // We've reversed the roles of the variadic, and Helper overloads. 211 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid 212 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve 213 // to the variadic version if T has TargetFunc. If T::TargetFunc does not 214 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution 215 // will prefer GoodCheck(Helper<&C::TargetFunc>*). 216 // 217 // This method of SFINAE will correctly probe for inherited names, but it cannot 218 // typecheck those names. It's still a good enough sanity check though. 219 // 220 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008. 221 // 222 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted 223 // this works well. 224 // 225 // TODO(ajwong): Make this check for Release() as well. 226 // See http://crbug.com/82038. 227 template <typename T> 228 class SupportsAddRefAndRelease { 229 typedef char Yes[1]; 230 typedef char No[2]; 231 232 struct BaseMixin { 233 void AddRef(); 234 }; 235 236 // MSVC warns when you try to use Base if T has a private destructor, the 237 // common pattern for refcounted types. It does this even though no attempt to 238 // instantiate Base is made. We disable the warning for this definition. 239 #if defined(OS_WIN) 240 #pragma warning(push) 241 #pragma warning(disable:4624) 242 #endif 243 struct Base : public T, public BaseMixin { 244 }; 245 #if defined(OS_WIN) 246 #pragma warning(pop) 247 #endif 248 249 template <void(BaseMixin::*)(void)> struct Helper {}; 250 251 template <typename C> 252 static No& Check(Helper<&C::AddRef>*); 253 254 template <typename > 255 static Yes& Check(...); 256 257 public: 258 static const bool value = sizeof(Check<Base>(0)) == sizeof(Yes); 259 }; 260 261 // Helpers to assert that arguments of a recounted type are bound with a 262 // scoped_refptr. 263 template <bool IsClasstype, typename T> 264 struct UnsafeBindtoRefCountedArgHelper : false_type { 265 }; 266 267 template <typename T> 268 struct UnsafeBindtoRefCountedArgHelper<true, T> 269 : integral_constant<bool, SupportsAddRefAndRelease<T>::value> { 270 }; 271 272 template <typename T> 273 struct UnsafeBindtoRefCountedArg : false_type { 274 }; 275 276 template <typename T> 277 struct UnsafeBindtoRefCountedArg<T*> 278 : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> { 279 }; 280 281 template <typename T> 282 class HasIsMethodTag { 283 typedef char Yes[1]; 284 typedef char No[2]; 285 286 template <typename U> 287 static Yes& Check(typename U::IsMethod*); 288 289 template <typename U> 290 static No& Check(...); 291 292 public: 293 static const bool value = sizeof(Check<T>(0)) == sizeof(Yes); 294 }; 295 296 template <typename T> 297 class UnretainedWrapper { 298 public: 299 explicit UnretainedWrapper(T* o) : ptr_(o) {} 300 T* get() const { return ptr_; } 301 private: 302 T* ptr_; 303 }; 304 305 template <typename T> 306 class ConstRefWrapper { 307 public: 308 explicit ConstRefWrapper(const T& o) : ptr_(&o) {} 309 const T& get() const { return *ptr_; } 310 private: 311 const T* ptr_; 312 }; 313 314 template <typename T> 315 struct IgnoreResultHelper { 316 explicit IgnoreResultHelper(T functor) : functor_(functor) {} 317 318 T functor_; 319 }; 320 321 template <typename T> 322 struct IgnoreResultHelper<Callback<T> > { 323 explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {} 324 325 const Callback<T>& functor_; 326 }; 327 328 // An alternate implementation is to avoid the destructive copy, and instead 329 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to 330 // a class that is essentially a scoped_ptr<>. 331 // 332 // The current implementation has the benefit though of leaving ParamTraits<> 333 // fully in callback_internal.h as well as avoiding type conversions during 334 // storage. 335 template <typename T> 336 class OwnedWrapper { 337 public: 338 explicit OwnedWrapper(T* o) : ptr_(o) {} 339 ~OwnedWrapper() { delete ptr_; } 340 T* get() const { return ptr_; } 341 OwnedWrapper(const OwnedWrapper& other) { 342 ptr_ = other.ptr_; 343 other.ptr_ = NULL; 344 } 345 346 private: 347 mutable T* ptr_; 348 }; 349 350 // PassedWrapper is a copyable adapter for a scoper that ignores const. 351 // 352 // It is needed to get around the fact that Bind() takes a const reference to 353 // all its arguments. Because Bind() takes a const reference to avoid 354 // unnecessary copies, it is incompatible with movable-but-not-copyable 355 // types; doing a destructive "move" of the type into Bind() would violate 356 // the const correctness. 357 // 358 // This conundrum cannot be solved without either C++11 rvalue references or 359 // a O(2^n) blowup of Bind() templates to handle each combination of regular 360 // types and movable-but-not-copyable types. Thus we introduce a wrapper type 361 // that is copyable to transmit the correct type information down into 362 // BindState<>. Ignoring const in this type makes sense because it is only 363 // created when we are explicitly trying to do a destructive move. 364 // 365 // Two notes: 366 // 1) PassedWrapper supports any type that has a "Pass()" function. 367 // This is intentional. The whitelisting of which specific types we 368 // support is maintained by CallbackParamTraits<>. 369 // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL" 370 // scoper to a Callback and allow the Callback to execute once. 371 template <typename T> 372 class PassedWrapper { 373 public: 374 explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {} 375 PassedWrapper(const PassedWrapper& other) 376 : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) { 377 } 378 T Pass() const { 379 CHECK(is_valid_); 380 is_valid_ = false; 381 return scoper_.Pass(); 382 } 383 384 private: 385 mutable bool is_valid_; 386 mutable T scoper_; 387 }; 388 389 // Unwrap the stored parameters for the wrappers above. 390 template <typename T> 391 struct UnwrapTraits { 392 typedef const T& ForwardType; 393 static ForwardType Unwrap(const T& o) { return o; } 394 }; 395 396 template <typename T> 397 struct UnwrapTraits<UnretainedWrapper<T> > { 398 typedef T* ForwardType; 399 static ForwardType Unwrap(UnretainedWrapper<T> unretained) { 400 return unretained.get(); 401 } 402 }; 403 404 template <typename T> 405 struct UnwrapTraits<ConstRefWrapper<T> > { 406 typedef const T& ForwardType; 407 static ForwardType Unwrap(ConstRefWrapper<T> const_ref) { 408 return const_ref.get(); 409 } 410 }; 411 412 template <typename T> 413 struct UnwrapTraits<scoped_refptr<T> > { 414 typedef T* ForwardType; 415 static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); } 416 }; 417 418 template <typename T> 419 struct UnwrapTraits<WeakPtr<T> > { 420 typedef const WeakPtr<T>& ForwardType; 421 static ForwardType Unwrap(const WeakPtr<T>& o) { return o; } 422 }; 423 424 template <typename T> 425 struct UnwrapTraits<OwnedWrapper<T> > { 426 typedef T* ForwardType; 427 static ForwardType Unwrap(const OwnedWrapper<T>& o) { 428 return o.get(); 429 } 430 }; 431 432 template <typename T> 433 struct UnwrapTraits<PassedWrapper<T> > { 434 typedef T ForwardType; 435 static T Unwrap(PassedWrapper<T>& o) { 436 return o.Pass(); 437 } 438 }; 439 440 // Utility for handling different refcounting semantics in the Bind() 441 // function. 442 template <bool is_method, typename T> 443 struct MaybeRefcount; 444 445 template <typename T> 446 struct MaybeRefcount<false, T> { 447 static void AddRef(const T&) {} 448 static void Release(const T&) {} 449 }; 450 451 template <typename T, size_t n> 452 struct MaybeRefcount<false, T[n]> { 453 static void AddRef(const T*) {} 454 static void Release(const T*) {} 455 }; 456 457 template <typename T> 458 struct MaybeRefcount<true, T> { 459 static void AddRef(const T&) {} 460 static void Release(const T&) {} 461 }; 462 463 template <typename T> 464 struct MaybeRefcount<true, T*> { 465 static void AddRef(T* o) { o->AddRef(); } 466 static void Release(T* o) { o->Release(); } 467 }; 468 469 // No need to additionally AddRef() and Release() since we are storing a 470 // scoped_refptr<> inside the storage object already. 471 template <typename T> 472 struct MaybeRefcount<true, scoped_refptr<T> > { 473 static void AddRef(const scoped_refptr<T>& o) {} 474 static void Release(const scoped_refptr<T>& o) {} 475 }; 476 477 template <typename T> 478 struct MaybeRefcount<true, const T*> { 479 static void AddRef(const T* o) { o->AddRef(); } 480 static void Release(const T* o) { o->Release(); } 481 }; 482 483 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a 484 // method. It is used internally by Bind() to select the correct 485 // InvokeHelper that will no-op itself in the event the WeakPtr<> for 486 // the target object is invalidated. 487 // 488 // P1 should be the type of the object that will be received of the method. 489 template <bool IsMethod, typename P1> 490 struct IsWeakMethod : public false_type {}; 491 492 template <typename T> 493 struct IsWeakMethod<true, WeakPtr<T> > : public true_type {}; 494 495 template <typename T> 496 struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T> > > : public true_type {}; 497 498 } // namespace internal 499 500 template <typename T> 501 static inline internal::UnretainedWrapper<T> Unretained(T* o) { 502 return internal::UnretainedWrapper<T>(o); 503 } 504 505 template <typename T> 506 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) { 507 return internal::ConstRefWrapper<T>(o); 508 } 509 510 template <typename T> 511 static inline internal::OwnedWrapper<T> Owned(T* o) { 512 return internal::OwnedWrapper<T>(o); 513 } 514 515 // We offer 2 syntaxes for calling Passed(). The first takes a temporary and 516 // is best suited for use with the return value of a function. The second 517 // takes a pointer to the scoper and is just syntactic sugar to avoid having 518 // to write Passed(scoper.Pass()). 519 template <typename T> 520 static inline internal::PassedWrapper<T> Passed(T scoper) { 521 return internal::PassedWrapper<T>(scoper.Pass()); 522 } 523 template <typename T> 524 static inline internal::PassedWrapper<T> Passed(T* scoper) { 525 return internal::PassedWrapper<T>(scoper->Pass()); 526 } 527 528 template <typename T> 529 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) { 530 return internal::IgnoreResultHelper<T>(data); 531 } 532 533 template <typename T> 534 static inline internal::IgnoreResultHelper<Callback<T> > 535 IgnoreResult(const Callback<T>& data) { 536 return internal::IgnoreResultHelper<Callback<T> >(data); 537 } 538 539 BASE_EXPORT void DoNothing(); 540 541 template<typename T> 542 void DeletePointer(T* obj) { 543 delete obj; 544 } 545 546 // ScopedClosureRunner is akin to scoped_ptr for Closures. It ensures that the 547 // Closure is executed and deleted no matter how the current scope exits. 548 class BASE_EXPORT ScopedClosureRunner { 549 public: 550 explicit ScopedClosureRunner(const Closure& closure); 551 ~ScopedClosureRunner(); 552 553 Closure Release(); 554 555 private: 556 Closure closure_; 557 558 DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedClosureRunner); 559 }; 560 561 } // namespace base 562 563 #endif // BASE_BIND_HELPERS_H_ 564