Home | History | Annotate | Download | only in IR
      1 //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines layout properties related to datatype size/offset/alignment
     11 // information.  It uses lazy annotations to cache information about how
     12 // structure types are laid out and used.
     13 //
     14 // This structure should be created once, filled in if the defaults are not
     15 // correct and then passed around by const&.  None of the members functions
     16 // require modification to the object.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #ifndef LLVM_IR_DATALAYOUT_H
     21 #define LLVM_IR_DATALAYOUT_H
     22 
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/Pass.h"
     28 #include "llvm/Support/DataTypes.h"
     29 
     30 namespace llvm {
     31 
     32 class Value;
     33 class Type;
     34 class IntegerType;
     35 class StructType;
     36 class StructLayout;
     37 class GlobalVariable;
     38 class LLVMContext;
     39 template<typename T>
     40 class ArrayRef;
     41 
     42 /// Enum used to categorize the alignment types stored by LayoutAlignElem
     43 enum AlignTypeEnum {
     44   INVALID_ALIGN = 0,                 ///< An invalid alignment
     45   INTEGER_ALIGN = 'i',               ///< Integer type alignment
     46   VECTOR_ALIGN = 'v',                ///< Vector type alignment
     47   FLOAT_ALIGN = 'f',                 ///< Floating point type alignment
     48   AGGREGATE_ALIGN = 'a',             ///< Aggregate alignment
     49   STACK_ALIGN = 's'                  ///< Stack objects alignment
     50 };
     51 
     52 /// Layout alignment element.
     53 ///
     54 /// Stores the alignment data associated with a given alignment type (integer,
     55 /// vector, float) and type bit width.
     56 ///
     57 /// @note The unusual order of elements in the structure attempts to reduce
     58 /// padding and make the structure slightly more cache friendly.
     59 struct LayoutAlignElem {
     60   unsigned AlignType    : 8;  ///< Alignment type (AlignTypeEnum)
     61   unsigned TypeBitWidth : 24; ///< Type bit width
     62   unsigned ABIAlign     : 16; ///< ABI alignment for this type/bitw
     63   unsigned PrefAlign    : 16; ///< Pref. alignment for this type/bitw
     64 
     65   /// Initializer
     66   static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
     67                              unsigned pref_align, uint32_t bit_width);
     68   /// Equality predicate
     69   bool operator==(const LayoutAlignElem &rhs) const;
     70 };
     71 
     72 /// Layout pointer alignment element.
     73 ///
     74 /// Stores the alignment data associated with a given pointer and address space.
     75 ///
     76 /// @note The unusual order of elements in the structure attempts to reduce
     77 /// padding and make the structure slightly more cache friendly.
     78 struct PointerAlignElem {
     79   unsigned            ABIAlign;       ///< ABI alignment for this type/bitw
     80   unsigned            PrefAlign;      ///< Pref. alignment for this type/bitw
     81   uint32_t            TypeBitWidth;   ///< Type bit width
     82   uint32_t            AddressSpace;   ///< Address space for the pointer type
     83 
     84   /// Initializer
     85   static PointerAlignElem get(uint32_t addr_space, unsigned abi_align,
     86                              unsigned pref_align, uint32_t bit_width);
     87   /// Equality predicate
     88   bool operator==(const PointerAlignElem &rhs) const;
     89 };
     90 
     91 
     92 /// DataLayout - This class holds a parsed version of the target data layout
     93 /// string in a module and provides methods for querying it.  The target data
     94 /// layout string is specified *by the target* - a frontend generating LLVM IR
     95 /// is required to generate the right target data for the target being codegen'd
     96 /// to.  If some measure of portability is desired, an empty string may be
     97 /// specified in the module.
     98 class DataLayout : public ImmutablePass {
     99 private:
    100   bool          LittleEndian;          ///< Defaults to false
    101   unsigned      StackNaturalAlign;     ///< Stack natural alignment
    102 
    103   SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
    104 
    105   /// Alignments - Where the primitive type alignment data is stored.
    106   ///
    107   /// @sa init().
    108   /// @note Could support multiple size pointer alignments, e.g., 32-bit
    109   /// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now,
    110   /// we don't.
    111   SmallVector<LayoutAlignElem, 16> Alignments;
    112   DenseMap<unsigned, PointerAlignElem> Pointers;
    113 
    114   /// InvalidAlignmentElem - This member is a signal that a requested alignment
    115   /// type and bit width were not found in the SmallVector.
    116   static const LayoutAlignElem InvalidAlignmentElem;
    117 
    118   /// InvalidPointerElem - This member is a signal that a requested pointer
    119   /// type and bit width were not found in the DenseSet.
    120   static const PointerAlignElem InvalidPointerElem;
    121 
    122   // The StructType -> StructLayout map.
    123   mutable void *LayoutMap;
    124 
    125   //! Set/initialize target alignments
    126   void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
    127                     unsigned pref_align, uint32_t bit_width);
    128   unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
    129                             bool ABIAlign, Type *Ty) const;
    130 
    131   //! Set/initialize pointer alignments
    132   void setPointerAlignment(uint32_t addr_space, unsigned abi_align,
    133       unsigned pref_align, uint32_t bit_width);
    134 
    135   //! Internal helper method that returns requested alignment for type.
    136   unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
    137 
    138   /// Valid alignment predicate.
    139   ///
    140   /// Predicate that tests a LayoutAlignElem reference returned by get() against
    141   /// InvalidAlignmentElem.
    142   bool validAlignment(const LayoutAlignElem &align) const {
    143     return &align != &InvalidAlignmentElem;
    144   }
    145 
    146   /// Valid pointer predicate.
    147   ///
    148   /// Predicate that tests a PointerAlignElem reference returned by get() against
    149   /// InvalidPointerElem.
    150   bool validPointer(const PointerAlignElem &align) const {
    151     return &align != &InvalidPointerElem;
    152   }
    153 
    154   /// Parses a target data specification string. Assert if the string is
    155   /// malformed.
    156   void parseSpecifier(StringRef LayoutDescription);
    157 
    158 public:
    159   /// Default ctor.
    160   ///
    161   /// @note This has to exist, because this is a pass, but it should never be
    162   /// used.
    163   DataLayout();
    164 
    165   /// Constructs a DataLayout from a specification string. See init().
    166   explicit DataLayout(StringRef LayoutDescription)
    167     : ImmutablePass(ID) {
    168     init(LayoutDescription);
    169   }
    170 
    171   /// Initialize target data from properties stored in the module.
    172   explicit DataLayout(const Module *M);
    173 
    174   DataLayout(const DataLayout &DL) :
    175     ImmutablePass(ID),
    176     LittleEndian(DL.isLittleEndian()),
    177     StackNaturalAlign(DL.StackNaturalAlign),
    178     LegalIntWidths(DL.LegalIntWidths),
    179     Alignments(DL.Alignments),
    180     Pointers(DL.Pointers),
    181     LayoutMap(0)
    182   { }
    183 
    184   ~DataLayout();  // Not virtual, do not subclass this class
    185 
    186   /// DataLayout is an immutable pass, but holds state.  This allows the pass
    187   /// manager to clear its mutable state.
    188   bool doFinalization(Module &M);
    189 
    190   /// Parse a data layout string (with fallback to default values). Ensure that
    191   /// the data layout pass is registered.
    192   void init(StringRef LayoutDescription);
    193 
    194   /// Layout endianness...
    195   bool isLittleEndian() const { return LittleEndian; }
    196   bool isBigEndian() const { return !LittleEndian; }
    197 
    198   /// getStringRepresentation - Return the string representation of the
    199   /// DataLayout.  This representation is in the same format accepted by the
    200   /// string constructor above.
    201   std::string getStringRepresentation() const;
    202 
    203   /// isLegalInteger - This function returns true if the specified type is
    204   /// known to be a native integer type supported by the CPU.  For example,
    205   /// i64 is not native on most 32-bit CPUs and i37 is not native on any known
    206   /// one.  This returns false if the integer width is not legal.
    207   ///
    208   /// The width is specified in bits.
    209   ///
    210   bool isLegalInteger(unsigned Width) const {
    211     for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
    212       if (LegalIntWidths[i] == Width)
    213         return true;
    214     return false;
    215   }
    216 
    217   bool isIllegalInteger(unsigned Width) const {
    218     return !isLegalInteger(Width);
    219   }
    220 
    221   /// Returns true if the given alignment exceeds the natural stack alignment.
    222   bool exceedsNaturalStackAlignment(unsigned Align) const {
    223     return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
    224   }
    225 
    226   /// fitsInLegalInteger - This function returns true if the specified type fits
    227   /// in a native integer type supported by the CPU.  For example, if the CPU
    228   /// only supports i32 as a native integer type, then i27 fits in a legal
    229   // integer type but i45 does not.
    230   bool fitsInLegalInteger(unsigned Width) const {
    231     for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
    232       if (Width <= LegalIntWidths[i])
    233         return true;
    234     return false;
    235   }
    236 
    237   /// Layout pointer alignment
    238   /// FIXME: The defaults need to be removed once all of
    239   /// the backends/clients are updated.
    240   unsigned getPointerABIAlignment(unsigned AS = 0) const {
    241     DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
    242     if (val == Pointers.end()) {
    243       val = Pointers.find(0);
    244     }
    245     return val->second.ABIAlign;
    246   }
    247 
    248   /// Return target's alignment for stack-based pointers
    249   /// FIXME: The defaults need to be removed once all of
    250   /// the backends/clients are updated.
    251   unsigned getPointerPrefAlignment(unsigned AS = 0) const {
    252     DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
    253     if (val == Pointers.end()) {
    254       val = Pointers.find(0);
    255     }
    256     return val->second.PrefAlign;
    257   }
    258   /// Layout pointer size
    259   /// FIXME: The defaults need to be removed once all of
    260   /// the backends/clients are updated.
    261   unsigned getPointerSize(unsigned AS = 0) const {
    262     DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
    263     if (val == Pointers.end()) {
    264       val = Pointers.find(0);
    265     }
    266     return val->second.TypeBitWidth;
    267   }
    268   /// Layout pointer size, in bits
    269   /// FIXME: The defaults need to be removed once all of
    270   /// the backends/clients are updated.
    271   unsigned getPointerSizeInBits(unsigned AS = 0) const {
    272     return getPointerSize(AS) * 8;
    273   }
    274 
    275   /// Layout pointer size, in bits, based on the type.  If this function is
    276   /// called with a pointer type, then the type size of the pointer is returned.
    277   /// If this function is called with a vector of pointers, then the type size
    278   /// of the pointer is returned.  This should only be called with a pointer or
    279   /// vector of pointers.
    280   unsigned getPointerTypeSizeInBits(Type *) const;
    281 
    282   unsigned getPointerTypeSize(Type *Ty) const {
    283     return getPointerTypeSizeInBits(Ty) / 8;
    284   }
    285 
    286   /// Size examples:
    287   ///
    288   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
    289   /// ----        ----------  ---------------  ---------------
    290   ///  i1            1           8                8
    291   ///  i8            8           8                8
    292   ///  i19          19          24               32
    293   ///  i32          32          32               32
    294   ///  i100        100         104              128
    295   ///  i128        128         128              128
    296   ///  Float        32          32               32
    297   ///  Double       64          64               64
    298   ///  X86_FP80     80          80               96
    299   ///
    300   /// [*] The alloc size depends on the alignment, and thus on the target.
    301   ///     These values are for x86-32 linux.
    302 
    303   /// getTypeSizeInBits - Return the number of bits necessary to hold the
    304   /// specified type.  For example, returns 36 for i36 and 80 for x86_fp80.
    305   /// The type passed must have a size (Type::isSized() must return true).
    306   uint64_t getTypeSizeInBits(Type *Ty) const;
    307 
    308   /// getTypeStoreSize - Return the maximum number of bytes that may be
    309   /// overwritten by storing the specified type.  For example, returns 5
    310   /// for i36 and 10 for x86_fp80.
    311   uint64_t getTypeStoreSize(Type *Ty) const {
    312     return (getTypeSizeInBits(Ty)+7)/8;
    313   }
    314 
    315   /// getTypeStoreSizeInBits - Return the maximum number of bits that may be
    316   /// overwritten by storing the specified type; always a multiple of 8.  For
    317   /// example, returns 40 for i36 and 80 for x86_fp80.
    318   uint64_t getTypeStoreSizeInBits(Type *Ty) const {
    319     return 8*getTypeStoreSize(Ty);
    320   }
    321 
    322   /// getTypeAllocSize - Return the offset in bytes between successive objects
    323   /// of the specified type, including alignment padding.  This is the amount
    324   /// that alloca reserves for this type.  For example, returns 12 or 16 for
    325   /// x86_fp80, depending on alignment.
    326   uint64_t getTypeAllocSize(Type *Ty) const {
    327     // Round up to the next alignment boundary.
    328     return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
    329   }
    330 
    331   /// getTypeAllocSizeInBits - Return the offset in bits between successive
    332   /// objects of the specified type, including alignment padding; always a
    333   /// multiple of 8.  This is the amount that alloca reserves for this type.
    334   /// For example, returns 96 or 128 for x86_fp80, depending on alignment.
    335   uint64_t getTypeAllocSizeInBits(Type *Ty) const {
    336     return 8*getTypeAllocSize(Ty);
    337   }
    338 
    339   /// getABITypeAlignment - Return the minimum ABI-required alignment for the
    340   /// specified type.
    341   unsigned getABITypeAlignment(Type *Ty) const;
    342 
    343   /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
    344   /// an integer type of the specified bitwidth.
    345   unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
    346 
    347   /// getCallFrameTypeAlignment - Return the minimum ABI-required alignment
    348   /// for the specified type when it is part of a call frame.
    349   unsigned getCallFrameTypeAlignment(Type *Ty) const;
    350 
    351   /// getPrefTypeAlignment - Return the preferred stack/global alignment for
    352   /// the specified type.  This is always at least as good as the ABI alignment.
    353   unsigned getPrefTypeAlignment(Type *Ty) const;
    354 
    355   /// getPreferredTypeAlignmentShift - Return the preferred alignment for the
    356   /// specified type, returned as log2 of the value (a shift amount).
    357   unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
    358 
    359   /// getIntPtrType - Return an integer type with size at least as big as that
    360   /// of a pointer in the given address space.
    361   IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
    362 
    363   /// getIntPtrType - Return an integer (vector of integer) type with size at
    364   /// least as big as that of a pointer of the given pointer (vector of pointer)
    365   /// type.
    366   Type *getIntPtrType(Type *) const;
    367 
    368   /// getSmallestLegalIntType - Return the smallest integer type with size at
    369   /// least as big as Width bits.
    370   Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
    371 
    372   /// getIndexedOffset - return the offset from the beginning of the type for
    373   /// the specified indices.  This is used to implement getelementptr.
    374   uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
    375 
    376   /// getStructLayout - Return a StructLayout object, indicating the alignment
    377   /// of the struct, its size, and the offsets of its fields.  Note that this
    378   /// information is lazily cached.
    379   const StructLayout *getStructLayout(StructType *Ty) const;
    380 
    381   /// getPreferredAlignment - Return the preferred alignment of the specified
    382   /// global.  This includes an explicitly requested alignment (if the global
    383   /// has one).
    384   unsigned getPreferredAlignment(const GlobalVariable *GV) const;
    385 
    386   /// getPreferredAlignmentLog - Return the preferred alignment of the
    387   /// specified global, returned in log form.  This includes an explicitly
    388   /// requested alignment (if the global has one).
    389   unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
    390 
    391   /// RoundUpAlignment - Round the specified value up to the next alignment
    392   /// boundary specified by Alignment.  For example, 7 rounded up to an
    393   /// alignment boundary of 4 is 8.  8 rounded up to the alignment boundary of 4
    394   /// is 8 because it is already aligned.
    395   template <typename UIntTy>
    396   static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
    397     assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
    398     return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
    399   }
    400 
    401   static char ID; // Pass identification, replacement for typeid
    402 };
    403 
    404 /// StructLayout - used to lazily calculate structure layout information for a
    405 /// target machine, based on the DataLayout structure.
    406 ///
    407 class StructLayout {
    408   uint64_t StructSize;
    409   unsigned StructAlignment;
    410   unsigned NumElements;
    411   uint64_t MemberOffsets[1];  // variable sized array!
    412 public:
    413 
    414   uint64_t getSizeInBytes() const {
    415     return StructSize;
    416   }
    417 
    418   uint64_t getSizeInBits() const {
    419     return 8*StructSize;
    420   }
    421 
    422   unsigned getAlignment() const {
    423     return StructAlignment;
    424   }
    425 
    426   /// getElementContainingOffset - Given a valid byte offset into the structure,
    427   /// return the structure index that contains it.
    428   ///
    429   unsigned getElementContainingOffset(uint64_t Offset) const;
    430 
    431   uint64_t getElementOffset(unsigned Idx) const {
    432     assert(Idx < NumElements && "Invalid element idx!");
    433     return MemberOffsets[Idx];
    434   }
    435 
    436   uint64_t getElementOffsetInBits(unsigned Idx) const {
    437     return getElementOffset(Idx)*8;
    438   }
    439 
    440 private:
    441   friend class DataLayout;   // Only DataLayout can create this class
    442   StructLayout(StructType *ST, const DataLayout &DL);
    443 };
    444 
    445 
    446 // The implementation of this method is provided inline as it is particularly
    447 // well suited to constant folding when called on a specific Type subclass.
    448 inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
    449   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
    450   switch (Ty->getTypeID()) {
    451   case Type::LabelTyID:
    452     return getPointerSizeInBits(0);
    453   case Type::PointerTyID:
    454     return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
    455   case Type::ArrayTyID: {
    456     ArrayType *ATy = cast<ArrayType>(Ty);
    457     return ATy->getNumElements() *
    458            getTypeAllocSizeInBits(ATy->getElementType());
    459   }
    460   case Type::StructTyID:
    461     // Get the layout annotation... which is lazily created on demand.
    462     return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
    463   case Type::IntegerTyID:
    464     return cast<IntegerType>(Ty)->getBitWidth();
    465   case Type::HalfTyID:
    466     return 16;
    467   case Type::FloatTyID:
    468     return 32;
    469   case Type::DoubleTyID:
    470   case Type::X86_MMXTyID:
    471     return 64;
    472   case Type::PPC_FP128TyID:
    473   case Type::FP128TyID:
    474     return 128;
    475     // In memory objects this is always aligned to a higher boundary, but
    476   // only 80 bits contain information.
    477   case Type::X86_FP80TyID:
    478     return 80;
    479   case Type::VectorTyID: {
    480     VectorType *VTy = cast<VectorType>(Ty);
    481     return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
    482   }
    483   default:
    484     llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
    485   }
    486 }
    487 
    488 } // End llvm namespace
    489 
    490 #endif
    491