Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // This defines a set of argument wrappers and related factory methods that
      6 // can be used specify the refcounting and reference semantics of arguments
      7 // that are bound by the Bind() function in base/bind.h.
      8 //
      9 // It also defines a set of simple functions and utilities that people want
     10 // when using Callback<> and Bind().
     11 //
     12 //
     13 // ARGUMENT BINDING WRAPPERS
     14 //
     15 // The wrapper functions are base::Unretained(), base::Owned(), bass::Passed(),
     16 // base::ConstRef(), and base::IgnoreResult().
     17 //
     18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
     19 // refcounting on arguments that are refcounted objects.
     20 //
     21 // Owned() transfers ownership of an object to the Callback resulting from
     22 // bind; the object will be deleted when the Callback is deleted.
     23 //
     24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
     25 // through a Callback. Logically, this signifies a destructive transfer of
     26 // the state of the argument into the target function.  Invoking
     27 // Callback::Run() twice on a Callback that was created with a Passed()
     28 // argument will CHECK() because the first invocation would have already
     29 // transferred ownership to the target function.
     30 //
     31 // ConstRef() allows binding a constant reference to an argument rather
     32 // than a copy.
     33 //
     34 // IgnoreResult() is used to adapt a function or Callback with a return type to
     35 // one with a void return. This is most useful if you have a function with,
     36 // say, a pesky ignorable bool return that you want to use with PostTask or
     37 // something else that expect a Callback with a void return.
     38 //
     39 // EXAMPLE OF Unretained():
     40 //
     41 //   class Foo {
     42 //    public:
     43 //     void func() { cout << "Foo:f" << endl; }
     44 //   };
     45 //
     46 //   // In some function somewhere.
     47 //   Foo foo;
     48 //   Closure foo_callback =
     49 //       Bind(&Foo::func, Unretained(&foo));
     50 //   foo_callback.Run();  // Prints "Foo:f".
     51 //
     52 // Without the Unretained() wrapper on |&foo|, the above call would fail
     53 // to compile because Foo does not support the AddRef() and Release() methods.
     54 //
     55 //
     56 // EXAMPLE OF Owned():
     57 //
     58 //   void foo(int* arg) { cout << *arg << endl }
     59 //
     60 //   int* pn = new int(1);
     61 //   Closure foo_callback = Bind(&foo, Owned(pn));
     62 //
     63 //   foo_callback.Run();  // Prints "1"
     64 //   foo_callback.Run();  // Prints "1"
     65 //   *n = 2;
     66 //   foo_callback.Run();  // Prints "2"
     67 //
     68 //   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
     69 //                          // |foo_callback| goes out of scope.
     70 //
     71 // Without Owned(), someone would have to know to delete |pn| when the last
     72 // reference to the Callback is deleted.
     73 //
     74 //
     75 // EXAMPLE OF ConstRef():
     76 //
     77 //   void foo(int arg) { cout << arg << endl }
     78 //
     79 //   int n = 1;
     80 //   Closure no_ref = Bind(&foo, n);
     81 //   Closure has_ref = Bind(&foo, ConstRef(n));
     82 //
     83 //   no_ref.Run();  // Prints "1"
     84 //   has_ref.Run();  // Prints "1"
     85 //
     86 //   n = 2;
     87 //   no_ref.Run();  // Prints "1"
     88 //   has_ref.Run();  // Prints "2"
     89 //
     90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
     91 // its bound callbacks.
     92 //
     93 //
     94 // EXAMPLE OF IgnoreResult():
     95 //
     96 //   int DoSomething(int arg) { cout << arg << endl; }
     97 //
     98 //   // Assign to a Callback with a void return type.
     99 //   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
    100 //   cb->Run(1);  // Prints "1".
    101 //
    102 //   // Prints "1" on |ml|.
    103 //   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
    104 //
    105 //
    106 // EXAMPLE OF Passed():
    107 //
    108 //   void TakesOwnership(scoped_ptr<Foo> arg) { }
    109 //   scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
    110 //
    111 //   scoped_ptr<Foo> f(new Foo());
    112 //
    113 //   // |cb| is given ownership of Foo(). |f| is now NULL.
    114 //   // You can use f.Pass() in place of &f, but it's more verbose.
    115 //   Closure cb = Bind(&TakesOwnership, Passed(&f));
    116 //
    117 //   // Run was never called so |cb| still owns Foo() and deletes
    118 //   // it on Reset().
    119 //   cb.Reset();
    120 //
    121 //   // |cb| is given a new Foo created by CreateFoo().
    122 //   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
    123 //
    124 //   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
    125 //   // no longer owns Foo() and, if reset, would not delete Foo().
    126 //   cb.Run();  // Foo() is now transferred to |arg| and deleted.
    127 //   cb.Run();  // This CHECK()s since Foo() already been used once.
    128 //
    129 // Passed() is particularly useful with PostTask() when you are transferring
    130 // ownership of an argument into a task, but don't necessarily know if the
    131 // task will always be executed. This can happen if the task is cancellable
    132 // or if it is posted to a MessageLoopProxy.
    133 //
    134 //
    135 // SIMPLE FUNCTIONS AND UTILITIES.
    136 //
    137 //   DoNothing() - Useful for creating a Closure that does nothing when called.
    138 //   DeletePointer<T>() - Useful for creating a Closure that will delete a
    139 //                        pointer when invoked. Only use this when necessary.
    140 //                        In most cases MessageLoop::DeleteSoon() is a better
    141 //                        fit.
    142 //   ScopedClosureRunner - Scoper object that runs the wrapped closure when it
    143 //                         goes out of scope. It's conceptually similar to
    144 //                         scoped_ptr<> but calls Run() instead of deleting
    145 //                         the pointer.
    146 
    147 #ifndef BASE_BIND_HELPERS_H_
    148 #define BASE_BIND_HELPERS_H_
    149 
    150 #include "base/basictypes.h"
    151 #include "base/callback.h"
    152 #include "base/memory/weak_ptr.h"
    153 #include "base/template_util.h"
    154 
    155 namespace base {
    156 namespace internal {
    157 
    158 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
    159 // for the existence of AddRef() and Release() functions of the correct
    160 // signature.
    161 //
    162 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
    163 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
    164 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
    165 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
    166 //
    167 // The last link in particular show the method used below.
    168 //
    169 // For SFINAE to work with inherited methods, we need to pull some extra tricks
    170 // with multiple inheritance.  In the more standard formulation, the overloads
    171 // of Check would be:
    172 //
    173 //   template <typename C>
    174 //   Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
    175 //
    176 //   template <typename C>
    177 //   No NotTheCheckWeWant(...);
    178 //
    179 //   static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
    180 //
    181 // The problem here is that template resolution will not match
    182 // C::TargetFunc if TargetFunc does not exist directly in C.  That is, if
    183 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
    184 // |value| will be false.  This formulation only checks for whether or
    185 // not TargetFunc exist directly in the class being introspected.
    186 //
    187 // To get around this, we play a dirty trick with multiple inheritance.
    188 // First, We create a class BaseMixin that declares each function that we
    189 // want to probe for.  Then we create a class Base that inherits from both T
    190 // (the class we wish to probe) and BaseMixin.  Note that the function
    191 // signature in BaseMixin does not need to match the signature of the function
    192 // we are probing for; thus it's easiest to just use void(void).
    193 //
    194 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
    195 // ambiguous resolution between BaseMixin and T.  This lets us write the
    196 // following:
    197 //
    198 //   template <typename C>
    199 //   No GoodCheck(Helper<&C::TargetFunc>*);
    200 //
    201 //   template <typename C>
    202 //   Yes GoodCheck(...);
    203 //
    204 //   static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
    205 //
    206 // Notice here that the variadic version of GoodCheck() returns Yes here
    207 // instead of No like the previous one. Also notice that we calculate |value|
    208 // by specializing GoodCheck() on Base instead of T.
    209 //
    210 // We've reversed the roles of the variadic, and Helper overloads.
    211 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
    212 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
    213 // to the variadic version if T has TargetFunc.  If T::TargetFunc does not
    214 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution
    215 // will prefer GoodCheck(Helper<&C::TargetFunc>*).
    216 //
    217 // This method of SFINAE will correctly probe for inherited names, but it cannot
    218 // typecheck those names.  It's still a good enough sanity check though.
    219 //
    220 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
    221 //
    222 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
    223 // this works well.
    224 //
    225 // TODO(ajwong): Make this check for Release() as well.
    226 // See http://crbug.com/82038.
    227 template <typename T>
    228 class SupportsAddRefAndRelease {
    229   typedef char Yes[1];
    230   typedef char No[2];
    231 
    232   struct BaseMixin {
    233     void AddRef();
    234   };
    235 
    236 // MSVC warns when you try to use Base if T has a private destructor, the
    237 // common pattern for refcounted types. It does this even though no attempt to
    238 // instantiate Base is made.  We disable the warning for this definition.
    239 #if defined(OS_WIN)
    240 #pragma warning(push)
    241 #pragma warning(disable:4624)
    242 #endif
    243   struct Base : public T, public BaseMixin {
    244   };
    245 #if defined(OS_WIN)
    246 #pragma warning(pop)
    247 #endif
    248 
    249   template <void(BaseMixin::*)(void)> struct Helper {};
    250 
    251   template <typename C>
    252   static No& Check(Helper<&C::AddRef>*);
    253 
    254   template <typename >
    255   static Yes& Check(...);
    256 
    257  public:
    258   static const bool value = sizeof(Check<Base>(0)) == sizeof(Yes);
    259 };
    260 
    261 // Helpers to assert that arguments of a recounted type are bound with a
    262 // scoped_refptr.
    263 template <bool IsClasstype, typename T>
    264 struct UnsafeBindtoRefCountedArgHelper : false_type {
    265 };
    266 
    267 template <typename T>
    268 struct UnsafeBindtoRefCountedArgHelper<true, T>
    269     : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
    270 };
    271 
    272 template <typename T>
    273 struct UnsafeBindtoRefCountedArg : false_type {
    274 };
    275 
    276 template <typename T>
    277 struct UnsafeBindtoRefCountedArg<T*>
    278     : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
    279 };
    280 
    281 template <typename T>
    282 class HasIsMethodTag {
    283   typedef char Yes[1];
    284   typedef char No[2];
    285 
    286   template <typename U>
    287   static Yes& Check(typename U::IsMethod*);
    288 
    289   template <typename U>
    290   static No& Check(...);
    291 
    292  public:
    293   static const bool value = sizeof(Check<T>(0)) == sizeof(Yes);
    294 };
    295 
    296 template <typename T>
    297 class UnretainedWrapper {
    298  public:
    299   explicit UnretainedWrapper(T* o) : ptr_(o) {}
    300   T* get() const { return ptr_; }
    301  private:
    302   T* ptr_;
    303 };
    304 
    305 template <typename T>
    306 class ConstRefWrapper {
    307  public:
    308   explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
    309   const T& get() const { return *ptr_; }
    310  private:
    311   const T* ptr_;
    312 };
    313 
    314 template <typename T>
    315 struct IgnoreResultHelper {
    316   explicit IgnoreResultHelper(T functor) : functor_(functor) {}
    317 
    318   T functor_;
    319 };
    320 
    321 template <typename T>
    322 struct IgnoreResultHelper<Callback<T> > {
    323   explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
    324 
    325   const Callback<T>& functor_;
    326 };
    327 
    328 // An alternate implementation is to avoid the destructive copy, and instead
    329 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
    330 // a class that is essentially a scoped_ptr<>.
    331 //
    332 // The current implementation has the benefit though of leaving ParamTraits<>
    333 // fully in callback_internal.h as well as avoiding type conversions during
    334 // storage.
    335 template <typename T>
    336 class OwnedWrapper {
    337  public:
    338   explicit OwnedWrapper(T* o) : ptr_(o) {}
    339   ~OwnedWrapper() { delete ptr_; }
    340   T* get() const { return ptr_; }
    341   OwnedWrapper(const OwnedWrapper& other) {
    342     ptr_ = other.ptr_;
    343     other.ptr_ = NULL;
    344   }
    345 
    346  private:
    347   mutable T* ptr_;
    348 };
    349 
    350 // PassedWrapper is a copyable adapter for a scoper that ignores const.
    351 //
    352 // It is needed to get around the fact that Bind() takes a const reference to
    353 // all its arguments.  Because Bind() takes a const reference to avoid
    354 // unnecessary copies, it is incompatible with movable-but-not-copyable
    355 // types; doing a destructive "move" of the type into Bind() would violate
    356 // the const correctness.
    357 //
    358 // This conundrum cannot be solved without either C++11 rvalue references or
    359 // a O(2^n) blowup of Bind() templates to handle each combination of regular
    360 // types and movable-but-not-copyable types.  Thus we introduce a wrapper type
    361 // that is copyable to transmit the correct type information down into
    362 // BindState<>. Ignoring const in this type makes sense because it is only
    363 // created when we are explicitly trying to do a destructive move.
    364 //
    365 // Two notes:
    366 //  1) PassedWrapper supports any type that has a "Pass()" function.
    367 //     This is intentional. The whitelisting of which specific types we
    368 //     support is maintained by CallbackParamTraits<>.
    369 //  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
    370 //     scoper to a Callback and allow the Callback to execute once.
    371 template <typename T>
    372 class PassedWrapper {
    373  public:
    374   explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {}
    375   PassedWrapper(const PassedWrapper& other)
    376       : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) {
    377   }
    378   T Pass() const {
    379     CHECK(is_valid_);
    380     is_valid_ = false;
    381     return scoper_.Pass();
    382   }
    383 
    384  private:
    385   mutable bool is_valid_;
    386   mutable T scoper_;
    387 };
    388 
    389 // Unwrap the stored parameters for the wrappers above.
    390 template <typename T>
    391 struct UnwrapTraits {
    392   typedef const T& ForwardType;
    393   static ForwardType Unwrap(const T& o) { return o; }
    394 };
    395 
    396 template <typename T>
    397 struct UnwrapTraits<UnretainedWrapper<T> > {
    398   typedef T* ForwardType;
    399   static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
    400     return unretained.get();
    401   }
    402 };
    403 
    404 template <typename T>
    405 struct UnwrapTraits<ConstRefWrapper<T> > {
    406   typedef const T& ForwardType;
    407   static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
    408     return const_ref.get();
    409   }
    410 };
    411 
    412 template <typename T>
    413 struct UnwrapTraits<scoped_refptr<T> > {
    414   typedef T* ForwardType;
    415   static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
    416 };
    417 
    418 template <typename T>
    419 struct UnwrapTraits<WeakPtr<T> > {
    420   typedef const WeakPtr<T>& ForwardType;
    421   static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
    422 };
    423 
    424 template <typename T>
    425 struct UnwrapTraits<OwnedWrapper<T> > {
    426   typedef T* ForwardType;
    427   static ForwardType Unwrap(const OwnedWrapper<T>& o) {
    428     return o.get();
    429   }
    430 };
    431 
    432 template <typename T>
    433 struct UnwrapTraits<PassedWrapper<T> > {
    434   typedef T ForwardType;
    435   static T Unwrap(PassedWrapper<T>& o) {
    436     return o.Pass();
    437   }
    438 };
    439 
    440 // Utility for handling different refcounting semantics in the Bind()
    441 // function.
    442 template <bool is_method, typename T>
    443 struct MaybeRefcount;
    444 
    445 template <typename T>
    446 struct MaybeRefcount<false, T> {
    447   static void AddRef(const T&) {}
    448   static void Release(const T&) {}
    449 };
    450 
    451 template <typename T, size_t n>
    452 struct MaybeRefcount<false, T[n]> {
    453   static void AddRef(const T*) {}
    454   static void Release(const T*) {}
    455 };
    456 
    457 template <typename T>
    458 struct MaybeRefcount<true, T> {
    459   static void AddRef(const T&) {}
    460   static void Release(const T&) {}
    461 };
    462 
    463 template <typename T>
    464 struct MaybeRefcount<true, T*> {
    465   static void AddRef(T* o) { o->AddRef(); }
    466   static void Release(T* o) { o->Release(); }
    467 };
    468 
    469 // No need to additionally AddRef() and Release() since we are storing a
    470 // scoped_refptr<> inside the storage object already.
    471 template <typename T>
    472 struct MaybeRefcount<true, scoped_refptr<T> > {
    473   static void AddRef(const scoped_refptr<T>& o) {}
    474   static void Release(const scoped_refptr<T>& o) {}
    475 };
    476 
    477 template <typename T>
    478 struct MaybeRefcount<true, const T*> {
    479   static void AddRef(const T* o) { o->AddRef(); }
    480   static void Release(const T* o) { o->Release(); }
    481 };
    482 
    483 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
    484 // method.  It is used internally by Bind() to select the correct
    485 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
    486 // the target object is invalidated.
    487 //
    488 // P1 should be the type of the object that will be received of the method.
    489 template <bool IsMethod, typename P1>
    490 struct IsWeakMethod : public false_type {};
    491 
    492 template <typename T>
    493 struct IsWeakMethod<true, WeakPtr<T> > : public true_type {};
    494 
    495 template <typename T>
    496 struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T> > > : public true_type {};
    497 
    498 }  // namespace internal
    499 
    500 template <typename T>
    501 static inline internal::UnretainedWrapper<T> Unretained(T* o) {
    502   return internal::UnretainedWrapper<T>(o);
    503 }
    504 
    505 template <typename T>
    506 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
    507   return internal::ConstRefWrapper<T>(o);
    508 }
    509 
    510 template <typename T>
    511 static inline internal::OwnedWrapper<T> Owned(T* o) {
    512   return internal::OwnedWrapper<T>(o);
    513 }
    514 
    515 // We offer 2 syntaxes for calling Passed().  The first takes a temporary and
    516 // is best suited for use with the return value of a function. The second
    517 // takes a pointer to the scoper and is just syntactic sugar to avoid having
    518 // to write Passed(scoper.Pass()).
    519 template <typename T>
    520 static inline internal::PassedWrapper<T> Passed(T scoper) {
    521   return internal::PassedWrapper<T>(scoper.Pass());
    522 }
    523 template <typename T>
    524 static inline internal::PassedWrapper<T> Passed(T* scoper) {
    525   return internal::PassedWrapper<T>(scoper->Pass());
    526 }
    527 
    528 template <typename T>
    529 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
    530   return internal::IgnoreResultHelper<T>(data);
    531 }
    532 
    533 template <typename T>
    534 static inline internal::IgnoreResultHelper<Callback<T> >
    535 IgnoreResult(const Callback<T>& data) {
    536   return internal::IgnoreResultHelper<Callback<T> >(data);
    537 }
    538 
    539 BASE_EXPORT void DoNothing();
    540 
    541 template<typename T>
    542 void DeletePointer(T* obj) {
    543   delete obj;
    544 }
    545 
    546 // ScopedClosureRunner is akin to scoped_ptr for Closures. It ensures that the
    547 // Closure is executed and deleted no matter how the current scope exits.
    548 class BASE_EXPORT ScopedClosureRunner {
    549  public:
    550   explicit ScopedClosureRunner(const Closure& closure);
    551   ~ScopedClosureRunner();
    552 
    553   Closure Release();
    554 
    555  private:
    556   Closure closure_;
    557 
    558   DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedClosureRunner);
    559 };
    560 
    561 }  // namespace base
    562 
    563 #endif  // BASE_BIND_HELPERS_H_
    564