Home | History | Annotate | Download | only in tool
      1 /*
      2 ** This file contains all sources (including headers) to the LEMON
      3 ** LALR(1) parser generator.  The sources have been combined into a
      4 ** single file to make it easy to include LEMON in the source tree
      5 ** and Makefile of another program.
      6 **
      7 ** The author of this program disclaims copyright.
      8 */
      9 #include <stdio.h>
     10 #include <stdarg.h>
     11 #include <string.h>
     12 #include <ctype.h>
     13 #include <stdlib.h>
     14 #include <assert.h>
     15 
     16 #ifndef __WIN32__
     17 #   if defined(_WIN32) || defined(WIN32)
     18 #	define __WIN32__
     19 #   endif
     20 #endif
     21 
     22 #ifdef __WIN32__
     23 #ifdef __cplusplus
     24 extern "C" {
     25 #endif
     26 extern int access(const char *path, int mode);
     27 #ifdef __cplusplus
     28 }
     29 #endif
     30 #else
     31 #include <unistd.h>
     32 #endif
     33 
     34 /* #define PRIVATE static */
     35 #define PRIVATE
     36 
     37 #ifdef TEST
     38 #define MAXRHS 5       /* Set low to exercise exception code */
     39 #else
     40 #define MAXRHS 1000
     41 #endif
     42 
     43 static int showPrecedenceConflict = 0;
     44 static const char **made_files = NULL;
     45 static int made_files_count = 0;
     46 static int successful_exit = 0;
     47 static void LemonAtExit(void)
     48 {
     49     /* if we failed, delete (most) files we made, to unconfuse build tools. */
     50     int i;
     51     for (i = 0; i < made_files_count; i++) {
     52         if (!successful_exit) {
     53             remove(made_files[i]);
     54         }
     55     }
     56     free(made_files);
     57     made_files_count = 0;
     58     made_files = NULL;
     59 }
     60 
     61 static char *msort(char*,char**,int(*)(const char*,const char*));
     62 
     63 /*
     64 ** Compilers are getting increasingly pedantic about type conversions
     65 ** as C evolves ever closer to Ada....  To work around the latest problems
     66 ** we have to define the following variant of strlen().
     67 */
     68 #define lemonStrlen(X)   ((int)strlen(X))
     69 
     70 /* a few forward declarations... */
     71 struct rule;
     72 struct lemon;
     73 struct action;
     74 
     75 static struct action *Action_new(void);
     76 static struct action *Action_sort(struct action *);
     77 
     78 /********** From the file "build.h" ************************************/
     79 void FindRulePrecedences();
     80 void FindFirstSets();
     81 void FindStates();
     82 void FindLinks();
     83 void FindFollowSets();
     84 void FindActions();
     85 
     86 /********* From the file "configlist.h" *********************************/
     87 void Configlist_init(void);
     88 struct config *Configlist_add(struct rule *, int);
     89 struct config *Configlist_addbasis(struct rule *, int);
     90 void Configlist_closure(struct lemon *);
     91 void Configlist_sort(void);
     92 void Configlist_sortbasis(void);
     93 struct config *Configlist_return(void);
     94 struct config *Configlist_basis(void);
     95 void Configlist_eat(struct config *);
     96 void Configlist_reset(void);
     97 
     98 /********* From the file "error.h" ***************************************/
     99 void ErrorMsg(const char *, int,const char *, ...);
    100 
    101 /****** From the file "option.h" ******************************************/
    102 enum option_type { OPT_FLAG=1,  OPT_INT,  OPT_DBL,  OPT_STR,
    103          OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
    104 struct s_options {
    105   enum option_type type;
    106   const char *label;
    107   char *arg;
    108   const char *message;
    109 };
    110 int    OptInit(char**,struct s_options*,FILE*);
    111 int    OptNArgs(void);
    112 char  *OptArg(int);
    113 void   OptErr(int);
    114 void   OptPrint(void);
    115 
    116 /******** From the file "parse.h" *****************************************/
    117 void Parse(struct lemon *lemp);
    118 
    119 /********* From the file "plink.h" ***************************************/
    120 struct plink *Plink_new(void);
    121 void Plink_add(struct plink **, struct config *);
    122 void Plink_copy(struct plink **, struct plink *);
    123 void Plink_delete(struct plink *);
    124 
    125 /********** From the file "report.h" *************************************/
    126 void Reprint(struct lemon *);
    127 void ReportOutput(struct lemon *);
    128 void ReportTable(struct lemon *, int);
    129 void ReportHeader(struct lemon *);
    130 void CompressTables(struct lemon *);
    131 void ResortStates(struct lemon *);
    132 
    133 /********** From the file "set.h" ****************************************/
    134 void  SetSize(int);             /* All sets will be of size N */
    135 char *SetNew(void);               /* A new set for element 0..N */
    136 void  SetFree(char*);             /* Deallocate a set */
    137 
    138 char *SetNew(void);               /* A new set for element 0..N */
    139 int SetAdd(char*,int);            /* Add element to a set */
    140 int SetUnion(char *,char *);    /* A <- A U B, thru element N */
    141 #define SetFind(X,Y) (X[Y])       /* True if Y is in set X */
    142 
    143 /********** From the file "struct.h" *************************************/
    144 /*
    145 ** Principal data structures for the LEMON parser generator.
    146 */
    147 
    148 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
    149 
    150 /* Symbols (terminals and nonterminals) of the grammar are stored
    151 ** in the following: */
    152 enum symbol_type {
    153   TERMINAL,
    154   NONTERMINAL,
    155   MULTITERMINAL
    156 };
    157 enum e_assoc {
    158     LEFT,
    159     RIGHT,
    160     NONE,
    161     UNK
    162 };
    163 struct symbol {
    164   const char *name;        /* Name of the symbol */
    165   int index;               /* Index number for this symbol */
    166   enum symbol_type type;   /* Symbols are all either TERMINALS or NTs */
    167   struct rule *rule;       /* Linked list of rules of this (if an NT) */
    168   struct symbol *fallback; /* fallback token in case this token doesn't parse */
    169   int prec;                /* Precedence if defined (-1 otherwise) */
    170   enum e_assoc assoc;      /* Associativity if precedence is defined */
    171   char *firstset;          /* First-set for all rules of this symbol */
    172   Boolean lambda;          /* True if NT and can generate an empty string */
    173   int useCnt;              /* Number of times used */
    174   char *destructor;        /* Code which executes whenever this symbol is
    175                            ** popped from the stack during error processing */
    176   int destLineno;          /* Line number for start of destructor */
    177   char *datatype;          /* The data type of information held by this
    178                            ** object. Only used if type==NONTERMINAL */
    179   int dtnum;               /* The data type number.  In the parser, the value
    180                            ** stack is a union.  The .yy%d element of this
    181                            ** union is the correct data type for this object */
    182   /* The following fields are used by MULTITERMINALs only */
    183   int nsubsym;             /* Number of constituent symbols in the MULTI */
    184   struct symbol **subsym;  /* Array of constituent symbols */
    185 };
    186 
    187 /* Each production rule in the grammar is stored in the following
    188 ** structure.  */
    189 struct rule {
    190   struct symbol *lhs;      /* Left-hand side of the rule */
    191   const char *lhsalias;    /* Alias for the LHS (NULL if none) */
    192   int lhsStart;            /* True if left-hand side is the start symbol */
    193   int ruleline;            /* Line number for the rule */
    194   int nrhs;                /* Number of RHS symbols */
    195   struct symbol **rhs;     /* The RHS symbols */
    196   const char **rhsalias;   /* An alias for each RHS symbol (NULL if none) */
    197   int line;                /* Line number at which code begins */
    198   const char *code;        /* The code executed when this rule is reduced */
    199   struct symbol *precsym;  /* Precedence symbol for this rule */
    200   int index;               /* An index number for this rule */
    201   Boolean canReduce;       /* True if this rule is ever reduced */
    202   struct rule *nextlhs;    /* Next rule with the same LHS */
    203   struct rule *next;       /* Next rule in the global list */
    204 };
    205 
    206 /* A configuration is a production rule of the grammar together with
    207 ** a mark (dot) showing how much of that rule has been processed so far.
    208 ** Configurations also contain a follow-set which is a list of terminal
    209 ** symbols which are allowed to immediately follow the end of the rule.
    210 ** Every configuration is recorded as an instance of the following: */
    211 enum cfgstatus {
    212   COMPLETE,
    213   INCOMPLETE
    214 };
    215 struct config {
    216   struct rule *rp;         /* The rule upon which the configuration is based */
    217   int dot;                 /* The parse point */
    218   char *fws;               /* Follow-set for this configuration only */
    219   struct plink *fplp;      /* Follow-set forward propagation links */
    220   struct plink *bplp;      /* Follow-set backwards propagation links */
    221   struct state *stp;       /* Pointer to state which contains this */
    222   enum cfgstatus status;   /* used during followset and shift computations */
    223   struct config *next;     /* Next configuration in the state */
    224   struct config *bp;       /* The next basis configuration */
    225 };
    226 
    227 enum e_action {
    228   SHIFT,
    229   ACCEPT,
    230   REDUCE,
    231   ERROR,
    232   SSCONFLICT,              /* A shift/shift conflict */
    233   SRCONFLICT,              /* Was a reduce, but part of a conflict */
    234   RRCONFLICT,              /* Was a reduce, but part of a conflict */
    235   SH_RESOLVED,             /* Was a shift.  Precedence resolved conflict */
    236   RD_RESOLVED,             /* Was reduce.  Precedence resolved conflict */
    237   NOT_USED                 /* Deleted by compression */
    238 };
    239 
    240 /* Every shift or reduce operation is stored as one of the following */
    241 struct action {
    242   struct symbol *sp;       /* The look-ahead symbol */
    243   enum e_action type;
    244   union {
    245     struct state *stp;     /* The new state, if a shift */
    246     struct rule *rp;       /* The rule, if a reduce */
    247   } x;
    248   struct action *next;     /* Next action for this state */
    249   struct action *collide;  /* Next action with the same hash */
    250 };
    251 
    252 /* Each state of the generated parser's finite state machine
    253 ** is encoded as an instance of the following structure. */
    254 struct state {
    255   struct config *bp;       /* The basis configurations for this state */
    256   struct config *cfp;      /* All configurations in this set */
    257   int statenum;            /* Sequential number for this state */
    258   struct action *ap;       /* Array of actions for this state */
    259   int nTknAct, nNtAct;     /* Number of actions on terminals and nonterminals */
    260   int iTknOfst, iNtOfst;   /* yy_action[] offset for terminals and nonterms */
    261   int iDflt;               /* Default action */
    262 };
    263 #define NO_OFFSET (-2147483647)
    264 
    265 /* A followset propagation link indicates that the contents of one
    266 ** configuration followset should be propagated to another whenever
    267 ** the first changes. */
    268 struct plink {
    269   struct config *cfp;      /* The configuration to which linked */
    270   struct plink *next;      /* The next propagate link */
    271 };
    272 
    273 /* The state vector for the entire parser generator is recorded as
    274 ** follows.  (LEMON uses no global variables and makes little use of
    275 ** static variables.  Fields in the following structure can be thought
    276 ** of as begin global variables in the program.) */
    277 struct lemon {
    278   struct state **sorted;   /* Table of states sorted by state number */
    279   struct rule *rule;       /* List of all rules */
    280   int nstate;              /* Number of states */
    281   int nrule;               /* Number of rules */
    282   int nsymbol;             /* Number of terminal and nonterminal symbols */
    283   int nterminal;           /* Number of terminal symbols */
    284   struct symbol **symbols; /* Sorted array of pointers to symbols */
    285   int errorcnt;            /* Number of errors */
    286   struct symbol *errsym;   /* The error symbol */
    287   struct symbol *wildcard; /* Token that matches anything */
    288   char *name;              /* Name of the generated parser */
    289   char *arg;               /* Declaration of the 3th argument to parser */
    290   char *tokentype;         /* Type of terminal symbols in the parser stack */
    291   char *vartype;           /* The default type of non-terminal symbols */
    292   char *start;             /* Name of the start symbol for the grammar */
    293   char *stacksize;         /* Size of the parser stack */
    294   char *include;           /* Code to put at the start of the C file */
    295   char *error;             /* Code to execute when an error is seen */
    296   char *overflow;          /* Code to execute on a stack overflow */
    297   char *failure;           /* Code to execute on parser failure */
    298   char *accept;            /* Code to execute when the parser excepts */
    299   char *extracode;         /* Code appended to the generated file */
    300   char *tokendest;         /* Code to execute to destroy token data */
    301   char *vardest;           /* Code for the default non-terminal destructor */
    302   char *filename;          /* Name of the input file */
    303   char *outname;           /* Name of the current output file */
    304   char *tokenprefix;       /* A prefix added to token names in the .h file */
    305   int nconflict;           /* Number of parsing conflicts */
    306   int tablesize;           /* Size of the parse tables */
    307   int basisflag;           /* Print only basis configurations */
    308   int has_fallback;        /* True if any %fallback is seen in the grammar */
    309   int nolinenosflag;       /* True if #line statements should not be printed */
    310   char *argv0;             /* Name of the program */
    311 };
    312 
    313 #define MemoryCheck(X) if((X)==0){ \
    314   extern void memory_error(); \
    315   memory_error(); \
    316 }
    317 
    318 /**************** From the file "table.h" *********************************/
    319 /*
    320 ** All code in this file has been automatically generated
    321 ** from a specification in the file
    322 **              "table.q"
    323 ** by the associative array code building program "aagen".
    324 ** Do not edit this file!  Instead, edit the specification
    325 ** file, then rerun aagen.
    326 */
    327 /*
    328 ** Code for processing tables in the LEMON parser generator.
    329 */
    330 /* Routines for handling a strings */
    331 
    332 const char *Strsafe(const char *);
    333 
    334 void Strsafe_init(void);
    335 int Strsafe_insert(const char *);
    336 const char *Strsafe_find(const char *);
    337 
    338 /* Routines for handling symbols of the grammar */
    339 
    340 struct symbol *Symbol_new(const char *);
    341 int Symbolcmpp(const void *, const void *);
    342 void Symbol_init(void);
    343 int Symbol_insert(struct symbol *, const char *);
    344 struct symbol *Symbol_find(const char *);
    345 struct symbol *Symbol_Nth(int);
    346 int Symbol_count(void);
    347 struct symbol **Symbol_arrayof(void);
    348 
    349 /* Routines to manage the state table */
    350 
    351 int Configcmp(const char *, const char *);
    352 struct state *State_new(void);
    353 void State_init(void);
    354 int State_insert(struct state *, struct config *);
    355 struct state *State_find(struct config *);
    356 struct state **State_arrayof(/*  */);
    357 
    358 /* Routines used for efficiency in Configlist_add */
    359 
    360 void Configtable_init(void);
    361 int Configtable_insert(struct config *);
    362 struct config *Configtable_find(struct config *);
    363 void Configtable_clear(int(*)(struct config *));
    364 
    365 /****************** From the file "action.c" *******************************/
    366 /*
    367 ** Routines processing parser actions in the LEMON parser generator.
    368 */
    369 
    370 /* Allocate a new parser action */
    371 static struct action *Action_new(void){
    372   static struct action *freelist = 0;
    373   struct action *newaction;
    374 
    375   if( freelist==0 ){
    376     int i;
    377     int amt = 100;
    378     freelist = (struct action *)calloc(amt, sizeof(struct action));
    379     if( freelist==0 ){
    380       fprintf(stderr,"Unable to allocate memory for a new parser action.");
    381       exit(1);
    382     }
    383     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
    384     freelist[amt-1].next = 0;
    385   }
    386   newaction = freelist;
    387   freelist = freelist->next;
    388   return newaction;
    389 }
    390 
    391 /* Compare two actions for sorting purposes.  Return negative, zero, or
    392 ** positive if the first action is less than, equal to, or greater than
    393 ** the first
    394 */
    395 static int actioncmp(
    396   struct action *ap1,
    397   struct action *ap2
    398 ){
    399   int rc;
    400   rc = ap1->sp->index - ap2->sp->index;
    401   if( rc==0 ){
    402     rc = (int)ap1->type - (int)ap2->type;
    403   }
    404   if( rc==0 && ap1->type==REDUCE ){
    405     rc = ap1->x.rp->index - ap2->x.rp->index;
    406   }
    407   if( rc==0 ){
    408     rc = (int) (ap2 - ap1);
    409   }
    410   return rc;
    411 }
    412 
    413 /* Sort parser actions */
    414 static struct action *Action_sort(
    415   struct action *ap
    416 ){
    417   ap = (struct action *)msort((char *)ap,(char **)&ap->next,
    418                               (int(*)(const char*,const char*))actioncmp);
    419   return ap;
    420 }
    421 
    422 void Action_add(
    423   struct action **app,
    424   enum e_action type,
    425   struct symbol *sp,
    426   char *arg
    427 ){
    428   struct action *newaction;
    429   newaction = Action_new();
    430   newaction->next = *app;
    431   *app = newaction;
    432   newaction->type = type;
    433   newaction->sp = sp;
    434   if( type==SHIFT ){
    435     newaction->x.stp = (struct state *)arg;
    436   }else{
    437     newaction->x.rp = (struct rule *)arg;
    438   }
    439 }
    440 /********************** New code to implement the "acttab" module ***********/
    441 /*
    442 ** This module implements routines use to construct the yy_action[] table.
    443 */
    444 
    445 /*
    446 ** The state of the yy_action table under construction is an instance of
    447 ** the following structure.
    448 **
    449 ** The yy_action table maps the pair (state_number, lookahead) into an
    450 ** action_number.  The table is an array of integers pairs.  The state_number
    451 ** determines an initial offset into the yy_action array.  The lookahead
    452 ** value is then added to this initial offset to get an index X into the
    453 ** yy_action array. If the aAction[X].lookahead equals the value of the
    454 ** of the lookahead input, then the value of the action_number output is
    455 ** aAction[X].action.  If the lookaheads do not match then the
    456 ** default action for the state_number is returned.
    457 **
    458 ** All actions associated with a single state_number are first entered
    459 ** into aLookahead[] using multiple calls to acttab_action().  Then the
    460 ** actions for that single state_number are placed into the aAction[]
    461 ** array with a single call to acttab_insert().  The acttab_insert() call
    462 ** also resets the aLookahead[] array in preparation for the next
    463 ** state number.
    464 */
    465 struct lookahead_action {
    466   int lookahead;             /* Value of the lookahead token */
    467   int action;                /* Action to take on the given lookahead */
    468 };
    469 typedef struct acttab acttab;
    470 struct acttab {
    471   int nAction;                 /* Number of used slots in aAction[] */
    472   int nActionAlloc;            /* Slots allocated for aAction[] */
    473   struct lookahead_action
    474     *aAction,                  /* The yy_action[] table under construction */
    475     *aLookahead;               /* A single new transaction set */
    476   int mnLookahead;             /* Minimum aLookahead[].lookahead */
    477   int mnAction;                /* Action associated with mnLookahead */
    478   int mxLookahead;             /* Maximum aLookahead[].lookahead */
    479   int nLookahead;              /* Used slots in aLookahead[] */
    480   int nLookaheadAlloc;         /* Slots allocated in aLookahead[] */
    481 };
    482 
    483 /* Return the number of entries in the yy_action table */
    484 #define acttab_size(X) ((X)->nAction)
    485 
    486 /* The value for the N-th entry in yy_action */
    487 #define acttab_yyaction(X,N)  ((X)->aAction[N].action)
    488 
    489 /* The value for the N-th entry in yy_lookahead */
    490 #define acttab_yylookahead(X,N)  ((X)->aAction[N].lookahead)
    491 
    492 /* Free all memory associated with the given acttab */
    493 void acttab_free(acttab *p){
    494   free( p->aAction );
    495   free( p->aLookahead );
    496   free( p );
    497 }
    498 
    499 /* Allocate a new acttab structure */
    500 acttab *acttab_alloc(void){
    501   acttab *p = (acttab *) calloc( 1, sizeof(*p) );
    502   if( p==0 ){
    503     fprintf(stderr,"Unable to allocate memory for a new acttab.");
    504     exit(1);
    505   }
    506   memset(p, 0, sizeof(*p));
    507   return p;
    508 }
    509 
    510 /* Add a new action to the current transaction set.
    511 **
    512 ** This routine is called once for each lookahead for a particular
    513 ** state.
    514 */
    515 void acttab_action(acttab *p, int lookahead, int action){
    516   if( p->nLookahead>=p->nLookaheadAlloc ){
    517     p->nLookaheadAlloc += 25;
    518     p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
    519                              sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
    520     if( p->aLookahead==0 ){
    521       fprintf(stderr,"malloc failed\n");
    522       exit(1);
    523     }
    524   }
    525   if( p->nLookahead==0 ){
    526     p->mxLookahead = lookahead;
    527     p->mnLookahead = lookahead;
    528     p->mnAction = action;
    529   }else{
    530     if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
    531     if( p->mnLookahead>lookahead ){
    532       p->mnLookahead = lookahead;
    533       p->mnAction = action;
    534     }
    535   }
    536   p->aLookahead[p->nLookahead].lookahead = lookahead;
    537   p->aLookahead[p->nLookahead].action = action;
    538   p->nLookahead++;
    539 }
    540 
    541 /*
    542 ** Add the transaction set built up with prior calls to acttab_action()
    543 ** into the current action table.  Then reset the transaction set back
    544 ** to an empty set in preparation for a new round of acttab_action() calls.
    545 **
    546 ** Return the offset into the action table of the new transaction.
    547 */
    548 int acttab_insert(acttab *p){
    549   int i, j, k, n;
    550   assert( p->nLookahead>0 );
    551 
    552   /* Make sure we have enough space to hold the expanded action table
    553   ** in the worst case.  The worst case occurs if the transaction set
    554   ** must be appended to the current action table
    555   */
    556   n = p->mxLookahead + 1;
    557   if( p->nAction + n >= p->nActionAlloc ){
    558     int oldAlloc = p->nActionAlloc;
    559     p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
    560     p->aAction = (struct lookahead_action *) realloc( p->aAction,
    561                           sizeof(p->aAction[0])*p->nActionAlloc);
    562     if( p->aAction==0 ){
    563       fprintf(stderr,"malloc failed\n");
    564       exit(1);
    565     }
    566     for(i=oldAlloc; i<p->nActionAlloc; i++){
    567       p->aAction[i].lookahead = -1;
    568       p->aAction[i].action = -1;
    569     }
    570   }
    571 
    572   /* Scan the existing action table looking for an offset that is a
    573   ** duplicate of the current transaction set.  Fall out of the loop
    574   ** if and when the duplicate is found.
    575   **
    576   ** i is the index in p->aAction[] where p->mnLookahead is inserted.
    577   */
    578   for(i=p->nAction-1; i>=0; i--){
    579     if( p->aAction[i].lookahead==p->mnLookahead ){
    580       /* All lookaheads and actions in the aLookahead[] transaction
    581       ** must match against the candidate aAction[i] entry. */
    582       if( p->aAction[i].action!=p->mnAction ) continue;
    583       for(j=0; j<p->nLookahead; j++){
    584         k = p->aLookahead[j].lookahead - p->mnLookahead + i;
    585         if( k<0 || k>=p->nAction ) break;
    586         if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
    587         if( p->aLookahead[j].action!=p->aAction[k].action ) break;
    588       }
    589       if( j<p->nLookahead ) continue;
    590 
    591       /* No possible lookahead value that is not in the aLookahead[]
    592       ** transaction is allowed to match aAction[i] */
    593       n = 0;
    594       for(j=0; j<p->nAction; j++){
    595         if( p->aAction[j].lookahead<0 ) continue;
    596         if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
    597       }
    598       if( n==p->nLookahead ){
    599         break;  /* An exact match is found at offset i */
    600       }
    601     }
    602   }
    603 
    604   /* If no existing offsets exactly match the current transaction, find an
    605   ** an empty offset in the aAction[] table in which we can add the
    606   ** aLookahead[] transaction.
    607   */
    608   if( i<0 ){
    609     /* Look for holes in the aAction[] table that fit the current
    610     ** aLookahead[] transaction.  Leave i set to the offset of the hole.
    611     ** If no holes are found, i is left at p->nAction, which means the
    612     ** transaction will be appended. */
    613     for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
    614       if( p->aAction[i].lookahead<0 ){
    615         for(j=0; j<p->nLookahead; j++){
    616           k = p->aLookahead[j].lookahead - p->mnLookahead + i;
    617           if( k<0 ) break;
    618           if( p->aAction[k].lookahead>=0 ) break;
    619         }
    620         if( j<p->nLookahead ) continue;
    621         for(j=0; j<p->nAction; j++){
    622           if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
    623         }
    624         if( j==p->nAction ){
    625           break;  /* Fits in empty slots */
    626         }
    627       }
    628     }
    629   }
    630   /* Insert transaction set at index i. */
    631   for(j=0; j<p->nLookahead; j++){
    632     k = p->aLookahead[j].lookahead - p->mnLookahead + i;
    633     p->aAction[k] = p->aLookahead[j];
    634     if( k>=p->nAction ) p->nAction = k+1;
    635   }
    636   p->nLookahead = 0;
    637 
    638   /* Return the offset that is added to the lookahead in order to get the
    639   ** index into yy_action of the action */
    640   return i - p->mnLookahead;
    641 }
    642 
    643 /********************** From the file "build.c" *****************************/
    644 /*
    645 ** Routines to construction the finite state machine for the LEMON
    646 ** parser generator.
    647 */
    648 
    649 /* Find a precedence symbol of every rule in the grammar.
    650 **
    651 ** Those rules which have a precedence symbol coded in the input
    652 ** grammar using the "[symbol]" construct will already have the
    653 ** rp->precsym field filled.  Other rules take as their precedence
    654 ** symbol the first RHS symbol with a defined precedence.  If there
    655 ** are not RHS symbols with a defined precedence, the precedence
    656 ** symbol field is left blank.
    657 */
    658 void FindRulePrecedences(struct lemon *xp)
    659 {
    660   struct rule *rp;
    661   for(rp=xp->rule; rp; rp=rp->next){
    662     if( rp->precsym==0 ){
    663       int i, j;
    664       for(i=0; i<rp->nrhs && rp->precsym==0; i++){
    665         struct symbol *sp = rp->rhs[i];
    666         if( sp->type==MULTITERMINAL ){
    667           for(j=0; j<sp->nsubsym; j++){
    668             if( sp->subsym[j]->prec>=0 ){
    669               rp->precsym = sp->subsym[j];
    670               break;
    671             }
    672           }
    673         }else if( sp->prec>=0 ){
    674           rp->precsym = rp->rhs[i];
    675 	}
    676       }
    677     }
    678   }
    679   return;
    680 }
    681 
    682 /* Find all nonterminals which will generate the empty string.
    683 ** Then go back and compute the first sets of every nonterminal.
    684 ** The first set is the set of all terminal symbols which can begin
    685 ** a string generated by that nonterminal.
    686 */
    687 void FindFirstSets(struct lemon *lemp)
    688 {
    689   int i, j;
    690   struct rule *rp;
    691   int progress;
    692 
    693   for(i=0; i<lemp->nsymbol; i++){
    694     lemp->symbols[i]->lambda = LEMON_FALSE;
    695   }
    696   for(i=lemp->nterminal; i<lemp->nsymbol; i++){
    697     lemp->symbols[i]->firstset = SetNew();
    698   }
    699 
    700   /* First compute all lambdas */
    701   do{
    702     progress = 0;
    703     for(rp=lemp->rule; rp; rp=rp->next){
    704       if( rp->lhs->lambda ) continue;
    705       for(i=0; i<rp->nrhs; i++){
    706          struct symbol *sp = rp->rhs[i];
    707          if( sp->type!=TERMINAL || sp->lambda==LEMON_FALSE ) break;
    708       }
    709       if( i==rp->nrhs ){
    710         rp->lhs->lambda = LEMON_TRUE;
    711         progress = 1;
    712       }
    713     }
    714   }while( progress );
    715 
    716   /* Now compute all first sets */
    717   do{
    718     struct symbol *s1, *s2;
    719     progress = 0;
    720     for(rp=lemp->rule; rp; rp=rp->next){
    721       s1 = rp->lhs;
    722       for(i=0; i<rp->nrhs; i++){
    723         s2 = rp->rhs[i];
    724         if( s2->type==TERMINAL ){
    725           progress += SetAdd(s1->firstset,s2->index);
    726           break;
    727         }else if( s2->type==MULTITERMINAL ){
    728           for(j=0; j<s2->nsubsym; j++){
    729             progress += SetAdd(s1->firstset,s2->subsym[j]->index);
    730           }
    731           break;
    732 	}else if( s1==s2 ){
    733           if( s1->lambda==LEMON_FALSE ) break;
    734 	}else{
    735           progress += SetUnion(s1->firstset,s2->firstset);
    736           if( s2->lambda==LEMON_FALSE ) break;
    737 	}
    738       }
    739     }
    740   }while( progress );
    741   return;
    742 }
    743 
    744 /* Compute all LR(0) states for the grammar.  Links
    745 ** are added to between some states so that the LR(1) follow sets
    746 ** can be computed later.
    747 */
    748 PRIVATE struct state *getstate(struct lemon *);  /* forward reference */
    749 void FindStates(struct lemon *lemp)
    750 {
    751   struct symbol *sp;
    752   struct rule *rp;
    753 
    754   Configlist_init();
    755 
    756   /* Find the start symbol */
    757   if( lemp->start ){
    758     sp = Symbol_find(lemp->start);
    759     if( sp==0 ){
    760       ErrorMsg(lemp->filename,0,
    761 "The specified start symbol \"%s\" is not \
    762 in a nonterminal of the grammar.  \"%s\" will be used as the start \
    763 symbol instead.",lemp->start,lemp->rule->lhs->name);
    764       lemp->errorcnt++;
    765       sp = lemp->rule->lhs;
    766     }
    767   }else{
    768     sp = lemp->rule->lhs;
    769   }
    770 
    771   /* Make sure the start symbol doesn't occur on the right-hand side of
    772   ** any rule.  Report an error if it does.  (YACC would generate a new
    773   ** start symbol in this case.) */
    774   for(rp=lemp->rule; rp; rp=rp->next){
    775     int i;
    776     for(i=0; i<rp->nrhs; i++){
    777       if( rp->rhs[i]==sp ){   /* FIX ME:  Deal with multiterminals */
    778         ErrorMsg(lemp->filename,0,
    779 "The start symbol \"%s\" occurs on the \
    780 right-hand side of a rule. This will result in a parser which \
    781 does not work properly.",sp->name);
    782         lemp->errorcnt++;
    783       }
    784     }
    785   }
    786 
    787   /* The basis configuration set for the first state
    788   ** is all rules which have the start symbol as their
    789   ** left-hand side */
    790   for(rp=sp->rule; rp; rp=rp->nextlhs){
    791     struct config *newcfp;
    792     rp->lhsStart = 1;
    793     newcfp = Configlist_addbasis(rp,0);
    794     SetAdd(newcfp->fws,0);
    795   }
    796 
    797   /* Compute the first state.  All other states will be
    798   ** computed automatically during the computation of the first one.
    799   ** The returned pointer to the first state is not used. */
    800   (void)getstate(lemp);
    801   return;
    802 }
    803 
    804 /* Return a pointer to a state which is described by the configuration
    805 ** list which has been built from calls to Configlist_add.
    806 */
    807 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
    808 PRIVATE struct state *getstate(struct lemon *lemp)
    809 {
    810   struct config *cfp, *bp;
    811   struct state *stp;
    812 
    813   /* Extract the sorted basis of the new state.  The basis was constructed
    814   ** by prior calls to "Configlist_addbasis()". */
    815   Configlist_sortbasis();
    816   bp = Configlist_basis();
    817 
    818   /* Get a state with the same basis */
    819   stp = State_find(bp);
    820   if( stp ){
    821     /* A state with the same basis already exists!  Copy all the follow-set
    822     ** propagation links from the state under construction into the
    823     ** preexisting state, then return a pointer to the preexisting state */
    824     struct config *x, *y;
    825     for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
    826       Plink_copy(&y->bplp,x->bplp);
    827       Plink_delete(x->fplp);
    828       x->fplp = x->bplp = 0;
    829     }
    830     cfp = Configlist_return();
    831     Configlist_eat(cfp);
    832   }else{
    833     /* This really is a new state.  Construct all the details */
    834     Configlist_closure(lemp);    /* Compute the configuration closure */
    835     Configlist_sort();           /* Sort the configuration closure */
    836     cfp = Configlist_return();   /* Get a pointer to the config list */
    837     stp = State_new();           /* A new state structure */
    838     MemoryCheck(stp);
    839     stp->bp = bp;                /* Remember the configuration basis */
    840     stp->cfp = cfp;              /* Remember the configuration closure */
    841     stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
    842     stp->ap = 0;                 /* No actions, yet. */
    843     State_insert(stp,stp->bp);   /* Add to the state table */
    844     buildshifts(lemp,stp);       /* Recursively compute successor states */
    845   }
    846   return stp;
    847 }
    848 
    849 /*
    850 ** Return true if two symbols are the same.
    851 */
    852 int same_symbol(struct symbol *a, struct symbol *b)
    853 {
    854   int i;
    855   if( a==b ) return 1;
    856   if( a->type!=MULTITERMINAL ) return 0;
    857   if( b->type!=MULTITERMINAL ) return 0;
    858   if( a->nsubsym!=b->nsubsym ) return 0;
    859   for(i=0; i<a->nsubsym; i++){
    860     if( a->subsym[i]!=b->subsym[i] ) return 0;
    861   }
    862   return 1;
    863 }
    864 
    865 /* Construct all successor states to the given state.  A "successor"
    866 ** state is any state which can be reached by a shift action.
    867 */
    868 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
    869 {
    870   struct config *cfp;  /* For looping thru the config closure of "stp" */
    871   struct config *bcfp; /* For the inner loop on config closure of "stp" */
    872   struct config *newcfg;  /* */
    873   struct symbol *sp;   /* Symbol following the dot in configuration "cfp" */
    874   struct symbol *bsp;  /* Symbol following the dot in configuration "bcfp" */
    875   struct state *newstp; /* A pointer to a successor state */
    876 
    877   /* Each configuration becomes complete after it contibutes to a successor
    878   ** state.  Initially, all configurations are incomplete */
    879   for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
    880 
    881   /* Loop through all configurations of the state "stp" */
    882   for(cfp=stp->cfp; cfp; cfp=cfp->next){
    883     if( cfp->status==COMPLETE ) continue;    /* Already used by inner loop */
    884     if( cfp->dot>=cfp->rp->nrhs ) continue;  /* Can't shift this config */
    885     Configlist_reset();                      /* Reset the new config set */
    886     sp = cfp->rp->rhs[cfp->dot];             /* Symbol after the dot */
    887 
    888     /* For every configuration in the state "stp" which has the symbol "sp"
    889     ** following its dot, add the same configuration to the basis set under
    890     ** construction but with the dot shifted one symbol to the right. */
    891     for(bcfp=cfp; bcfp; bcfp=bcfp->next){
    892       if( bcfp->status==COMPLETE ) continue;    /* Already used */
    893       if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
    894       bsp = bcfp->rp->rhs[bcfp->dot];           /* Get symbol after dot */
    895       if( !same_symbol(bsp,sp) ) continue;      /* Must be same as for "cfp" */
    896       bcfp->status = COMPLETE;                  /* Mark this config as used */
    897       newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
    898       Plink_add(&newcfg->bplp,bcfp);
    899     }
    900 
    901     /* Get a pointer to the state described by the basis configuration set
    902     ** constructed in the preceding loop */
    903     newstp = getstate(lemp);
    904 
    905     /* The state "newstp" is reached from the state "stp" by a shift action
    906     ** on the symbol "sp" */
    907     if( sp->type==MULTITERMINAL ){
    908       int i;
    909       for(i=0; i<sp->nsubsym; i++){
    910         Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
    911       }
    912     }else{
    913       Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
    914     }
    915   }
    916 }
    917 
    918 /*
    919 ** Construct the propagation links
    920 */
    921 void FindLinks(struct lemon *lemp)
    922 {
    923   int i;
    924   struct config *cfp, *other;
    925   struct state *stp;
    926   struct plink *plp;
    927 
    928   /* Housekeeping detail:
    929   ** Add to every propagate link a pointer back to the state to
    930   ** which the link is attached. */
    931   for(i=0; i<lemp->nstate; i++){
    932     stp = lemp->sorted[i];
    933     for(cfp=stp->cfp; cfp; cfp=cfp->next){
    934       cfp->stp = stp;
    935     }
    936   }
    937 
    938   /* Convert all backlinks into forward links.  Only the forward
    939   ** links are used in the follow-set computation. */
    940   for(i=0; i<lemp->nstate; i++){
    941     stp = lemp->sorted[i];
    942     for(cfp=stp->cfp; cfp; cfp=cfp->next){
    943       for(plp=cfp->bplp; plp; plp=plp->next){
    944         other = plp->cfp;
    945         Plink_add(&other->fplp,cfp);
    946       }
    947     }
    948   }
    949 }
    950 
    951 /* Compute all followsets.
    952 **
    953 ** A followset is the set of all symbols which can come immediately
    954 ** after a configuration.
    955 */
    956 void FindFollowSets(struct lemon *lemp)
    957 {
    958   int i;
    959   struct config *cfp;
    960   struct plink *plp;
    961   int progress;
    962   int change;
    963 
    964   for(i=0; i<lemp->nstate; i++){
    965     for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
    966       cfp->status = INCOMPLETE;
    967     }
    968   }
    969 
    970   do{
    971     progress = 0;
    972     for(i=0; i<lemp->nstate; i++){
    973       for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
    974         if( cfp->status==COMPLETE ) continue;
    975         for(plp=cfp->fplp; plp; plp=plp->next){
    976           change = SetUnion(plp->cfp->fws,cfp->fws);
    977           if( change ){
    978             plp->cfp->status = INCOMPLETE;
    979             progress = 1;
    980 	  }
    981 	}
    982         cfp->status = COMPLETE;
    983       }
    984     }
    985   }while( progress );
    986 }
    987 
    988 static int resolve_conflict(struct action *,struct action *, struct symbol *);
    989 
    990 /* Compute the reduce actions, and resolve conflicts.
    991 */
    992 void FindActions(struct lemon *lemp)
    993 {
    994   int i,j;
    995   struct config *cfp;
    996   struct state *stp;
    997   struct symbol *sp;
    998   struct rule *rp;
    999 
   1000   /* Add all of the reduce actions
   1001   ** A reduce action is added for each element of the followset of
   1002   ** a configuration which has its dot at the extreme right.
   1003   */
   1004   for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
   1005     stp = lemp->sorted[i];
   1006     for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
   1007       if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
   1008         for(j=0; j<lemp->nterminal; j++){
   1009           if( SetFind(cfp->fws,j) ){
   1010             /* Add a reduce action to the state "stp" which will reduce by the
   1011             ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
   1012             Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
   1013           }
   1014 	}
   1015       }
   1016     }
   1017   }
   1018 
   1019   /* Add the accepting token */
   1020   if( lemp->start ){
   1021     sp = Symbol_find(lemp->start);
   1022     if( sp==0 ) sp = lemp->rule->lhs;
   1023   }else{
   1024     sp = lemp->rule->lhs;
   1025   }
   1026   /* Add to the first state (which is always the starting state of the
   1027   ** finite state machine) an action to ACCEPT if the lookahead is the
   1028   ** start nonterminal.  */
   1029   Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
   1030 
   1031   /* Resolve conflicts */
   1032   for(i=0; i<lemp->nstate; i++){
   1033     struct action *ap, *nap;
   1034     struct state *stp;
   1035     stp = lemp->sorted[i];
   1036     /* assert( stp->ap ); */
   1037     stp->ap = Action_sort(stp->ap);
   1038     for(ap=stp->ap; ap && ap->next; ap=ap->next){
   1039       for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
   1040          /* The two actions "ap" and "nap" have the same lookahead.
   1041          ** Figure out which one should be used */
   1042          lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
   1043       }
   1044     }
   1045   }
   1046 
   1047   /* Report an error for each rule that can never be reduced. */
   1048   for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
   1049   for(i=0; i<lemp->nstate; i++){
   1050     struct action *ap;
   1051     for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
   1052       if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
   1053     }
   1054   }
   1055   for(rp=lemp->rule; rp; rp=rp->next){
   1056     if( rp->canReduce ) continue;
   1057     ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
   1058     lemp->errorcnt++;
   1059   }
   1060 }
   1061 
   1062 /* Resolve a conflict between the two given actions.  If the
   1063 ** conflict can't be resolved, return non-zero.
   1064 **
   1065 ** NO LONGER TRUE:
   1066 **   To resolve a conflict, first look to see if either action
   1067 **   is on an error rule.  In that case, take the action which
   1068 **   is not associated with the error rule.  If neither or both
   1069 **   actions are associated with an error rule, then try to
   1070 **   use precedence to resolve the conflict.
   1071 **
   1072 ** If either action is a SHIFT, then it must be apx.  This
   1073 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
   1074 */
   1075 static int resolve_conflict(
   1076   struct action *apx,
   1077   struct action *apy,
   1078   struct symbol *errsym   /* The error symbol (if defined.  NULL otherwise) */
   1079 ){
   1080   struct symbol *spx, *spy;
   1081   int errcnt = 0;
   1082   assert( apx->sp==apy->sp );  /* Otherwise there would be no conflict */
   1083   if( apx->type==SHIFT && apy->type==SHIFT ){
   1084     apy->type = SSCONFLICT;
   1085     errcnt++;
   1086   }
   1087   if( apx->type==SHIFT && apy->type==REDUCE ){
   1088     spx = apx->sp;
   1089     spy = apy->x.rp->precsym;
   1090     if( spy==0 || spx->prec<0 || spy->prec<0 ){
   1091       /* Not enough precedence information. */
   1092       apy->type = SRCONFLICT;
   1093       errcnt++;
   1094     }else if( spx->prec>spy->prec ){    /* higher precedence wins */
   1095       apy->type = RD_RESOLVED;
   1096     }else if( spx->prec<spy->prec ){
   1097       apx->type = SH_RESOLVED;
   1098     }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
   1099       apy->type = RD_RESOLVED;                             /* associativity */
   1100     }else if( spx->prec==spy->prec && spx->assoc==LEFT ){  /* to break tie */
   1101       apx->type = SH_RESOLVED;
   1102     }else{
   1103       assert( spx->prec==spy->prec && spx->assoc==NONE );
   1104       apy->type = SRCONFLICT;
   1105       errcnt++;
   1106     }
   1107   }else if( apx->type==REDUCE && apy->type==REDUCE ){
   1108     spx = apx->x.rp->precsym;
   1109     spy = apy->x.rp->precsym;
   1110     if( spx==0 || spy==0 || spx->prec<0 ||
   1111     spy->prec<0 || spx->prec==spy->prec ){
   1112       apy->type = RRCONFLICT;
   1113       errcnt++;
   1114     }else if( spx->prec>spy->prec ){
   1115       apy->type = RD_RESOLVED;
   1116     }else if( spx->prec<spy->prec ){
   1117       apx->type = RD_RESOLVED;
   1118     }
   1119   }else{
   1120     assert(
   1121       apx->type==SH_RESOLVED ||
   1122       apx->type==RD_RESOLVED ||
   1123       apx->type==SSCONFLICT ||
   1124       apx->type==SRCONFLICT ||
   1125       apx->type==RRCONFLICT ||
   1126       apy->type==SH_RESOLVED ||
   1127       apy->type==RD_RESOLVED ||
   1128       apy->type==SSCONFLICT ||
   1129       apy->type==SRCONFLICT ||
   1130       apy->type==RRCONFLICT
   1131     );
   1132     /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
   1133     ** REDUCEs on the list.  If we reach this point it must be because
   1134     ** the parser conflict had already been resolved. */
   1135   }
   1136   return errcnt;
   1137 }
   1138 /********************* From the file "configlist.c" *************************/
   1139 /*
   1140 ** Routines to processing a configuration list and building a state
   1141 ** in the LEMON parser generator.
   1142 */
   1143 
   1144 static struct config *freelist = 0;      /* List of free configurations */
   1145 static struct config *current = 0;       /* Top of list of configurations */
   1146 static struct config **currentend = 0;   /* Last on list of configs */
   1147 static struct config *basis = 0;         /* Top of list of basis configs */
   1148 static struct config **basisend = 0;     /* End of list of basis configs */
   1149 
   1150 /* Return a pointer to a new configuration */
   1151 PRIVATE struct config *newconfig(){
   1152   struct config *newcfg;
   1153   if( freelist==0 ){
   1154     int i;
   1155     int amt = 3;
   1156     freelist = (struct config *)calloc( amt, sizeof(struct config) );
   1157     if( freelist==0 ){
   1158       fprintf(stderr,"Unable to allocate memory for a new configuration.");
   1159       exit(1);
   1160     }
   1161     for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
   1162     freelist[amt-1].next = 0;
   1163   }
   1164   newcfg = freelist;
   1165   freelist = freelist->next;
   1166   return newcfg;
   1167 }
   1168 
   1169 /* The configuration "old" is no longer used */
   1170 PRIVATE void deleteconfig(struct config *old)
   1171 {
   1172   old->next = freelist;
   1173   freelist = old;
   1174 }
   1175 
   1176 /* Initialized the configuration list builder */
   1177 void Configlist_init(){
   1178   current = 0;
   1179   currentend = &current;
   1180   basis = 0;
   1181   basisend = &basis;
   1182   Configtable_init();
   1183   return;
   1184 }
   1185 
   1186 /* Initialized the configuration list builder */
   1187 void Configlist_reset(){
   1188   current = 0;
   1189   currentend = &current;
   1190   basis = 0;
   1191   basisend = &basis;
   1192   Configtable_clear(0);
   1193   return;
   1194 }
   1195 
   1196 /* Add another configuration to the configuration list */
   1197 struct config *Configlist_add(
   1198   struct rule *rp,    /* The rule */
   1199   int dot             /* Index into the RHS of the rule where the dot goes */
   1200 ){
   1201   struct config *cfp, model;
   1202 
   1203   assert( currentend!=0 );
   1204   model.rp = rp;
   1205   model.dot = dot;
   1206   cfp = Configtable_find(&model);
   1207   if( cfp==0 ){
   1208     cfp = newconfig();
   1209     cfp->rp = rp;
   1210     cfp->dot = dot;
   1211     cfp->fws = SetNew();
   1212     cfp->stp = 0;
   1213     cfp->fplp = cfp->bplp = 0;
   1214     cfp->next = 0;
   1215     cfp->bp = 0;
   1216     *currentend = cfp;
   1217     currentend = &cfp->next;
   1218     Configtable_insert(cfp);
   1219   }
   1220   return cfp;
   1221 }
   1222 
   1223 /* Add a basis configuration to the configuration list */
   1224 struct config *Configlist_addbasis(struct rule *rp, int dot)
   1225 {
   1226   struct config *cfp, model;
   1227 
   1228   assert( basisend!=0 );
   1229   assert( currentend!=0 );
   1230   model.rp = rp;
   1231   model.dot = dot;
   1232   cfp = Configtable_find(&model);
   1233   if( cfp==0 ){
   1234     cfp = newconfig();
   1235     cfp->rp = rp;
   1236     cfp->dot = dot;
   1237     cfp->fws = SetNew();
   1238     cfp->stp = 0;
   1239     cfp->fplp = cfp->bplp = 0;
   1240     cfp->next = 0;
   1241     cfp->bp = 0;
   1242     *currentend = cfp;
   1243     currentend = &cfp->next;
   1244     *basisend = cfp;
   1245     basisend = &cfp->bp;
   1246     Configtable_insert(cfp);
   1247   }
   1248   return cfp;
   1249 }
   1250 
   1251 /* Compute the closure of the configuration list */
   1252 void Configlist_closure(struct lemon *lemp)
   1253 {
   1254   struct config *cfp, *newcfp;
   1255   struct rule *rp, *newrp;
   1256   struct symbol *sp, *xsp;
   1257   int i, dot;
   1258 
   1259   assert( currentend!=0 );
   1260   for(cfp=current; cfp; cfp=cfp->next){
   1261     rp = cfp->rp;
   1262     dot = cfp->dot;
   1263     if( dot>=rp->nrhs ) continue;
   1264     sp = rp->rhs[dot];
   1265     if( sp->type==NONTERMINAL ){
   1266       if( sp->rule==0 && sp!=lemp->errsym ){
   1267         ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
   1268           sp->name);
   1269         lemp->errorcnt++;
   1270       }
   1271       for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
   1272         newcfp = Configlist_add(newrp,0);
   1273         for(i=dot+1; i<rp->nrhs; i++){
   1274           xsp = rp->rhs[i];
   1275           if( xsp->type==TERMINAL ){
   1276             SetAdd(newcfp->fws,xsp->index);
   1277             break;
   1278           }else if( xsp->type==MULTITERMINAL ){
   1279             int k;
   1280             for(k=0; k<xsp->nsubsym; k++){
   1281               SetAdd(newcfp->fws, xsp->subsym[k]->index);
   1282             }
   1283             break;
   1284 	  }else{
   1285             SetUnion(newcfp->fws,xsp->firstset);
   1286             if( xsp->lambda==LEMON_FALSE ) break;
   1287 	  }
   1288 	}
   1289         if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
   1290       }
   1291     }
   1292   }
   1293   return;
   1294 }
   1295 
   1296 /* Sort the configuration list */
   1297 void Configlist_sort(){
   1298   current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
   1299   currentend = 0;
   1300   return;
   1301 }
   1302 
   1303 /* Sort the basis configuration list */
   1304 void Configlist_sortbasis(){
   1305   basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
   1306   basisend = 0;
   1307   return;
   1308 }
   1309 
   1310 /* Return a pointer to the head of the configuration list and
   1311 ** reset the list */
   1312 struct config *Configlist_return(){
   1313   struct config *old;
   1314   old = current;
   1315   current = 0;
   1316   currentend = 0;
   1317   return old;
   1318 }
   1319 
   1320 /* Return a pointer to the head of the configuration list and
   1321 ** reset the list */
   1322 struct config *Configlist_basis(){
   1323   struct config *old;
   1324   old = basis;
   1325   basis = 0;
   1326   basisend = 0;
   1327   return old;
   1328 }
   1329 
   1330 /* Free all elements of the given configuration list */
   1331 void Configlist_eat(struct config *cfp)
   1332 {
   1333   struct config *nextcfp;
   1334   for(; cfp; cfp=nextcfp){
   1335     nextcfp = cfp->next;
   1336     assert( cfp->fplp==0 );
   1337     assert( cfp->bplp==0 );
   1338     if( cfp->fws ) SetFree(cfp->fws);
   1339     deleteconfig(cfp);
   1340   }
   1341   return;
   1342 }
   1343 /***************** From the file "error.c" *********************************/
   1344 /*
   1345 ** Code for printing error message.
   1346 */
   1347 
   1348 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
   1349   va_list ap;
   1350   fprintf(stderr, "%s:%d: ", filename, lineno);
   1351   va_start(ap, format);
   1352   vfprintf(stderr,format,ap);
   1353   va_end(ap);
   1354   fprintf(stderr, "\n");
   1355 }
   1356 /**************** From the file "main.c" ************************************/
   1357 /*
   1358 ** Main program file for the LEMON parser generator.
   1359 */
   1360 
   1361 /* Report an out-of-memory condition and abort.  This function
   1362 ** is used mostly by the "MemoryCheck" macro in struct.h
   1363 */
   1364 void memory_error(){
   1365   fprintf(stderr,"Out of memory.  Aborting...\n");
   1366   exit(1);
   1367 }
   1368 
   1369 static int nDefine = 0;      /* Number of -D options on the command line */
   1370 static char **azDefine = 0;  /* Name of the -D macros */
   1371 
   1372 /* This routine is called with the argument to each -D command-line option.
   1373 ** Add the macro defined to the azDefine array.
   1374 */
   1375 static void handle_D_option(char *z){
   1376   char **paz;
   1377   nDefine++;
   1378   azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
   1379   if( azDefine==0 ){
   1380     fprintf(stderr,"out of memory\n");
   1381     exit(1);
   1382   }
   1383   paz = &azDefine[nDefine-1];
   1384   *paz = (char *) malloc( lemonStrlen(z)+1 );
   1385   if( *paz==0 ){
   1386     fprintf(stderr,"out of memory\n");
   1387     exit(1);
   1388   }
   1389   strcpy(*paz, z);
   1390   for(z=*paz; *z && *z!='='; z++){}
   1391   *z = 0;
   1392 }
   1393 
   1394 static char *user_templatename = NULL;
   1395 static void handle_T_option(char *z){
   1396   user_templatename = (char *) malloc( lemonStrlen(z)+1 );
   1397   if( user_templatename==0 ){
   1398     memory_error();
   1399   }
   1400   strcpy(user_templatename, z);
   1401 }
   1402 
   1403 /* The main program.  Parse the command line and do it... */
   1404 int main(int argc, char **argv)
   1405 {
   1406   static int version = 0;
   1407   static int rpflag = 0;
   1408   static int basisflag = 0;
   1409   static int compress = 0;
   1410   static int quiet = 0;
   1411   static int statistics = 0;
   1412   static int mhflag = 0;
   1413   static int nolinenosflag = 0;
   1414   static int noResort = 0;
   1415   static struct s_options options[] = {
   1416     {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
   1417     {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
   1418     {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
   1419     {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
   1420     {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
   1421     {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
   1422     {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
   1423     {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
   1424                     "Show conflicts resolved by precedence rules"},
   1425     {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
   1426     {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
   1427     {OPT_FLAG, "s", (char*)&statistics,
   1428                                    "Print parser stats to standard output."},
   1429     {OPT_FLAG, "x", (char*)&version, "Print the version number."},
   1430     {OPT_FLAG,0,0,0}
   1431   };
   1432   int i;
   1433   int exitcode;
   1434   struct lemon lem;
   1435 
   1436   atexit(LemonAtExit);
   1437 
   1438   OptInit(argv,options,stderr);
   1439   if( version ){
   1440      printf("Lemon version 1.0\n");
   1441      exit(0);
   1442   }
   1443   if( OptNArgs()!=1 ){
   1444     fprintf(stderr,"Exactly one filename argument is required.\n");
   1445     exit(1);
   1446   }
   1447   memset(&lem, 0, sizeof(lem));
   1448   lem.errorcnt = 0;
   1449 
   1450   /* Initialize the machine */
   1451   Strsafe_init();
   1452   Symbol_init();
   1453   State_init();
   1454   lem.argv0 = argv[0];
   1455   lem.filename = OptArg(0);
   1456   lem.basisflag = basisflag;
   1457   lem.nolinenosflag = nolinenosflag;
   1458   Symbol_new("$");
   1459   lem.errsym = Symbol_new("error");
   1460   lem.errsym->useCnt = 0;
   1461 
   1462   /* Parse the input file */
   1463   Parse(&lem);
   1464   if( lem.errorcnt ) exit(lem.errorcnt);
   1465   if( lem.nrule==0 ){
   1466     fprintf(stderr,"Empty grammar.\n");
   1467     exit(1);
   1468   }
   1469 
   1470   /* Count and index the symbols of the grammar */
   1471   lem.nsymbol = Symbol_count();
   1472   Symbol_new("{default}");
   1473   lem.symbols = Symbol_arrayof();
   1474   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
   1475   qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*), Symbolcmpp);
   1476   for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
   1477   for(i=1; isupper(lem.symbols[i]->name[0]); i++);
   1478   lem.nterminal = i;
   1479 
   1480   /* Generate a reprint of the grammar, if requested on the command line */
   1481   if( rpflag ){
   1482     Reprint(&lem);
   1483   }else{
   1484     /* Initialize the size for all follow and first sets */
   1485     SetSize(lem.nterminal+1);
   1486 
   1487     /* Find the precedence for every production rule (that has one) */
   1488     FindRulePrecedences(&lem);
   1489 
   1490     /* Compute the lambda-nonterminals and the first-sets for every
   1491     ** nonterminal */
   1492     FindFirstSets(&lem);
   1493 
   1494     /* Compute all LR(0) states.  Also record follow-set propagation
   1495     ** links so that the follow-set can be computed later */
   1496     lem.nstate = 0;
   1497     FindStates(&lem);
   1498     lem.sorted = State_arrayof();
   1499 
   1500     /* Tie up loose ends on the propagation links */
   1501     FindLinks(&lem);
   1502 
   1503     /* Compute the follow set of every reducible configuration */
   1504     FindFollowSets(&lem);
   1505 
   1506     /* Compute the action tables */
   1507     FindActions(&lem);
   1508 
   1509     /* Compress the action tables */
   1510     if( compress==0 ) CompressTables(&lem);
   1511 
   1512     /* Reorder and renumber the states so that states with fewer choices
   1513     ** occur at the end.  This is an optimization that helps make the
   1514     ** generated parser tables smaller. */
   1515     if( noResort==0 ) ResortStates(&lem);
   1516 
   1517     /* Generate a report of the parser generated.  (the "y.output" file) */
   1518     if( !quiet ) ReportOutput(&lem);
   1519 
   1520     /* Generate the source code for the parser */
   1521     ReportTable(&lem, mhflag);
   1522 
   1523     /* Produce a header file for use by the scanner.  (This step is
   1524     ** omitted if the "-m" option is used because makeheaders will
   1525     ** generate the file for us.) */
   1526     if( !mhflag ) ReportHeader(&lem);
   1527   }
   1528   if( statistics ){
   1529     printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
   1530       lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
   1531     printf("                   %d states, %d parser table entries, %d conflicts\n",
   1532       lem.nstate, lem.tablesize, lem.nconflict);
   1533   }
   1534   if( lem.nconflict > 0 ){
   1535     fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
   1536   }
   1537 
   1538   /* return 0 on success, 1 on failure. */
   1539   exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
   1540   successful_exit = (exitcode == 0);
   1541   exit(exitcode);
   1542   return (exitcode);
   1543 }
   1544 /******************** From the file "msort.c" *******************************/
   1545 /*
   1546 ** A generic merge-sort program.
   1547 **
   1548 ** USAGE:
   1549 ** Let "ptr" be a pointer to some structure which is at the head of
   1550 ** a null-terminated list.  Then to sort the list call:
   1551 **
   1552 **     ptr = msort(ptr,&(ptr->next),cmpfnc);
   1553 **
   1554 ** In the above, "cmpfnc" is a pointer to a function which compares
   1555 ** two instances of the structure and returns an integer, as in
   1556 ** strcmp.  The second argument is a pointer to the pointer to the
   1557 ** second element of the linked list.  This address is used to compute
   1558 ** the offset to the "next" field within the structure.  The offset to
   1559 ** the "next" field must be constant for all structures in the list.
   1560 **
   1561 ** The function returns a new pointer which is the head of the list
   1562 ** after sorting.
   1563 **
   1564 ** ALGORITHM:
   1565 ** Merge-sort.
   1566 */
   1567 
   1568 /*
   1569 ** Return a pointer to the next structure in the linked list.
   1570 */
   1571 #define NEXT(A) (*(char**)(((unsigned long)A)+offset))
   1572 
   1573 /*
   1574 ** Inputs:
   1575 **   a:       A sorted, null-terminated linked list.  (May be null).
   1576 **   b:       A sorted, null-terminated linked list.  (May be null).
   1577 **   cmp:     A pointer to the comparison function.
   1578 **   offset:  Offset in the structure to the "next" field.
   1579 **
   1580 ** Return Value:
   1581 **   A pointer to the head of a sorted list containing the elements
   1582 **   of both a and b.
   1583 **
   1584 ** Side effects:
   1585 **   The "next" pointers for elements in the lists a and b are
   1586 **   changed.
   1587 */
   1588 static char *merge(
   1589   char *a,
   1590   char *b,
   1591   int (*cmp)(const char*,const char*),
   1592   int offset
   1593 ){
   1594   char *ptr, *head;
   1595 
   1596   if( a==0 ){
   1597     head = b;
   1598   }else if( b==0 ){
   1599     head = a;
   1600   }else{
   1601     if( (*cmp)(a,b)<=0 ){
   1602       ptr = a;
   1603       a = NEXT(a);
   1604     }else{
   1605       ptr = b;
   1606       b = NEXT(b);
   1607     }
   1608     head = ptr;
   1609     while( a && b ){
   1610       if( (*cmp)(a,b)<=0 ){
   1611         NEXT(ptr) = a;
   1612         ptr = a;
   1613         a = NEXT(a);
   1614       }else{
   1615         NEXT(ptr) = b;
   1616         ptr = b;
   1617         b = NEXT(b);
   1618       }
   1619     }
   1620     if( a ) NEXT(ptr) = a;
   1621     else    NEXT(ptr) = b;
   1622   }
   1623   return head;
   1624 }
   1625 
   1626 /*
   1627 ** Inputs:
   1628 **   list:      Pointer to a singly-linked list of structures.
   1629 **   next:      Pointer to pointer to the second element of the list.
   1630 **   cmp:       A comparison function.
   1631 **
   1632 ** Return Value:
   1633 **   A pointer to the head of a sorted list containing the elements
   1634 **   orginally in list.
   1635 **
   1636 ** Side effects:
   1637 **   The "next" pointers for elements in list are changed.
   1638 */
   1639 #define LISTSIZE 30
   1640 static char *msort(
   1641   char *list,
   1642   char **next,
   1643   int (*cmp)(const char*,const char*)
   1644 ){
   1645   unsigned long offset;
   1646   char *ep;
   1647   char *set[LISTSIZE];
   1648   int i;
   1649   offset = (unsigned long)next - (unsigned long)list;
   1650   for(i=0; i<LISTSIZE; i++) set[i] = 0;
   1651   while( list ){
   1652     ep = list;
   1653     list = NEXT(list);
   1654     NEXT(ep) = 0;
   1655     for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
   1656       ep = merge(ep,set[i],cmp,offset);
   1657       set[i] = 0;
   1658     }
   1659     set[i] = ep;
   1660   }
   1661   ep = 0;
   1662   for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
   1663   return ep;
   1664 }
   1665 /************************ From the file "option.c" **************************/
   1666 static char **argv;
   1667 static struct s_options *op;
   1668 static FILE *errstream;
   1669 
   1670 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
   1671 
   1672 /*
   1673 ** Print the command line with a carrot pointing to the k-th character
   1674 ** of the n-th field.
   1675 */
   1676 static void errline(int n, int k, FILE *err)
   1677 {
   1678   int spcnt, i;
   1679   if( argv[0] ) fprintf(err,"%s",argv[0]);
   1680   spcnt = lemonStrlen(argv[0]) + 1;
   1681   for(i=1; i<n && argv[i]; i++){
   1682     fprintf(err," %s",argv[i]);
   1683     spcnt += lemonStrlen(argv[i])+1;
   1684   }
   1685   spcnt += k;
   1686   for(; argv[i]; i++) fprintf(err," %s",argv[i]);
   1687   if( spcnt<20 ){
   1688     fprintf(err,"\n%*s^-- here\n",spcnt,"");
   1689   }else{
   1690     fprintf(err,"\n%*shere --^\n",spcnt-7,"");
   1691   }
   1692 }
   1693 
   1694 /*
   1695 ** Return the index of the N-th non-switch argument.  Return -1
   1696 ** if N is out of range.
   1697 */
   1698 static int argindex(int n)
   1699 {
   1700   int i;
   1701   int dashdash = 0;
   1702   if( argv!=0 && *argv!=0 ){
   1703     for(i=1; argv[i]; i++){
   1704       if( dashdash || !ISOPT(argv[i]) ){
   1705         if( n==0 ) return i;
   1706         n--;
   1707       }
   1708       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
   1709     }
   1710   }
   1711   return -1;
   1712 }
   1713 
   1714 static char emsg[] = "Command line syntax error: ";
   1715 
   1716 /*
   1717 ** Process a flag command line argument.
   1718 */
   1719 static int handleflags(int i, FILE *err)
   1720 {
   1721   int v;
   1722   int errcnt = 0;
   1723   int j;
   1724   for(j=0; op[j].label; j++){
   1725     if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
   1726   }
   1727   v = argv[i][0]=='-' ? 1 : 0;
   1728   if( op[j].label==0 ){
   1729     if( err ){
   1730       fprintf(err,"%sundefined option.\n",emsg);
   1731       errline(i,1,err);
   1732     }
   1733     errcnt++;
   1734   }else if( op[j].type==OPT_FLAG ){
   1735     *((int*)op[j].arg) = v;
   1736   }else if( op[j].type==OPT_FFLAG ){
   1737     (*(void(*)(int))(op[j].arg))(v);
   1738   }else if( op[j].type==OPT_FSTR ){
   1739     (*(void(*)(char *))(op[j].arg))(&argv[i][2]);
   1740   }else{
   1741     if( err ){
   1742       fprintf(err,"%smissing argument on switch.\n",emsg);
   1743       errline(i,1,err);
   1744     }
   1745     errcnt++;
   1746   }
   1747   return errcnt;
   1748 }
   1749 
   1750 /*
   1751 ** Process a command line switch which has an argument.
   1752 */
   1753 static int handleswitch(int i, FILE *err)
   1754 {
   1755   int lv = 0;
   1756   double dv = 0.0;
   1757   char *sv = 0, *end;
   1758   char *cp;
   1759   int j;
   1760   int errcnt = 0;
   1761   cp = strchr(argv[i],'=');
   1762   assert( cp!=0 );
   1763   *cp = 0;
   1764   for(j=0; op[j].label; j++){
   1765     if( strcmp(argv[i],op[j].label)==0 ) break;
   1766   }
   1767   *cp = '=';
   1768   if( op[j].label==0 ){
   1769     if( err ){
   1770       fprintf(err,"%sundefined option.\n",emsg);
   1771       errline(i,0,err);
   1772     }
   1773     errcnt++;
   1774   }else{
   1775     cp++;
   1776     switch( op[j].type ){
   1777       case OPT_FLAG:
   1778       case OPT_FFLAG:
   1779         if( err ){
   1780           fprintf(err,"%soption requires an argument.\n",emsg);
   1781           errline(i,0,err);
   1782         }
   1783         errcnt++;
   1784         break;
   1785       case OPT_DBL:
   1786       case OPT_FDBL:
   1787         dv = strtod(cp,&end);
   1788         if( *end ){
   1789           if( err ){
   1790             fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
   1791             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
   1792           }
   1793           errcnt++;
   1794         }
   1795         break;
   1796       case OPT_INT:
   1797       case OPT_FINT:
   1798         lv = strtol(cp,&end,0);
   1799         if( *end ){
   1800           if( err ){
   1801             fprintf(err,"%sillegal character in integer argument.\n",emsg);
   1802             errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
   1803           }
   1804           errcnt++;
   1805         }
   1806         break;
   1807       case OPT_STR:
   1808       case OPT_FSTR:
   1809         sv = cp;
   1810         break;
   1811     }
   1812     switch( op[j].type ){
   1813       case OPT_FLAG:
   1814       case OPT_FFLAG:
   1815         break;
   1816       case OPT_DBL:
   1817         *(double*)(op[j].arg) = dv;
   1818         break;
   1819       case OPT_FDBL:
   1820         (*(void(*)(double))(op[j].arg))(dv);
   1821         break;
   1822       case OPT_INT:
   1823         *(int*)(op[j].arg) = lv;
   1824         break;
   1825       case OPT_FINT:
   1826         (*(void(*)(int))(op[j].arg))((int)lv);
   1827         break;
   1828       case OPT_STR:
   1829         *(char**)(op[j].arg) = sv;
   1830         break;
   1831       case OPT_FSTR:
   1832         (*(void(*)(char *))(op[j].arg))(sv);
   1833         break;
   1834     }
   1835   }
   1836   return errcnt;
   1837 }
   1838 
   1839 int OptInit(char **a, struct s_options *o, FILE *err)
   1840 {
   1841   int errcnt = 0;
   1842   argv = a;
   1843   op = o;
   1844   errstream = err;
   1845   if( argv && *argv && op ){
   1846     int i;
   1847     for(i=1; argv[i]; i++){
   1848       if( argv[i][0]=='+' || argv[i][0]=='-' ){
   1849         errcnt += handleflags(i,err);
   1850       }else if( strchr(argv[i],'=') ){
   1851         errcnt += handleswitch(i,err);
   1852       }
   1853     }
   1854   }
   1855   if( errcnt>0 ){
   1856     fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
   1857     OptPrint();
   1858     exit(1);
   1859   }
   1860   return 0;
   1861 }
   1862 
   1863 int OptNArgs(){
   1864   int cnt = 0;
   1865   int dashdash = 0;
   1866   int i;
   1867   if( argv!=0 && argv[0]!=0 ){
   1868     for(i=1; argv[i]; i++){
   1869       if( dashdash || !ISOPT(argv[i]) ) cnt++;
   1870       if( strcmp(argv[i],"--")==0 ) dashdash = 1;
   1871     }
   1872   }
   1873   return cnt;
   1874 }
   1875 
   1876 char *OptArg(int n)
   1877 {
   1878   int i;
   1879   i = argindex(n);
   1880   return i>=0 ? argv[i] : 0;
   1881 }
   1882 
   1883 void OptErr(int n)
   1884 {
   1885   int i;
   1886   i = argindex(n);
   1887   if( i>=0 ) errline(i,0,errstream);
   1888 }
   1889 
   1890 void OptPrint(){
   1891   int i;
   1892   int max, len;
   1893   max = 0;
   1894   for(i=0; op[i].label; i++){
   1895     len = lemonStrlen(op[i].label) + 1;
   1896     switch( op[i].type ){
   1897       case OPT_FLAG:
   1898       case OPT_FFLAG:
   1899         break;
   1900       case OPT_INT:
   1901       case OPT_FINT:
   1902         len += 9;       /* length of "<integer>" */
   1903         break;
   1904       case OPT_DBL:
   1905       case OPT_FDBL:
   1906         len += 6;       /* length of "<real>" */
   1907         break;
   1908       case OPT_STR:
   1909       case OPT_FSTR:
   1910         len += 8;       /* length of "<string>" */
   1911         break;
   1912     }
   1913     if( len>max ) max = len;
   1914   }
   1915   for(i=0; op[i].label; i++){
   1916     switch( op[i].type ){
   1917       case OPT_FLAG:
   1918       case OPT_FFLAG:
   1919         fprintf(errstream,"  -%-*s  %s\n",max,op[i].label,op[i].message);
   1920         break;
   1921       case OPT_INT:
   1922       case OPT_FINT:
   1923         fprintf(errstream,"  %s=<integer>%*s  %s\n",op[i].label,
   1924           (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
   1925         break;
   1926       case OPT_DBL:
   1927       case OPT_FDBL:
   1928         fprintf(errstream,"  %s=<real>%*s  %s\n",op[i].label,
   1929           (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
   1930         break;
   1931       case OPT_STR:
   1932       case OPT_FSTR:
   1933         fprintf(errstream,"  %s=<string>%*s  %s\n",op[i].label,
   1934           (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
   1935         break;
   1936     }
   1937   }
   1938 }
   1939 /*********************** From the file "parse.c" ****************************/
   1940 /*
   1941 ** Input file parser for the LEMON parser generator.
   1942 */
   1943 
   1944 /* The state of the parser */
   1945 enum e_state {
   1946   INITIALIZE,
   1947   WAITING_FOR_DECL_OR_RULE,
   1948   WAITING_FOR_DECL_KEYWORD,
   1949   WAITING_FOR_DECL_ARG,
   1950   WAITING_FOR_PRECEDENCE_SYMBOL,
   1951   WAITING_FOR_ARROW,
   1952   IN_RHS,
   1953   LHS_ALIAS_1,
   1954   LHS_ALIAS_2,
   1955   LHS_ALIAS_3,
   1956   RHS_ALIAS_1,
   1957   RHS_ALIAS_2,
   1958   PRECEDENCE_MARK_1,
   1959   PRECEDENCE_MARK_2,
   1960   RESYNC_AFTER_RULE_ERROR,
   1961   RESYNC_AFTER_DECL_ERROR,
   1962   WAITING_FOR_DESTRUCTOR_SYMBOL,
   1963   WAITING_FOR_DATATYPE_SYMBOL,
   1964   WAITING_FOR_FALLBACK_ID,
   1965   WAITING_FOR_WILDCARD_ID
   1966 };
   1967 struct pstate {
   1968   char *filename;       /* Name of the input file */
   1969   int tokenlineno;      /* Linenumber at which current token starts */
   1970   int errorcnt;         /* Number of errors so far */
   1971   char *tokenstart;     /* Text of current token */
   1972   struct lemon *gp;     /* Global state vector */
   1973   enum e_state state;        /* The state of the parser */
   1974   struct symbol *fallback;   /* The fallback token */
   1975   struct symbol *lhs;        /* Left-hand side of current rule */
   1976   const char *lhsalias;      /* Alias for the LHS */
   1977   int nrhs;                  /* Number of right-hand side symbols seen */
   1978   struct symbol *rhs[MAXRHS];  /* RHS symbols */
   1979   const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
   1980   struct rule *prevrule;     /* Previous rule parsed */
   1981   const char *declkeyword;   /* Keyword of a declaration */
   1982   char **declargslot;        /* Where the declaration argument should be put */
   1983   int insertLineMacro;       /* Add #line before declaration insert */
   1984   int *decllinenoslot;       /* Where to write declaration line number */
   1985   enum e_assoc declassoc;    /* Assign this association to decl arguments */
   1986   int preccounter;           /* Assign this precedence to decl arguments */
   1987   struct rule *firstrule;    /* Pointer to first rule in the grammar */
   1988   struct rule *lastrule;     /* Pointer to the most recently parsed rule */
   1989 };
   1990 
   1991 /* Parse a single token */
   1992 static void parseonetoken(struct pstate *psp)
   1993 {
   1994   const char *x;
   1995   x = Strsafe(psp->tokenstart);     /* Save the token permanently */
   1996 #if 0
   1997   printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
   1998     x,psp->state);
   1999 #endif
   2000   switch( psp->state ){
   2001     case INITIALIZE:
   2002       psp->prevrule = 0;
   2003       psp->preccounter = 0;
   2004       psp->firstrule = psp->lastrule = 0;
   2005       psp->gp->nrule = 0;
   2006       /* Fall thru to next case */
   2007     case WAITING_FOR_DECL_OR_RULE:
   2008       if( x[0]=='%' ){
   2009         psp->state = WAITING_FOR_DECL_KEYWORD;
   2010       }else if( islower(x[0]) ){
   2011         psp->lhs = Symbol_new(x);
   2012         psp->nrhs = 0;
   2013         psp->lhsalias = 0;
   2014         psp->state = WAITING_FOR_ARROW;
   2015       }else if( x[0]=='{' ){
   2016         if( psp->prevrule==0 ){
   2017           ErrorMsg(psp->filename,psp->tokenlineno,
   2018 "There is no prior rule opon which to attach the code \
   2019 fragment which begins on this line.");
   2020           psp->errorcnt++;
   2021 	}else if( psp->prevrule->code!=0 ){
   2022           ErrorMsg(psp->filename,psp->tokenlineno,
   2023 "Code fragment beginning on this line is not the first \
   2024 to follow the previous rule.");
   2025           psp->errorcnt++;
   2026         }else{
   2027           psp->prevrule->line = psp->tokenlineno;
   2028           psp->prevrule->code = &x[1];
   2029 	}
   2030       }else if( x[0]=='[' ){
   2031         psp->state = PRECEDENCE_MARK_1;
   2032       }else{
   2033         ErrorMsg(psp->filename,psp->tokenlineno,
   2034           "Token \"%s\" should be either \"%%\" or a nonterminal name.",
   2035           x);
   2036         psp->errorcnt++;
   2037       }
   2038       break;
   2039     case PRECEDENCE_MARK_1:
   2040       if( !isupper(x[0]) ){
   2041         ErrorMsg(psp->filename,psp->tokenlineno,
   2042           "The precedence symbol must be a terminal.");
   2043         psp->errorcnt++;
   2044       }else if( psp->prevrule==0 ){
   2045         ErrorMsg(psp->filename,psp->tokenlineno,
   2046           "There is no prior rule to assign precedence \"[%s]\".",x);
   2047         psp->errorcnt++;
   2048       }else if( psp->prevrule->precsym!=0 ){
   2049         ErrorMsg(psp->filename,psp->tokenlineno,
   2050 "Precedence mark on this line is not the first \
   2051 to follow the previous rule.");
   2052         psp->errorcnt++;
   2053       }else{
   2054         psp->prevrule->precsym = Symbol_new(x);
   2055       }
   2056       psp->state = PRECEDENCE_MARK_2;
   2057       break;
   2058     case PRECEDENCE_MARK_2:
   2059       if( x[0]!=']' ){
   2060         ErrorMsg(psp->filename,psp->tokenlineno,
   2061           "Missing \"]\" on precedence mark.");
   2062         psp->errorcnt++;
   2063       }
   2064       psp->state = WAITING_FOR_DECL_OR_RULE;
   2065       break;
   2066     case WAITING_FOR_ARROW:
   2067       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
   2068         psp->state = IN_RHS;
   2069       }else if( x[0]=='(' ){
   2070         psp->state = LHS_ALIAS_1;
   2071       }else{
   2072         ErrorMsg(psp->filename,psp->tokenlineno,
   2073           "Expected to see a \":\" following the LHS symbol \"%s\".",
   2074           psp->lhs->name);
   2075         psp->errorcnt++;
   2076         psp->state = RESYNC_AFTER_RULE_ERROR;
   2077       }
   2078       break;
   2079     case LHS_ALIAS_1:
   2080       if( isalpha(x[0]) ){
   2081         psp->lhsalias = x;
   2082         psp->state = LHS_ALIAS_2;
   2083       }else{
   2084         ErrorMsg(psp->filename,psp->tokenlineno,
   2085           "\"%s\" is not a valid alias for the LHS \"%s\"\n",
   2086           x,psp->lhs->name);
   2087         psp->errorcnt++;
   2088         psp->state = RESYNC_AFTER_RULE_ERROR;
   2089       }
   2090       break;
   2091     case LHS_ALIAS_2:
   2092       if( x[0]==')' ){
   2093         psp->state = LHS_ALIAS_3;
   2094       }else{
   2095         ErrorMsg(psp->filename,psp->tokenlineno,
   2096           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
   2097         psp->errorcnt++;
   2098         psp->state = RESYNC_AFTER_RULE_ERROR;
   2099       }
   2100       break;
   2101     case LHS_ALIAS_3:
   2102       if( x[0]==':' && x[1]==':' && x[2]=='=' ){
   2103         psp->state = IN_RHS;
   2104       }else{
   2105         ErrorMsg(psp->filename,psp->tokenlineno,
   2106           "Missing \"->\" following: \"%s(%s)\".",
   2107            psp->lhs->name,psp->lhsalias);
   2108         psp->errorcnt++;
   2109         psp->state = RESYNC_AFTER_RULE_ERROR;
   2110       }
   2111       break;
   2112     case IN_RHS:
   2113       if( x[0]=='.' ){
   2114         struct rule *rp;
   2115         rp = (struct rule *)calloc( sizeof(struct rule) +
   2116              sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
   2117         if( rp==0 ){
   2118           ErrorMsg(psp->filename,psp->tokenlineno,
   2119             "Can't allocate enough memory for this rule.");
   2120           psp->errorcnt++;
   2121           psp->prevrule = 0;
   2122 	}else{
   2123           int i;
   2124           rp->ruleline = psp->tokenlineno;
   2125           rp->rhs = (struct symbol**)&rp[1];
   2126           rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
   2127           for(i=0; i<psp->nrhs; i++){
   2128             rp->rhs[i] = psp->rhs[i];
   2129             rp->rhsalias[i] = psp->alias[i];
   2130 	  }
   2131           rp->lhs = psp->lhs;
   2132           rp->lhsalias = psp->lhsalias;
   2133           rp->nrhs = psp->nrhs;
   2134           rp->code = 0;
   2135           rp->precsym = 0;
   2136           rp->index = psp->gp->nrule++;
   2137           rp->nextlhs = rp->lhs->rule;
   2138           rp->lhs->rule = rp;
   2139           rp->next = 0;
   2140           if( psp->firstrule==0 ){
   2141             psp->firstrule = psp->lastrule = rp;
   2142 	  }else{
   2143             psp->lastrule->next = rp;
   2144             psp->lastrule = rp;
   2145 	  }
   2146           psp->prevrule = rp;
   2147 	}
   2148         psp->state = WAITING_FOR_DECL_OR_RULE;
   2149       }else if( isalpha(x[0]) ){
   2150         if( psp->nrhs>=MAXRHS ){
   2151           ErrorMsg(psp->filename,psp->tokenlineno,
   2152             "Too many symbols on RHS of rule beginning at \"%s\".",
   2153             x);
   2154           psp->errorcnt++;
   2155           psp->state = RESYNC_AFTER_RULE_ERROR;
   2156 	}else{
   2157           psp->rhs[psp->nrhs] = Symbol_new(x);
   2158           psp->alias[psp->nrhs] = 0;
   2159           psp->nrhs++;
   2160 	}
   2161       }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
   2162         struct symbol *msp = psp->rhs[psp->nrhs-1];
   2163         if( msp->type!=MULTITERMINAL ){
   2164           struct symbol *origsp = msp;
   2165           msp = (struct symbol *) calloc(1,sizeof(*msp));
   2166           memset(msp, 0, sizeof(*msp));
   2167           msp->type = MULTITERMINAL;
   2168           msp->nsubsym = 1;
   2169           msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
   2170           msp->subsym[0] = origsp;
   2171           msp->name = origsp->name;
   2172           psp->rhs[psp->nrhs-1] = msp;
   2173         }
   2174         msp->nsubsym++;
   2175         msp->subsym = (struct symbol **) realloc(msp->subsym,
   2176           sizeof(struct symbol*)*msp->nsubsym);
   2177         msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
   2178         if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){
   2179           ErrorMsg(psp->filename,psp->tokenlineno,
   2180             "Cannot form a compound containing a non-terminal");
   2181           psp->errorcnt++;
   2182         }
   2183       }else if( x[0]=='(' && psp->nrhs>0 ){
   2184         psp->state = RHS_ALIAS_1;
   2185       }else{
   2186         ErrorMsg(psp->filename,psp->tokenlineno,
   2187           "Illegal character on RHS of rule: \"%s\".",x);
   2188         psp->errorcnt++;
   2189         psp->state = RESYNC_AFTER_RULE_ERROR;
   2190       }
   2191       break;
   2192     case RHS_ALIAS_1:
   2193       if( isalpha(x[0]) ){
   2194         psp->alias[psp->nrhs-1] = x;
   2195         psp->state = RHS_ALIAS_2;
   2196       }else{
   2197         ErrorMsg(psp->filename,psp->tokenlineno,
   2198           "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
   2199           x,psp->rhs[psp->nrhs-1]->name);
   2200         psp->errorcnt++;
   2201         psp->state = RESYNC_AFTER_RULE_ERROR;
   2202       }
   2203       break;
   2204     case RHS_ALIAS_2:
   2205       if( x[0]==')' ){
   2206         psp->state = IN_RHS;
   2207       }else{
   2208         ErrorMsg(psp->filename,psp->tokenlineno,
   2209           "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
   2210         psp->errorcnt++;
   2211         psp->state = RESYNC_AFTER_RULE_ERROR;
   2212       }
   2213       break;
   2214     case WAITING_FOR_DECL_KEYWORD:
   2215       if( isalpha(x[0]) ){
   2216         psp->declkeyword = x;
   2217         psp->declargslot = 0;
   2218         psp->decllinenoslot = 0;
   2219         psp->insertLineMacro = 1;
   2220         psp->state = WAITING_FOR_DECL_ARG;
   2221         if( strcmp(x,"name")==0 ){
   2222           psp->declargslot = &(psp->gp->name);
   2223           psp->insertLineMacro = 0;
   2224 	}else if( strcmp(x,"include")==0 ){
   2225           psp->declargslot = &(psp->gp->include);
   2226 	}else if( strcmp(x,"code")==0 ){
   2227           psp->declargslot = &(psp->gp->extracode);
   2228 	}else if( strcmp(x,"token_destructor")==0 ){
   2229           psp->declargslot = &psp->gp->tokendest;
   2230 	}else if( strcmp(x,"default_destructor")==0 ){
   2231           psp->declargslot = &psp->gp->vardest;
   2232 	}else if( strcmp(x,"token_prefix")==0 ){
   2233           psp->declargslot = &psp->gp->tokenprefix;
   2234           psp->insertLineMacro = 0;
   2235 	}else if( strcmp(x,"syntax_error")==0 ){
   2236           psp->declargslot = &(psp->gp->error);
   2237 	}else if( strcmp(x,"parse_accept")==0 ){
   2238           psp->declargslot = &(psp->gp->accept);
   2239 	}else if( strcmp(x,"parse_failure")==0 ){
   2240           psp->declargslot = &(psp->gp->failure);
   2241 	}else if( strcmp(x,"stack_overflow")==0 ){
   2242           psp->declargslot = &(psp->gp->overflow);
   2243         }else if( strcmp(x,"extra_argument")==0 ){
   2244           psp->declargslot = &(psp->gp->arg);
   2245           psp->insertLineMacro = 0;
   2246         }else if( strcmp(x,"token_type")==0 ){
   2247           psp->declargslot = &(psp->gp->tokentype);
   2248           psp->insertLineMacro = 0;
   2249         }else if( strcmp(x,"default_type")==0 ){
   2250           psp->declargslot = &(psp->gp->vartype);
   2251           psp->insertLineMacro = 0;
   2252         }else if( strcmp(x,"stack_size")==0 ){
   2253           psp->declargslot = &(psp->gp->stacksize);
   2254           psp->insertLineMacro = 0;
   2255         }else if( strcmp(x,"start_symbol")==0 ){
   2256           psp->declargslot = &(psp->gp->start);
   2257           psp->insertLineMacro = 0;
   2258         }else if( strcmp(x,"left")==0 ){
   2259           psp->preccounter++;
   2260           psp->declassoc = LEFT;
   2261           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
   2262         }else if( strcmp(x,"right")==0 ){
   2263           psp->preccounter++;
   2264           psp->declassoc = RIGHT;
   2265           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
   2266         }else if( strcmp(x,"nonassoc")==0 ){
   2267           psp->preccounter++;
   2268           psp->declassoc = NONE;
   2269           psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
   2270 	}else if( strcmp(x,"destructor")==0 ){
   2271           psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
   2272 	}else if( strcmp(x,"type")==0 ){
   2273           psp->state = WAITING_FOR_DATATYPE_SYMBOL;
   2274         }else if( strcmp(x,"fallback")==0 ){
   2275           psp->fallback = 0;
   2276           psp->state = WAITING_FOR_FALLBACK_ID;
   2277         }else if( strcmp(x,"wildcard")==0 ){
   2278           psp->state = WAITING_FOR_WILDCARD_ID;
   2279         }else{
   2280           ErrorMsg(psp->filename,psp->tokenlineno,
   2281             "Unknown declaration keyword: \"%%%s\".",x);
   2282           psp->errorcnt++;
   2283           psp->state = RESYNC_AFTER_DECL_ERROR;
   2284 	}
   2285       }else{
   2286         ErrorMsg(psp->filename,psp->tokenlineno,
   2287           "Illegal declaration keyword: \"%s\".",x);
   2288         psp->errorcnt++;
   2289         psp->state = RESYNC_AFTER_DECL_ERROR;
   2290       }
   2291       break;
   2292     case WAITING_FOR_DESTRUCTOR_SYMBOL:
   2293       if( !isalpha(x[0]) ){
   2294         ErrorMsg(psp->filename,psp->tokenlineno,
   2295           "Symbol name missing after %%destructor keyword");
   2296         psp->errorcnt++;
   2297         psp->state = RESYNC_AFTER_DECL_ERROR;
   2298       }else{
   2299         struct symbol *sp = Symbol_new(x);
   2300         psp->declargslot = &sp->destructor;
   2301         psp->decllinenoslot = &sp->destLineno;
   2302         psp->insertLineMacro = 1;
   2303         psp->state = WAITING_FOR_DECL_ARG;
   2304       }
   2305       break;
   2306     case WAITING_FOR_DATATYPE_SYMBOL:
   2307       if( !isalpha(x[0]) ){
   2308         ErrorMsg(psp->filename,psp->tokenlineno,
   2309           "Symbol name missing after %%type keyword");
   2310         psp->errorcnt++;
   2311         psp->state = RESYNC_AFTER_DECL_ERROR;
   2312       }else{
   2313         struct symbol *sp = Symbol_find(x);
   2314         if((sp) && (sp->datatype)){
   2315           ErrorMsg(psp->filename,psp->tokenlineno,
   2316             "Symbol %%type \"%s\" already defined", x);
   2317           psp->errorcnt++;
   2318           psp->state = RESYNC_AFTER_DECL_ERROR;
   2319         }else{
   2320           if (!sp){
   2321             sp = Symbol_new(x);
   2322           }
   2323           psp->declargslot = &sp->datatype;
   2324           psp->insertLineMacro = 0;
   2325           psp->state = WAITING_FOR_DECL_ARG;
   2326         }
   2327       }
   2328       break;
   2329     case WAITING_FOR_PRECEDENCE_SYMBOL:
   2330       if( x[0]=='.' ){
   2331         psp->state = WAITING_FOR_DECL_OR_RULE;
   2332       }else if( isupper(x[0]) ){
   2333         struct symbol *sp;
   2334         sp = Symbol_new(x);
   2335         if( sp->prec>=0 ){
   2336           ErrorMsg(psp->filename,psp->tokenlineno,
   2337             "Symbol \"%s\" has already be given a precedence.",x);
   2338           psp->errorcnt++;
   2339 	}else{
   2340           sp->prec = psp->preccounter;
   2341           sp->assoc = psp->declassoc;
   2342 	}
   2343       }else{
   2344         ErrorMsg(psp->filename,psp->tokenlineno,
   2345           "Can't assign a precedence to \"%s\".",x);
   2346         psp->errorcnt++;
   2347       }
   2348       break;
   2349     case WAITING_FOR_DECL_ARG:
   2350       if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){
   2351         const char *zOld, *zNew;
   2352         char *zBuf, *z;
   2353         int nOld, n, nLine, nNew, nBack;
   2354         int addLineMacro;
   2355         char zLine[50];
   2356         zNew = x;
   2357         if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
   2358         nNew = lemonStrlen(zNew);
   2359         if( *psp->declargslot ){
   2360           zOld = *psp->declargslot;
   2361         }else{
   2362           zOld = "";
   2363         }
   2364         nOld = lemonStrlen(zOld);
   2365         n = nOld + nNew + 20;
   2366         addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
   2367                         (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
   2368         if( addLineMacro ){
   2369           for(z=psp->filename, nBack=0; *z; z++){
   2370             if( *z=='\\' ) nBack++;
   2371           }
   2372           sprintf(zLine, "#line %d ", psp->tokenlineno);
   2373           nLine = lemonStrlen(zLine);
   2374           n += nLine + lemonStrlen(psp->filename) + nBack;
   2375         }
   2376         *psp->declargslot = (char *) realloc(*psp->declargslot, n);
   2377         zBuf = *psp->declargslot + nOld;
   2378         if( addLineMacro ){
   2379           if( nOld && zBuf[-1]!='\n' ){
   2380             *(zBuf++) = '\n';
   2381           }
   2382           memcpy(zBuf, zLine, nLine);
   2383           zBuf += nLine;
   2384           *(zBuf++) = '"';
   2385           for(z=psp->filename; *z; z++){
   2386             if( *z=='\\' ){
   2387               *(zBuf++) = '\\';
   2388             }
   2389             *(zBuf++) = *z;
   2390           }
   2391           *(zBuf++) = '"';
   2392           *(zBuf++) = '\n';
   2393         }
   2394         if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
   2395           psp->decllinenoslot[0] = psp->tokenlineno;
   2396         }
   2397         memcpy(zBuf, zNew, nNew);
   2398         zBuf += nNew;
   2399         *zBuf = 0;
   2400         psp->state = WAITING_FOR_DECL_OR_RULE;
   2401       }else{
   2402         ErrorMsg(psp->filename,psp->tokenlineno,
   2403           "Illegal argument to %%%s: %s",psp->declkeyword,x);
   2404         psp->errorcnt++;
   2405         psp->state = RESYNC_AFTER_DECL_ERROR;
   2406       }
   2407       break;
   2408     case WAITING_FOR_FALLBACK_ID:
   2409       if( x[0]=='.' ){
   2410         psp->state = WAITING_FOR_DECL_OR_RULE;
   2411       }else if( !isupper(x[0]) ){
   2412         ErrorMsg(psp->filename, psp->tokenlineno,
   2413           "%%fallback argument \"%s\" should be a token", x);
   2414         psp->errorcnt++;
   2415       }else{
   2416         struct symbol *sp = Symbol_new(x);
   2417         if( psp->fallback==0 ){
   2418           psp->fallback = sp;
   2419         }else if( sp->fallback ){
   2420           ErrorMsg(psp->filename, psp->tokenlineno,
   2421             "More than one fallback assigned to token %s", x);
   2422           psp->errorcnt++;
   2423         }else{
   2424           sp->fallback = psp->fallback;
   2425           psp->gp->has_fallback = 1;
   2426         }
   2427       }
   2428       break;
   2429     case WAITING_FOR_WILDCARD_ID:
   2430       if( x[0]=='.' ){
   2431         psp->state = WAITING_FOR_DECL_OR_RULE;
   2432       }else if( !isupper(x[0]) ){
   2433         ErrorMsg(psp->filename, psp->tokenlineno,
   2434           "%%wildcard argument \"%s\" should be a token", x);
   2435         psp->errorcnt++;
   2436       }else{
   2437         struct symbol *sp = Symbol_new(x);
   2438         if( psp->gp->wildcard==0 ){
   2439           psp->gp->wildcard = sp;
   2440         }else{
   2441           ErrorMsg(psp->filename, psp->tokenlineno,
   2442             "Extra wildcard to token: %s", x);
   2443           psp->errorcnt++;
   2444         }
   2445       }
   2446       break;
   2447     case RESYNC_AFTER_RULE_ERROR:
   2448 /*      if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
   2449 **      break; */
   2450     case RESYNC_AFTER_DECL_ERROR:
   2451       if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
   2452       if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
   2453       break;
   2454   }
   2455 }
   2456 
   2457 /* Run the preprocessor over the input file text.  The global variables
   2458 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
   2459 ** macros.  This routine looks for "%ifdef" and "%ifndef" and "%endif" and
   2460 ** comments them out.  Text in between is also commented out as appropriate.
   2461 */
   2462 static void preprocess_input(char *z){
   2463   int i, j, k, n;
   2464   int exclude = 0;
   2465   int start = 0;
   2466   int lineno = 1;
   2467   int start_lineno = 1;
   2468   for(i=0; z[i]; i++){
   2469     if( z[i]=='\n' ) lineno++;
   2470     if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
   2471     if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){
   2472       if( exclude ){
   2473         exclude--;
   2474         if( exclude==0 ){
   2475           for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
   2476         }
   2477       }
   2478       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
   2479     }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6]))
   2480           || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){
   2481       if( exclude ){
   2482         exclude++;
   2483       }else{
   2484         for(j=i+7; isspace(z[j]); j++){}
   2485         for(n=0; z[j+n] && !isspace(z[j+n]); n++){}
   2486         exclude = 1;
   2487         for(k=0; k<nDefine; k++){
   2488           if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
   2489             exclude = 0;
   2490             break;
   2491           }
   2492         }
   2493         if( z[i+3]=='n' ) exclude = !exclude;
   2494         if( exclude ){
   2495           start = i;
   2496           start_lineno = lineno;
   2497         }
   2498       }
   2499       for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
   2500     }
   2501   }
   2502   if( exclude ){
   2503     fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
   2504     exit(1);
   2505   }
   2506 }
   2507 
   2508 /* In spite of its name, this function is really a scanner.  It read
   2509 ** in the entire input file (all at once) then tokenizes it.  Each
   2510 ** token is passed to the function "parseonetoken" which builds all
   2511 ** the appropriate data structures in the global state vector "gp".
   2512 */
   2513 void Parse(struct lemon *gp)
   2514 {
   2515   struct pstate ps;
   2516   FILE *fp;
   2517   char *filebuf;
   2518   int filesize;
   2519   int lineno;
   2520   int c;
   2521   char *cp, *nextcp;
   2522   int startline = 0;
   2523 
   2524   memset(&ps, '\0', sizeof(ps));
   2525   ps.gp = gp;
   2526   ps.filename = gp->filename;
   2527   ps.errorcnt = 0;
   2528   ps.state = INITIALIZE;
   2529 
   2530   /* Begin by reading the input file */
   2531   fp = fopen(ps.filename,"rb");
   2532   if( fp==0 ){
   2533     ErrorMsg(ps.filename,0,"Can't open this file for reading.");
   2534     gp->errorcnt++;
   2535     return;
   2536   }
   2537   fseek(fp,0,2);
   2538   filesize = ftell(fp);
   2539   rewind(fp);
   2540   filebuf = (char *)malloc( filesize+1 );
   2541   if( filebuf==0 ){
   2542     ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
   2543       filesize+1);
   2544     gp->errorcnt++;
   2545     return;
   2546   }
   2547   if( fread(filebuf,1,filesize,fp)!=filesize ){
   2548     ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
   2549       filesize);
   2550     free(filebuf);
   2551     gp->errorcnt++;
   2552     return;
   2553   }
   2554   fclose(fp);
   2555   filebuf[filesize] = 0;
   2556 
   2557   /* Make an initial pass through the file to handle %ifdef and %ifndef */
   2558   preprocess_input(filebuf);
   2559 
   2560   /* Now scan the text of the input file */
   2561   lineno = 1;
   2562   for(cp=filebuf; (c= *cp)!=0; ){
   2563     if( c=='\n' ) lineno++;              /* Keep track of the line number */
   2564     if( isspace(c) ){ cp++; continue; }  /* Skip all white space */
   2565     if( c=='/' && cp[1]=='/' ){          /* Skip C++ style comments */
   2566       cp+=2;
   2567       while( (c= *cp)!=0 && c!='\n' ) cp++;
   2568       continue;
   2569     }
   2570     if( c=='/' && cp[1]=='*' ){          /* Skip C style comments */
   2571       cp+=2;
   2572       while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
   2573         if( c=='\n' ) lineno++;
   2574         cp++;
   2575       }
   2576       if( c ) cp++;
   2577       continue;
   2578     }
   2579     ps.tokenstart = cp;                /* Mark the beginning of the token */
   2580     ps.tokenlineno = lineno;           /* Linenumber on which token begins */
   2581     if( c=='\"' ){                     /* String literals */
   2582       cp++;
   2583       while( (c= *cp)!=0 && c!='\"' ){
   2584         if( c=='\n' ) lineno++;
   2585         cp++;
   2586       }
   2587       if( c==0 ){
   2588         ErrorMsg(ps.filename,startline,
   2589 "String starting on this line is not terminated before the end of the file.");
   2590         ps.errorcnt++;
   2591         nextcp = cp;
   2592       }else{
   2593         nextcp = cp+1;
   2594       }
   2595     }else if( c=='{' ){               /* A block of C code */
   2596       int level;
   2597       cp++;
   2598       for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
   2599         if( c=='\n' ) lineno++;
   2600         else if( c=='{' ) level++;
   2601         else if( c=='}' ) level--;
   2602         else if( c=='/' && cp[1]=='*' ){  /* Skip comments */
   2603           int prevc;
   2604           cp = &cp[2];
   2605           prevc = 0;
   2606           while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
   2607             if( c=='\n' ) lineno++;
   2608             prevc = c;
   2609             cp++;
   2610 	  }
   2611 	}else if( c=='/' && cp[1]=='/' ){  /* Skip C++ style comments too */
   2612           cp = &cp[2];
   2613           while( (c= *cp)!=0 && c!='\n' ) cp++;
   2614           if( c ) lineno++;
   2615 	}else if( c=='\'' || c=='\"' ){    /* String a character literals */
   2616           int startchar, prevc;
   2617           startchar = c;
   2618           prevc = 0;
   2619           for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
   2620             if( c=='\n' ) lineno++;
   2621             if( prevc=='\\' ) prevc = 0;
   2622             else              prevc = c;
   2623 	  }
   2624 	}
   2625       }
   2626       if( c==0 ){
   2627         ErrorMsg(ps.filename,ps.tokenlineno,
   2628 "C code starting on this line is not terminated before the end of the file.");
   2629         ps.errorcnt++;
   2630         nextcp = cp;
   2631       }else{
   2632         nextcp = cp+1;
   2633       }
   2634     }else if( isalnum(c) ){          /* Identifiers */
   2635       while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
   2636       nextcp = cp;
   2637     }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
   2638       cp += 3;
   2639       nextcp = cp;
   2640     }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){
   2641       cp += 2;
   2642       while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
   2643       nextcp = cp;
   2644     }else{                          /* All other (one character) operators */
   2645       cp++;
   2646       nextcp = cp;
   2647     }
   2648     c = *cp;
   2649     *cp = 0;                        /* Null terminate the token */
   2650     parseonetoken(&ps);             /* Parse the token */
   2651     *cp = c;                        /* Restore the buffer */
   2652     cp = nextcp;
   2653   }
   2654   free(filebuf);                    /* Release the buffer after parsing */
   2655   gp->rule = ps.firstrule;
   2656   gp->errorcnt = ps.errorcnt;
   2657 }
   2658 /*************************** From the file "plink.c" *********************/
   2659 /*
   2660 ** Routines processing configuration follow-set propagation links
   2661 ** in the LEMON parser generator.
   2662 */
   2663 static struct plink *plink_freelist = 0;
   2664 
   2665 /* Allocate a new plink */
   2666 struct plink *Plink_new(){
   2667   struct plink *newlink;
   2668 
   2669   if( plink_freelist==0 ){
   2670     int i;
   2671     int amt = 100;
   2672     plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
   2673     if( plink_freelist==0 ){
   2674       fprintf(stderr,
   2675       "Unable to allocate memory for a new follow-set propagation link.\n");
   2676       exit(1);
   2677     }
   2678     for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
   2679     plink_freelist[amt-1].next = 0;
   2680   }
   2681   newlink = plink_freelist;
   2682   plink_freelist = plink_freelist->next;
   2683   return newlink;
   2684 }
   2685 
   2686 /* Add a plink to a plink list */
   2687 void Plink_add(struct plink **plpp, struct config *cfp)
   2688 {
   2689   struct plink *newlink;
   2690   newlink = Plink_new();
   2691   newlink->next = *plpp;
   2692   *plpp = newlink;
   2693   newlink->cfp = cfp;
   2694 }
   2695 
   2696 /* Transfer every plink on the list "from" to the list "to" */
   2697 void Plink_copy(struct plink **to, struct plink *from)
   2698 {
   2699   struct plink *nextpl;
   2700   while( from ){
   2701     nextpl = from->next;
   2702     from->next = *to;
   2703     *to = from;
   2704     from = nextpl;
   2705   }
   2706 }
   2707 
   2708 /* Delete every plink on the list */
   2709 void Plink_delete(struct plink *plp)
   2710 {
   2711   struct plink *nextpl;
   2712 
   2713   while( plp ){
   2714     nextpl = plp->next;
   2715     plp->next = plink_freelist;
   2716     plink_freelist = plp;
   2717     plp = nextpl;
   2718   }
   2719 }
   2720 /*********************** From the file "report.c" **************************/
   2721 /*
   2722 ** Procedures for generating reports and tables in the LEMON parser generator.
   2723 */
   2724 
   2725 /* Generate a filename with the given suffix.  Space to hold the
   2726 ** name comes from malloc() and must be freed by the calling
   2727 ** function.
   2728 */
   2729 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
   2730 {
   2731   char *name;
   2732   char *cp;
   2733 
   2734   name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
   2735   if( name==0 ){
   2736     fprintf(stderr,"Can't allocate space for a filename.\n");
   2737     exit(1);
   2738   }
   2739   strcpy(name,lemp->filename);
   2740   cp = strrchr(name,'.');
   2741   if( cp ) *cp = 0;
   2742   strcat(name,suffix);
   2743   return name;
   2744 }
   2745 
   2746 /* Open a file with a name based on the name of the input file,
   2747 ** but with a different (specified) suffix, and return a pointer
   2748 ** to the stream */
   2749 PRIVATE FILE *file_open(
   2750   struct lemon *lemp,
   2751   const char *suffix,
   2752   const char *mode
   2753 ){
   2754   FILE *fp;
   2755 
   2756   if( lemp->outname ) free(lemp->outname);
   2757   lemp->outname = file_makename(lemp, suffix);
   2758   fp = fopen(lemp->outname,mode);
   2759   if( fp==0 && *mode=='w' ){
   2760     fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
   2761     lemp->errorcnt++;
   2762     return 0;
   2763   }
   2764 
   2765   /* Add files we create to a list, so we can delete them if we fail. This
   2766   ** is to keep makefiles from getting confused. We don't include .out files,
   2767   ** though: this is debug information, and you don't want it deleted if there
   2768   ** was an error you need to track down.
   2769   */
   2770   if(( *mode=='w' ) && (strcmp(suffix, ".out") != 0)){
   2771     const char **ptr = (const char **)
   2772         realloc(made_files, sizeof (const char **) * (made_files_count + 1));
   2773     const char *fname = Strsafe(lemp->outname);
   2774     if ((ptr == NULL) || (fname == NULL)) {
   2775         free(ptr);
   2776         memory_error();
   2777     }
   2778     made_files = ptr;
   2779     made_files[made_files_count++] = fname;
   2780   }
   2781   return fp;
   2782 }
   2783 
   2784 /* Duplicate the input file without comments and without actions
   2785 ** on rules */
   2786 void Reprint(struct lemon *lemp)
   2787 {
   2788   struct rule *rp;
   2789   struct symbol *sp;
   2790   int i, j, maxlen, len, ncolumns, skip;
   2791   printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
   2792   maxlen = 10;
   2793   for(i=0; i<lemp->nsymbol; i++){
   2794     sp = lemp->symbols[i];
   2795     len = lemonStrlen(sp->name);
   2796     if( len>maxlen ) maxlen = len;
   2797   }
   2798   ncolumns = 76/(maxlen+5);
   2799   if( ncolumns<1 ) ncolumns = 1;
   2800   skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
   2801   for(i=0; i<skip; i++){
   2802     printf("//");
   2803     for(j=i; j<lemp->nsymbol; j+=skip){
   2804       sp = lemp->symbols[j];
   2805       assert( sp->index==j );
   2806       printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
   2807     }
   2808     printf("\n");
   2809   }
   2810   for(rp=lemp->rule; rp; rp=rp->next){
   2811     printf("%s",rp->lhs->name);
   2812     /*    if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
   2813     printf(" ::=");
   2814     for(i=0; i<rp->nrhs; i++){
   2815       sp = rp->rhs[i];
   2816       printf(" %s", sp->name);
   2817       if( sp->type==MULTITERMINAL ){
   2818         for(j=1; j<sp->nsubsym; j++){
   2819           printf("|%s", sp->subsym[j]->name);
   2820         }
   2821       }
   2822       /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
   2823     }
   2824     printf(".");
   2825     if( rp->precsym ) printf(" [%s]",rp->precsym->name);
   2826     /* if( rp->code ) printf("\n    %s",rp->code); */
   2827     printf("\n");
   2828   }
   2829 }
   2830 
   2831 void ConfigPrint(FILE *fp, struct config *cfp)
   2832 {
   2833   struct rule *rp;
   2834   struct symbol *sp;
   2835   int i, j;
   2836   rp = cfp->rp;
   2837   fprintf(fp,"%s ::=",rp->lhs->name);
   2838   for(i=0; i<=rp->nrhs; i++){
   2839     if( i==cfp->dot ) fprintf(fp," *");
   2840     if( i==rp->nrhs ) break;
   2841     sp = rp->rhs[i];
   2842     fprintf(fp," %s", sp->name);
   2843     if( sp->type==MULTITERMINAL ){
   2844       for(j=1; j<sp->nsubsym; j++){
   2845         fprintf(fp,"|%s",sp->subsym[j]->name);
   2846       }
   2847     }
   2848   }
   2849 }
   2850 
   2851 /* #define TEST */
   2852 #if 0
   2853 /* Print a set */
   2854 PRIVATE void SetPrint(out,set,lemp)
   2855 FILE *out;
   2856 char *set;
   2857 struct lemon *lemp;
   2858 {
   2859   int i;
   2860   char *spacer;
   2861   spacer = "";
   2862   fprintf(out,"%12s[","");
   2863   for(i=0; i<lemp->nterminal; i++){
   2864     if( SetFind(set,i) ){
   2865       fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
   2866       spacer = " ";
   2867     }
   2868   }
   2869   fprintf(out,"]\n");
   2870 }
   2871 
   2872 /* Print a plink chain */
   2873 PRIVATE void PlinkPrint(out,plp,tag)
   2874 FILE *out;
   2875 struct plink *plp;
   2876 char *tag;
   2877 {
   2878   while( plp ){
   2879     fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
   2880     ConfigPrint(out,plp->cfp);
   2881     fprintf(out,"\n");
   2882     plp = plp->next;
   2883   }
   2884 }
   2885 #endif
   2886 
   2887 /* Print an action to the given file descriptor.  Return FALSE if
   2888 ** nothing was actually printed.
   2889 */
   2890 int PrintAction(struct action *ap, FILE *fp, int indent){
   2891   int result = 1;
   2892   switch( ap->type ){
   2893     case SHIFT:
   2894       fprintf(fp,"%*s shift  %d",indent,ap->sp->name,ap->x.stp->statenum);
   2895       break;
   2896     case REDUCE:
   2897       fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
   2898       break;
   2899     case ACCEPT:
   2900       fprintf(fp,"%*s accept",indent,ap->sp->name);
   2901       break;
   2902     case ERROR:
   2903       fprintf(fp,"%*s error",indent,ap->sp->name);
   2904       break;
   2905     case SRCONFLICT:
   2906     case RRCONFLICT:
   2907       fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
   2908         indent,ap->sp->name,ap->x.rp->index);
   2909       break;
   2910     case SSCONFLICT:
   2911       fprintf(fp,"%*s shift  %-3d ** Parsing conflict **",
   2912         indent,ap->sp->name,ap->x.stp->statenum);
   2913       break;
   2914     case SH_RESOLVED:
   2915       if( showPrecedenceConflict ){
   2916         fprintf(fp,"%*s shift  %-3d -- dropped by precedence",
   2917                 indent,ap->sp->name,ap->x.stp->statenum);
   2918       }else{
   2919         result = 0;
   2920       }
   2921       break;
   2922     case RD_RESOLVED:
   2923       if( showPrecedenceConflict ){
   2924         fprintf(fp,"%*s reduce %-3d -- dropped by precedence",
   2925                 indent,ap->sp->name,ap->x.rp->index);
   2926       }else{
   2927         result = 0;
   2928       }
   2929       break;
   2930     case NOT_USED:
   2931       result = 0;
   2932       break;
   2933   }
   2934   return result;
   2935 }
   2936 
   2937 /* Generate the "y.output" log file */
   2938 void ReportOutput(struct lemon *lemp)
   2939 {
   2940   int i;
   2941   struct state *stp;
   2942   struct config *cfp;
   2943   struct action *ap;
   2944   FILE *fp;
   2945 
   2946   fp = file_open(lemp,".out","wb");
   2947   if( fp==0 ) return;
   2948   for(i=0; i<lemp->nstate; i++){
   2949     stp = lemp->sorted[i];
   2950     fprintf(fp,"State %d:\n",stp->statenum);
   2951     if( lemp->basisflag ) cfp=stp->bp;
   2952     else                  cfp=stp->cfp;
   2953     while( cfp ){
   2954       char buf[20];
   2955       if( cfp->dot==cfp->rp->nrhs ){
   2956         sprintf(buf,"(%d)",cfp->rp->index);
   2957         fprintf(fp,"    %5s ",buf);
   2958       }else{
   2959         fprintf(fp,"          ");
   2960       }
   2961       ConfigPrint(fp,cfp);
   2962       fprintf(fp,"\n");
   2963 #if 0
   2964       SetPrint(fp,cfp->fws,lemp);
   2965       PlinkPrint(fp,cfp->fplp,"To  ");
   2966       PlinkPrint(fp,cfp->bplp,"From");
   2967 #endif
   2968       if( lemp->basisflag ) cfp=cfp->bp;
   2969       else                  cfp=cfp->next;
   2970     }
   2971     fprintf(fp,"\n");
   2972     for(ap=stp->ap; ap; ap=ap->next){
   2973       if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
   2974     }
   2975     fprintf(fp,"\n");
   2976   }
   2977   fprintf(fp, "----------------------------------------------------\n");
   2978   fprintf(fp, "Symbols:\n");
   2979   for(i=0; i<lemp->nsymbol; i++){
   2980     int j;
   2981     struct symbol *sp;
   2982 
   2983     sp = lemp->symbols[i];
   2984     fprintf(fp, "  %3d: %s", i, sp->name);
   2985     if( sp->type==NONTERMINAL ){
   2986       fprintf(fp, ":");
   2987       if( sp->lambda ){
   2988         fprintf(fp, " <lambda>");
   2989       }
   2990       for(j=0; j<lemp->nterminal; j++){
   2991         if( sp->firstset && SetFind(sp->firstset, j) ){
   2992           fprintf(fp, " %s", lemp->symbols[j]->name);
   2993         }
   2994       }
   2995     }
   2996     fprintf(fp, "\n");
   2997   }
   2998   fclose(fp);
   2999   return;
   3000 }
   3001 
   3002 /* Search for the file "name" which is in the same directory as
   3003 ** the exacutable */
   3004 PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
   3005 {
   3006   const char *pathlist;
   3007   char *pathbufptr;
   3008   char *pathbuf;
   3009   char *path,*cp;
   3010   char c;
   3011 
   3012 #ifdef __WIN32__
   3013   cp = strrchr(argv0,'\\');
   3014 #else
   3015   cp = strrchr(argv0,'/');
   3016 #endif
   3017   if( cp ){
   3018     c = *cp;
   3019     *cp = 0;
   3020     path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
   3021     if( path ) sprintf(path,"%s/%s",argv0,name);
   3022     *cp = c;
   3023   }else{
   3024     pathlist = getenv("PATH");
   3025     if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
   3026     pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
   3027     path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
   3028     if( (pathbuf != 0) && (path!=0) ){
   3029       pathbufptr = pathbuf;
   3030       strcpy(pathbuf, pathlist);
   3031       while( *pathbuf ){
   3032         cp = strchr(pathbuf,':');
   3033         if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
   3034         c = *cp;
   3035         *cp = 0;
   3036         sprintf(path,"%s/%s",pathbuf,name);
   3037         *cp = c;
   3038         if( c==0 ) pathbuf[0] = 0;
   3039         else pathbuf = &cp[1];
   3040         if( access(path,modemask)==0 ) break;
   3041       }
   3042       free(pathbufptr);
   3043     }
   3044   }
   3045   return path;
   3046 }
   3047 
   3048 /* Given an action, compute the integer value for that action
   3049 ** which is to be put in the action table of the generated machine.
   3050 ** Return negative if no action should be generated.
   3051 */
   3052 PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
   3053 {
   3054   int act;
   3055   switch( ap->type ){
   3056     case SHIFT:  act = ap->x.stp->statenum;            break;
   3057     case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
   3058     case ERROR:  act = lemp->nstate + lemp->nrule;     break;
   3059     case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
   3060     default:     act = -1; break;
   3061   }
   3062   return act;
   3063 }
   3064 
   3065 #define LINESIZE 1000
   3066 /* The next cluster of routines are for reading the template file
   3067 ** and writing the results to the generated parser */
   3068 /* The first function transfers data from "in" to "out" until
   3069 ** a line is seen which begins with "%%".  The line number is
   3070 ** tracked.
   3071 **
   3072 ** if name!=0, then any word that begin with "Parse" is changed to
   3073 ** begin with *name instead.
   3074 */
   3075 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
   3076 {
   3077   int i, iStart;
   3078   char line[LINESIZE];
   3079   while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
   3080     (*lineno)++;
   3081     iStart = 0;
   3082     if( name ){
   3083       for(i=0; line[i]; i++){
   3084         if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
   3085           && (i==0 || !isalpha(line[i-1]))
   3086         ){
   3087           if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
   3088           fprintf(out,"%s",name);
   3089           i += 4;
   3090           iStart = i+1;
   3091         }
   3092       }
   3093     }
   3094     fprintf(out,"%s",&line[iStart]);
   3095   }
   3096 }
   3097 
   3098 /* The next function finds the template file and opens it, returning
   3099 ** a pointer to the opened file. */
   3100 PRIVATE FILE *tplt_open(struct lemon *lemp)
   3101 {
   3102   static char templatename[] = "lempar.c";
   3103   char buf[1000];
   3104   FILE *in;
   3105   char *tpltname;
   3106   char *cp;
   3107 
   3108   /* first, see if user specified a template filename on the command line. */
   3109   if (user_templatename != 0) {
   3110     if( access(user_templatename,004)==-1 ){
   3111       fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
   3112         user_templatename);
   3113       lemp->errorcnt++;
   3114       return 0;
   3115     }
   3116     in = fopen(user_templatename,"rb");
   3117     if( in==0 ){
   3118       fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename);
   3119       lemp->errorcnt++;
   3120       return 0;
   3121     }
   3122     return in;
   3123   }
   3124 
   3125   cp = strrchr(lemp->filename,'.');
   3126   if( cp ){
   3127     sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
   3128   }else{
   3129     sprintf(buf,"%s.lt",lemp->filename);
   3130   }
   3131   if( access(buf,004)==0 ){
   3132     tpltname = buf;
   3133   }else if( access(templatename,004)==0 ){
   3134     tpltname = templatename;
   3135   }else{
   3136     tpltname = pathsearch(lemp->argv0,templatename,0);
   3137   }
   3138   if( tpltname==0 ){
   3139     fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
   3140     templatename);
   3141     lemp->errorcnt++;
   3142     return 0;
   3143   }
   3144   in = fopen(tpltname,"rb");
   3145   if( in==0 ){
   3146     fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
   3147     lemp->errorcnt++;
   3148     return 0;
   3149   }
   3150   return in;
   3151 }
   3152 
   3153 /* Print a #line directive line to the output file. */
   3154 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
   3155 {
   3156   fprintf(out,"#line %d \"",lineno);
   3157   while( *filename ){
   3158     if( *filename == '\\' ) putc('\\',out);
   3159     putc(*filename,out);
   3160     filename++;
   3161   }
   3162   fprintf(out,"\"\n");
   3163 }
   3164 
   3165 /* Print a string to the file and keep the linenumber up to date */
   3166 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
   3167 {
   3168   if( str==0 ) return;
   3169   while( *str ){
   3170     putc(*str,out);
   3171     if( *str=='\n' ) (*lineno)++;
   3172     str++;
   3173   }
   3174   if( str[-1]!='\n' ){
   3175     putc('\n',out);
   3176     (*lineno)++;
   3177   }
   3178   if (!lemp->nolinenosflag) {
   3179     (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
   3180   }
   3181   return;
   3182 }
   3183 
   3184 /*
   3185 ** The following routine emits code for the destructor for the
   3186 ** symbol sp
   3187 */
   3188 void emit_destructor_code(
   3189   FILE *out,
   3190   struct symbol *sp,
   3191   struct lemon *lemp,
   3192   int *lineno
   3193 ){
   3194  char *cp = 0;
   3195 
   3196  if( sp->type==TERMINAL ){
   3197    cp = lemp->tokendest;
   3198    if( cp==0 ) return;
   3199    fprintf(out,"{\n"); (*lineno)++;
   3200  }else if( sp->destructor ){
   3201    cp = sp->destructor;
   3202    fprintf(out,"{\n"); (*lineno)++;
   3203    if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); }
   3204  }else if( lemp->vardest ){
   3205    cp = lemp->vardest;
   3206    if( cp==0 ) return;
   3207    fprintf(out,"{\n"); (*lineno)++;
   3208  }else{
   3209    assert( 0 );  /* Cannot happen */
   3210  }
   3211  for(; *cp; cp++){
   3212    if( *cp=='$' && cp[1]=='$' ){
   3213      fprintf(out,"(yypminor->yy%d)",sp->dtnum);
   3214      cp++;
   3215      continue;
   3216    }
   3217    if( *cp=='\n' ) (*lineno)++;
   3218    fputc(*cp,out);
   3219  }
   3220  fprintf(out,"\n"); (*lineno)++;
   3221  if (!lemp->nolinenosflag) {
   3222    (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
   3223  }
   3224  fprintf(out,"}\n"); (*lineno)++;
   3225  return;
   3226 }
   3227 
   3228 /*
   3229 ** Return TRUE (non-zero) if the given symbol has a destructor.
   3230 */
   3231 int has_destructor(struct symbol *sp, struct lemon *lemp)
   3232 {
   3233   int ret;
   3234   if( sp->type==TERMINAL ){
   3235     ret = lemp->tokendest!=0;
   3236   }else{
   3237     ret = lemp->vardest!=0 || sp->destructor!=0;
   3238   }
   3239   return ret;
   3240 }
   3241 
   3242 /*
   3243 ** Append text to a dynamically allocated string.  If zText is 0 then
   3244 ** reset the string to be empty again.  Always return the complete text
   3245 ** of the string (which is overwritten with each call).
   3246 **
   3247 ** n bytes of zText are stored.  If n==0 then all of zText up to the first
   3248 ** \000 terminator is stored.  zText can contain up to two instances of
   3249 ** %d.  The values of p1 and p2 are written into the first and second
   3250 ** %d.
   3251 **
   3252 ** If n==-1, then the previous character is overwritten.
   3253 */
   3254 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
   3255   static char empty[1] = { 0 };
   3256   static char *z = 0;
   3257   static int alloced = 0;
   3258   static int used = 0;
   3259   int c;
   3260   char zInt[40];
   3261   if( zText==0 ){
   3262     used = 0;
   3263     return z;
   3264   }
   3265   if( n<=0 ){
   3266     if( n<0 ){
   3267       used += n;
   3268       assert( used>=0 );
   3269     }
   3270     n = lemonStrlen(zText);
   3271   }
   3272   if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
   3273     alloced = n + sizeof(zInt)*2 + used + 200;
   3274     z = (char *) realloc(z,  alloced);
   3275   }
   3276   if( z==0 ) return empty;
   3277   while( n-- > 0 ){
   3278     c = *(zText++);
   3279     if( c=='%' && n>0 && zText[0]=='d' ){
   3280       sprintf(zInt, "%d", p1);
   3281       p1 = p2;
   3282       strcpy(&z[used], zInt);
   3283       used += lemonStrlen(&z[used]);
   3284       zText++;
   3285       n--;
   3286     }else{
   3287       z[used++] = c;
   3288     }
   3289   }
   3290   z[used] = 0;
   3291   return z;
   3292 }
   3293 
   3294 /*
   3295 ** zCode is a string that is the action associated with a rule.  Expand
   3296 ** the symbols in this string so that the refer to elements of the parser
   3297 ** stack.
   3298 */
   3299 PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
   3300   char *cp, *xp;
   3301   int i;
   3302   char lhsused = 0;    /* True if the LHS element has been used */
   3303   char used[MAXRHS];   /* True for each RHS element which is used */
   3304 
   3305   for(i=0; i<rp->nrhs; i++) used[i] = 0;
   3306   lhsused = 0;
   3307 
   3308   if( rp->code==0 ){
   3309     static char newlinestr[2] = { '\n', '\0' };
   3310     rp->code = newlinestr;
   3311     rp->line = rp->ruleline;
   3312   }
   3313 
   3314   append_str(0,0,0,0);
   3315 
   3316   /* This const cast is wrong but harmless, if we're careful. */
   3317   for(cp=(char *)rp->code; *cp; cp++){
   3318     if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
   3319       char saved;
   3320       for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
   3321       saved = *xp;
   3322       *xp = 0;
   3323       if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
   3324         append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
   3325         cp = xp;
   3326         lhsused = 1;
   3327       }else{
   3328         for(i=0; i<rp->nrhs; i++){
   3329           if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
   3330             if( cp!=rp->code && cp[-1]=='@' ){
   3331               /* If the argument is of the form @X then substituted
   3332               ** the token number of X, not the value of X */
   3333               append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
   3334             }else{
   3335               struct symbol *sp = rp->rhs[i];
   3336               int dtnum;
   3337               if( sp->type==MULTITERMINAL ){
   3338                 dtnum = sp->subsym[0]->dtnum;
   3339               }else{
   3340                 dtnum = sp->dtnum;
   3341               }
   3342               append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
   3343             }
   3344             cp = xp;
   3345             used[i] = 1;
   3346             break;
   3347           }
   3348         }
   3349       }
   3350       *xp = saved;
   3351     }
   3352     append_str(cp, 1, 0, 0);
   3353   } /* End loop */
   3354 
   3355   /* Check to make sure the LHS has been used */
   3356   if( rp->lhsalias && !lhsused ){
   3357     ErrorMsg(lemp->filename,rp->ruleline,
   3358       "Label \"%s\" for \"%s(%s)\" is never used.",
   3359         rp->lhsalias,rp->lhs->name,rp->lhsalias);
   3360     lemp->errorcnt++;
   3361   }
   3362 
   3363   /* Generate destructor code for RHS symbols which are not used in the
   3364   ** reduce code */
   3365   for(i=0; i<rp->nrhs; i++){
   3366     if( rp->rhsalias[i] && !used[i] ){
   3367       ErrorMsg(lemp->filename,rp->ruleline,
   3368         "Label %s for \"%s(%s)\" is never used.",
   3369         rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
   3370       lemp->errorcnt++;
   3371     }else if( rp->rhsalias[i]==0 ){
   3372       if( has_destructor(rp->rhs[i],lemp) ){
   3373         append_str("  yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
   3374            rp->rhs[i]->index,i-rp->nrhs+1);
   3375       }else{
   3376         /* No destructor defined for this term */
   3377       }
   3378     }
   3379   }
   3380   if( rp->code ){
   3381     cp = append_str(0,0,0,0);
   3382     rp->code = Strsafe(cp?cp:"");
   3383   }
   3384 }
   3385 
   3386 /*
   3387 ** Generate code which executes when the rule "rp" is reduced.  Write
   3388 ** the code to "out".  Make sure lineno stays up-to-date.
   3389 */
   3390 PRIVATE void emit_code(
   3391   FILE *out,
   3392   struct rule *rp,
   3393   struct lemon *lemp,
   3394   int *lineno
   3395 ){
   3396  const char *cp;
   3397 
   3398  /* Generate code to do the reduce action */
   3399  if( rp->code ){
   3400    if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); }
   3401    fprintf(out,"{%s",rp->code);
   3402    for(cp=rp->code; *cp; cp++){
   3403      if( *cp=='\n' ) (*lineno)++;
   3404    } /* End loop */
   3405    fprintf(out,"}\n"); (*lineno)++;
   3406    if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); }
   3407  } /* End if( rp->code ) */
   3408 
   3409  return;
   3410 }
   3411 
   3412 /*
   3413 ** Print the definition of the union used for the parser's data stack.
   3414 ** This union contains fields for every possible data type for tokens
   3415 ** and nonterminals.  In the process of computing and printing this
   3416 ** union, also set the ".dtnum" field of every terminal and nonterminal
   3417 ** symbol.
   3418 */
   3419 void print_stack_union(
   3420   FILE *out,                  /* The output stream */
   3421   struct lemon *lemp,         /* The main info structure for this parser */
   3422   int *plineno,               /* Pointer to the line number */
   3423   int mhflag                  /* True if generating makeheaders output */
   3424 ){
   3425   int lineno = *plineno;    /* The line number of the output */
   3426   char **types;             /* A hash table of datatypes */
   3427   int arraysize;            /* Size of the "types" array */
   3428   int maxdtlength;          /* Maximum length of any ".datatype" field. */
   3429   char *stddt;              /* Standardized name for a datatype */
   3430   int i,j;                  /* Loop counters */
   3431   int hash;                 /* For hashing the name of a type */
   3432   const char *name;         /* Name of the parser */
   3433 
   3434   /* Allocate and initialize types[] and allocate stddt[] */
   3435   arraysize = lemp->nsymbol * 2;
   3436   types = (char**)calloc( arraysize, sizeof(char*) );
   3437   for(i=0; i<arraysize; i++) types[i] = 0;
   3438   maxdtlength = 0;
   3439   if( lemp->vartype ){
   3440     maxdtlength = lemonStrlen(lemp->vartype);
   3441   }
   3442   for(i=0; i<lemp->nsymbol; i++){
   3443     int len;
   3444     struct symbol *sp = lemp->symbols[i];
   3445     if( sp->datatype==0 ) continue;
   3446     len = lemonStrlen(sp->datatype);
   3447     if( len>maxdtlength ) maxdtlength = len;
   3448   }
   3449   stddt = (char*)malloc( maxdtlength*2 + 1 );
   3450   if( types==0 || stddt==0 ){
   3451     fprintf(stderr,"Out of memory.\n");
   3452     exit(1);
   3453   }
   3454 
   3455   /* Build a hash table of datatypes. The ".dtnum" field of each symbol
   3456   ** is filled in with the hash index plus 1.  A ".dtnum" value of 0 is
   3457   ** used for terminal symbols.  If there is no %default_type defined then
   3458   ** 0 is also used as the .dtnum value for nonterminals which do not specify
   3459   ** a datatype using the %type directive.
   3460   */
   3461   for(i=0; i<lemp->nsymbol; i++){
   3462     struct symbol *sp = lemp->symbols[i];
   3463     char *cp;
   3464     if( sp==lemp->errsym ){
   3465       sp->dtnum = arraysize+1;
   3466       continue;
   3467     }
   3468     if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
   3469       sp->dtnum = 0;
   3470       continue;
   3471     }
   3472     cp = sp->datatype;
   3473     if( cp==0 ) cp = lemp->vartype;
   3474     j = 0;
   3475     while( isspace(*cp) ) cp++;
   3476     while( *cp ) stddt[j++] = *cp++;
   3477     while( j>0 && isspace(stddt[j-1]) ) j--;
   3478     stddt[j] = 0;
   3479     if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
   3480       sp->dtnum = 0;
   3481       continue;
   3482     }
   3483     hash = 0;
   3484     for(j=0; stddt[j]; j++){
   3485       hash = hash*53 + stddt[j];
   3486     }
   3487     hash = (hash & 0x7fffffff)%arraysize;
   3488     while( types[hash] ){
   3489       if( strcmp(types[hash],stddt)==0 ){
   3490         sp->dtnum = hash + 1;
   3491         break;
   3492       }
   3493       hash++;
   3494       if( hash>=arraysize ) hash = 0;
   3495     }
   3496     if( types[hash]==0 ){
   3497       sp->dtnum = hash + 1;
   3498       types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
   3499       if( types[hash]==0 ){
   3500         fprintf(stderr,"Out of memory.\n");
   3501         exit(1);
   3502       }
   3503       strcpy(types[hash],stddt);
   3504     }
   3505   }
   3506 
   3507   /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
   3508   name = lemp->name ? lemp->name : "Parse";
   3509   lineno = *plineno;
   3510   if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
   3511   fprintf(out,"#define %sTOKENTYPE %s\n",name,
   3512     lemp->tokentype?lemp->tokentype:"void*");  lineno++;
   3513   if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
   3514   fprintf(out,"typedef union {\n"); lineno++;
   3515   fprintf(out,"  int yyinit;\n"); lineno++;
   3516   fprintf(out,"  %sTOKENTYPE yy0;\n",name); lineno++;
   3517   for(i=0; i<arraysize; i++){
   3518     if( types[i]==0 ) continue;
   3519     fprintf(out,"  %s yy%d;\n",types[i],i+1); lineno++;
   3520     free(types[i]);
   3521   }
   3522   if( lemp->errsym->useCnt ){
   3523     fprintf(out,"  int yy%d;\n",lemp->errsym->dtnum); lineno++;
   3524   }
   3525   free(stddt);
   3526   free(types);
   3527   fprintf(out,"} YYMINORTYPE;\n"); lineno++;
   3528   *plineno = lineno;
   3529 }
   3530 
   3531 /*
   3532 ** Return the name of a C datatype able to represent values between
   3533 ** lwr and upr, inclusive.
   3534 */
   3535 static const char *minimum_size_type(int lwr, int upr){
   3536   if( lwr>=0 ){
   3537     if( upr<=255 ){
   3538       return "unsigned char";
   3539     }else if( upr<65535 ){
   3540       return "unsigned short int";
   3541     }else{
   3542       return "unsigned int";
   3543     }
   3544   }else if( lwr>=-127 && upr<=127 ){
   3545     return "signed char";
   3546   }else if( lwr>=-32767 && upr<32767 ){
   3547     return "short";
   3548   }else{
   3549     return "int";
   3550   }
   3551 }
   3552 
   3553 /*
   3554 ** Each state contains a set of token transaction and a set of
   3555 ** nonterminal transactions.  Each of these sets makes an instance
   3556 ** of the following structure.  An array of these structures is used
   3557 ** to order the creation of entries in the yy_action[] table.
   3558 */
   3559 struct axset {
   3560   struct state *stp;   /* A pointer to a state */
   3561   int isTkn;           /* True to use tokens.  False for non-terminals */
   3562   int nAction;         /* Number of actions */
   3563   int iOrder;          /* Original order of action sets */
   3564 };
   3565 
   3566 /*
   3567 ** Compare to axset structures for sorting purposes
   3568 */
   3569 static int axset_compare(const void *a, const void *b){
   3570   struct axset *p1 = (struct axset*)a;
   3571   struct axset *p2 = (struct axset*)b;
   3572   int c;
   3573   c = p2->nAction - p1->nAction;
   3574   if( c==0 ){
   3575     c = p2->iOrder - p1->iOrder;
   3576   }
   3577   assert( c!=0 || p1==p2 );
   3578   return c;
   3579 }
   3580 
   3581 /*
   3582 ** Write text on "out" that describes the rule "rp".
   3583 */
   3584 static void writeRuleText(FILE *out, struct rule *rp){
   3585   int j;
   3586   fprintf(out,"%s ::=", rp->lhs->name);
   3587   for(j=0; j<rp->nrhs; j++){
   3588     struct symbol *sp = rp->rhs[j];
   3589     fprintf(out," %s", sp->name);
   3590     if( sp->type==MULTITERMINAL ){
   3591       int k;
   3592       for(k=1; k<sp->nsubsym; k++){
   3593         fprintf(out,"|%s",sp->subsym[k]->name);
   3594       }
   3595     }
   3596   }
   3597 }
   3598 
   3599 
   3600 /* Generate C source code for the parser */
   3601 void ReportTable(
   3602   struct lemon *lemp,
   3603   int mhflag     /* Output in makeheaders format if true */
   3604 ){
   3605   FILE *out, *in;
   3606   char line[LINESIZE];
   3607   int  lineno;
   3608   struct state *stp;
   3609   struct action *ap;
   3610   struct rule *rp;
   3611   struct acttab *pActtab;
   3612   int i, j, n;
   3613   const char *name;
   3614   int mnTknOfst, mxTknOfst;
   3615   int mnNtOfst, mxNtOfst;
   3616   struct axset *ax;
   3617 
   3618   in = tplt_open(lemp);
   3619   if( in==0 ) return;
   3620   out = file_open(lemp,".c","wb");
   3621   if( out==0 ){
   3622     fclose(in);
   3623     return;
   3624   }
   3625   lineno = 1;
   3626   tplt_xfer(lemp->name,in,out,&lineno);
   3627 
   3628   /* Generate the include code, if any */
   3629   tplt_print(out,lemp,lemp->include,&lineno);
   3630   if( mhflag ){
   3631     char *name = file_makename(lemp, ".h");
   3632     fprintf(out,"#include \"%s\"\n", name); lineno++;
   3633     free(name);
   3634   }
   3635   tplt_xfer(lemp->name,in,out,&lineno);
   3636 
   3637   /* Generate #defines for all tokens */
   3638   if( mhflag ){
   3639     const char *prefix;
   3640     fprintf(out,"#if INTERFACE\n"); lineno++;
   3641     if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
   3642     else                    prefix = "";
   3643     for(i=1; i<lemp->nterminal; i++){
   3644       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
   3645       lineno++;
   3646     }
   3647     fprintf(out,"#endif\n"); lineno++;
   3648   }
   3649   tplt_xfer(lemp->name,in,out,&lineno);
   3650 
   3651   /* Generate the defines */
   3652   fprintf(out,"#define YYCODETYPE %s\n",
   3653     minimum_size_type(0, lemp->nsymbol+1)); lineno++;
   3654   fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1);  lineno++;
   3655   fprintf(out,"#define YYACTIONTYPE %s\n",
   3656     minimum_size_type(0, lemp->nstate+lemp->nrule+5));  lineno++;
   3657   if( lemp->wildcard ){
   3658     fprintf(out,"#define YYWILDCARD %d\n",
   3659        lemp->wildcard->index); lineno++;
   3660   }
   3661   print_stack_union(out,lemp,&lineno,mhflag);
   3662   fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
   3663   if( lemp->stacksize ){
   3664     fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize);  lineno++;
   3665   }else{
   3666     fprintf(out,"#define YYSTACKDEPTH 100\n");  lineno++;
   3667   }
   3668   fprintf(out, "#endif\n"); lineno++;
   3669   if( mhflag ){
   3670     fprintf(out,"#if INTERFACE\n"); lineno++;
   3671   }
   3672   name = lemp->name ? lemp->name : "Parse";
   3673   if( lemp->arg && lemp->arg[0] ){
   3674     int i;
   3675     i = lemonStrlen(lemp->arg);
   3676     while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
   3677     while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
   3678     fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg);  lineno++;
   3679     fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg);  lineno++;
   3680     fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
   3681                  name,lemp->arg,&lemp->arg[i]);  lineno++;
   3682     fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
   3683                  name,&lemp->arg[i],&lemp->arg[i]);  lineno++;
   3684   }else{
   3685     fprintf(out,"#define %sARG_SDECL\n",name);  lineno++;
   3686     fprintf(out,"#define %sARG_PDECL\n",name);  lineno++;
   3687     fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
   3688     fprintf(out,"#define %sARG_STORE\n",name); lineno++;
   3689   }
   3690   if( mhflag ){
   3691     fprintf(out,"#endif\n"); lineno++;
   3692   }
   3693   fprintf(out,"#define YYNSTATE %d\n",lemp->nstate);  lineno++;
   3694   fprintf(out,"#define YYNRULE %d\n",lemp->nrule);  lineno++;
   3695   if( lemp->errsym->useCnt ){
   3696     fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index);  lineno++;
   3697     fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum);  lineno++;
   3698   }
   3699   if( lemp->has_fallback ){
   3700     fprintf(out,"#define YYFALLBACK 1\n");  lineno++;
   3701   }
   3702   tplt_xfer(lemp->name,in,out,&lineno);
   3703 
   3704   /* Generate the action table and its associates:
   3705   **
   3706   **  yy_action[]        A single table containing all actions.
   3707   **  yy_lookahead[]     A table containing the lookahead for each entry in
   3708   **                     yy_action.  Used to detect hash collisions.
   3709   **  yy_shift_ofst[]    For each state, the offset into yy_action for
   3710   **                     shifting terminals.
   3711   **  yy_reduce_ofst[]   For each state, the offset into yy_action for
   3712   **                     shifting non-terminals after a reduce.
   3713   **  yy_default[]       Default action for each state.
   3714   */
   3715 
   3716   /* Compute the actions on all states and count them up */
   3717   ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0]));
   3718   if( ax==0 ){
   3719     fprintf(stderr,"malloc failed\n");
   3720     exit(1);
   3721   }
   3722   for(i=0; i<lemp->nstate; i++){
   3723     stp = lemp->sorted[i];
   3724     ax[i*2].stp = stp;
   3725     ax[i*2].isTkn = 1;
   3726     ax[i*2].nAction = stp->nTknAct;
   3727     ax[i*2+1].stp = stp;
   3728     ax[i*2+1].isTkn = 0;
   3729     ax[i*2+1].nAction = stp->nNtAct;
   3730   }
   3731   mxTknOfst = mnTknOfst = 0;
   3732   mxNtOfst = mnNtOfst = 0;
   3733 
   3734   /* Compute the action table.  In order to try to keep the size of the
   3735   ** action table to a minimum, the heuristic of placing the largest action
   3736   ** sets first is used.
   3737   */
   3738   for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i;
   3739   qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
   3740   pActtab = acttab_alloc();
   3741   for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
   3742     stp = ax[i].stp;
   3743     if( ax[i].isTkn ){
   3744       for(ap=stp->ap; ap; ap=ap->next){
   3745         int action;
   3746         if( ap->sp->index>=lemp->nterminal ) continue;
   3747         action = compute_action(lemp, ap);
   3748         if( action<0 ) continue;
   3749         acttab_action(pActtab, ap->sp->index, action);
   3750       }
   3751       stp->iTknOfst = acttab_insert(pActtab);
   3752       if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
   3753       if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
   3754     }else{
   3755       for(ap=stp->ap; ap; ap=ap->next){
   3756         int action;
   3757         if( ap->sp->index<lemp->nterminal ) continue;
   3758         if( ap->sp->index==lemp->nsymbol ) continue;
   3759         action = compute_action(lemp, ap);
   3760         if( action<0 ) continue;
   3761         acttab_action(pActtab, ap->sp->index, action);
   3762       }
   3763       stp->iNtOfst = acttab_insert(pActtab);
   3764       if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
   3765       if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
   3766     }
   3767   }
   3768   free(ax);
   3769 
   3770   /* Output the yy_action table */
   3771   n = acttab_size(pActtab);
   3772   fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
   3773   fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
   3774   for(i=j=0; i<n; i++){
   3775     int action = acttab_yyaction(pActtab, i);
   3776     if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
   3777     if( j==0 ) fprintf(out," /* %5d */ ", i);
   3778     fprintf(out, " %4d,", action);
   3779     if( j==9 || i==n-1 ){
   3780       fprintf(out, "\n"); lineno++;
   3781       j = 0;
   3782     }else{
   3783       j++;
   3784     }
   3785   }
   3786   fprintf(out, "};\n"); lineno++;
   3787 
   3788   /* Output the yy_lookahead table */
   3789   fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
   3790   for(i=j=0; i<n; i++){
   3791     int la = acttab_yylookahead(pActtab, i);
   3792     if( la<0 ) la = lemp->nsymbol;
   3793     if( j==0 ) fprintf(out," /* %5d */ ", i);
   3794     fprintf(out, " %4d,", la);
   3795     if( j==9 || i==n-1 ){
   3796       fprintf(out, "\n"); lineno++;
   3797       j = 0;
   3798     }else{
   3799       j++;
   3800     }
   3801   }
   3802   fprintf(out, "};\n"); lineno++;
   3803 
   3804   /* Output the yy_shift_ofst[] table */
   3805   fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
   3806   n = lemp->nstate;
   3807   while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
   3808   fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
   3809   fprintf(out, "#define YY_SHIFT_MIN   (%d)\n", mnTknOfst); lineno++;
   3810   fprintf(out, "#define YY_SHIFT_MAX   (%d)\n", mxTknOfst); lineno++;
   3811   fprintf(out, "static const %s yy_shift_ofst[] = {\n",
   3812           minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
   3813   for(i=j=0; i<n; i++){
   3814     int ofst;
   3815     stp = lemp->sorted[i];
   3816     ofst = stp->iTknOfst;
   3817     if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
   3818     if( j==0 ) fprintf(out," /* %5d */ ", i);
   3819     fprintf(out, " %4d,", ofst);
   3820     if( j==9 || i==n-1 ){
   3821       fprintf(out, "\n"); lineno++;
   3822       j = 0;
   3823     }else{
   3824       j++;
   3825     }
   3826   }
   3827   fprintf(out, "};\n"); lineno++;
   3828 
   3829   /* Output the yy_reduce_ofst[] table */
   3830   fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
   3831   n = lemp->nstate;
   3832   while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
   3833   fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
   3834   fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
   3835   fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
   3836   fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
   3837           minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
   3838   for(i=j=0; i<n; i++){
   3839     int ofst;
   3840     stp = lemp->sorted[i];
   3841     ofst = stp->iNtOfst;
   3842     if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
   3843     if( j==0 ) fprintf(out," /* %5d */ ", i);
   3844     fprintf(out, " %4d,", ofst);
   3845     if( j==9 || i==n-1 ){
   3846       fprintf(out, "\n"); lineno++;
   3847       j = 0;
   3848     }else{
   3849       j++;
   3850     }
   3851   }
   3852   fprintf(out, "};\n"); lineno++;
   3853 
   3854   /* Output the default action table */
   3855   fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
   3856   n = lemp->nstate;
   3857   for(i=j=0; i<n; i++){
   3858     stp = lemp->sorted[i];
   3859     if( j==0 ) fprintf(out," /* %5d */ ", i);
   3860     fprintf(out, " %4d,", stp->iDflt);
   3861     if( j==9 || i==n-1 ){
   3862       fprintf(out, "\n"); lineno++;
   3863       j = 0;
   3864     }else{
   3865       j++;
   3866     }
   3867   }
   3868   fprintf(out, "};\n"); lineno++;
   3869   tplt_xfer(lemp->name,in,out,&lineno);
   3870 
   3871   /* Generate the table of fallback tokens.
   3872   */
   3873   if( lemp->has_fallback ){
   3874     int mx = lemp->nterminal - 1;
   3875     while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
   3876     for(i=0; i<=mx; i++){
   3877       struct symbol *p = lemp->symbols[i];
   3878       if( p->fallback==0 ){
   3879         fprintf(out, "    0,  /* %10s => nothing */\n", p->name);
   3880       }else{
   3881         fprintf(out, "  %3d,  /* %10s => %s */\n", p->fallback->index,
   3882           p->name, p->fallback->name);
   3883       }
   3884       lineno++;
   3885     }
   3886   }
   3887   tplt_xfer(lemp->name, in, out, &lineno);
   3888 
   3889   /* Generate a table containing the symbolic name of every symbol
   3890   */
   3891   for(i=0; i<lemp->nsymbol; i++){
   3892     sprintf(line,"\"%s\",",lemp->symbols[i]->name);
   3893     fprintf(out,"  %-15s",line);
   3894     if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
   3895   }
   3896   if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
   3897   tplt_xfer(lemp->name,in,out,&lineno);
   3898 
   3899   /* Generate a table containing a text string that describes every
   3900   ** rule in the rule set of the grammar.  This information is used
   3901   ** when tracing REDUCE actions.
   3902   */
   3903   for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
   3904     assert( rp->index==i );
   3905     fprintf(out," /* %3d */ \"", i);
   3906     writeRuleText(out, rp);
   3907     fprintf(out,"\",\n"); lineno++;
   3908   }
   3909   tplt_xfer(lemp->name,in,out,&lineno);
   3910 
   3911   /* Generate code which executes every time a symbol is popped from
   3912   ** the stack while processing errors or while destroying the parser.
   3913   ** (In other words, generate the %destructor actions)
   3914   */
   3915   if( lemp->tokendest ){
   3916     int once = 1;
   3917     for(i=0; i<lemp->nsymbol; i++){
   3918       struct symbol *sp = lemp->symbols[i];
   3919       if( sp==0 || sp->type!=TERMINAL ) continue;
   3920       if( once ){
   3921         fprintf(out, "      /* TERMINAL Destructor */\n"); lineno++;
   3922         once = 0;
   3923       }
   3924       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
   3925     }
   3926     for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
   3927     if( i<lemp->nsymbol ){
   3928       emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
   3929       fprintf(out,"      break;\n"); lineno++;
   3930     }
   3931   }
   3932   if( lemp->vardest ){
   3933     struct symbol *dflt_sp = 0;
   3934     int once = 1;
   3935     for(i=0; i<lemp->nsymbol; i++){
   3936       struct symbol *sp = lemp->symbols[i];
   3937       if( sp==0 || sp->type==TERMINAL ||
   3938           sp->index<=0 || sp->destructor!=0 ) continue;
   3939       if( once ){
   3940         fprintf(out, "      /* Default NON-TERMINAL Destructor */\n"); lineno++;
   3941         once = 0;
   3942       }
   3943       fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
   3944       dflt_sp = sp;
   3945     }
   3946     if( dflt_sp!=0 ){
   3947       emit_destructor_code(out,dflt_sp,lemp,&lineno);
   3948     }
   3949     fprintf(out,"      break;\n"); lineno++;
   3950   }
   3951   for(i=0; i<lemp->nsymbol; i++){
   3952     struct symbol *sp = lemp->symbols[i];
   3953     if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
   3954     fprintf(out,"    case %d: /* %s */\n", sp->index, sp->name); lineno++;
   3955 
   3956     /* Combine duplicate destructors into a single case */
   3957     for(j=i+1; j<lemp->nsymbol; j++){
   3958       struct symbol *sp2 = lemp->symbols[j];
   3959       if( sp2 && sp2->type!=TERMINAL && sp2->destructor
   3960           && sp2->dtnum==sp->dtnum
   3961           && strcmp(sp->destructor,sp2->destructor)==0 ){
   3962          fprintf(out,"    case %d: /* %s */\n",
   3963                  sp2->index, sp2->name); lineno++;
   3964          sp2->destructor = 0;
   3965       }
   3966     }
   3967 
   3968     emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
   3969     fprintf(out,"      break;\n"); lineno++;
   3970   }
   3971   tplt_xfer(lemp->name,in,out,&lineno);
   3972 
   3973   /* Generate code which executes whenever the parser stack overflows */
   3974   tplt_print(out,lemp,lemp->overflow,&lineno);
   3975   tplt_xfer(lemp->name,in,out,&lineno);
   3976 
   3977   /* Generate the table of rule information
   3978   **
   3979   ** Note: This code depends on the fact that rules are number
   3980   ** sequentually beginning with 0.
   3981   */
   3982   for(rp=lemp->rule; rp; rp=rp->next){
   3983     fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
   3984   }
   3985   tplt_xfer(lemp->name,in,out,&lineno);
   3986 
   3987   /* Generate code which execution during each REDUCE action */
   3988   for(rp=lemp->rule; rp; rp=rp->next){
   3989     translate_code(lemp, rp);
   3990   }
   3991   /* First output rules other than the default: rule */
   3992   for(rp=lemp->rule; rp; rp=rp->next){
   3993     struct rule *rp2;               /* Other rules with the same action */
   3994     if( rp->code==0 ) continue;
   3995     if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */
   3996     fprintf(out,"      case %d: /* ", rp->index);
   3997     writeRuleText(out, rp);
   3998     fprintf(out, " */\n"); lineno++;
   3999     for(rp2=rp->next; rp2; rp2=rp2->next){
   4000       if( rp2->code==rp->code ){
   4001         fprintf(out,"      case %d: /* ", rp2->index);
   4002         writeRuleText(out, rp2);
   4003         fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++;
   4004         rp2->code = 0;
   4005       }
   4006     }
   4007     emit_code(out,rp,lemp,&lineno);
   4008     fprintf(out,"        break;\n"); lineno++;
   4009     rp->code = 0;
   4010   }
   4011   /* Finally, output the default: rule.  We choose as the default: all
   4012   ** empty actions. */
   4013   fprintf(out,"      default:\n"); lineno++;
   4014   for(rp=lemp->rule; rp; rp=rp->next){
   4015     if( rp->code==0 ) continue;
   4016     assert( rp->code[0]=='\n' && rp->code[1]==0 );
   4017     fprintf(out,"      /* (%d) ", rp->index);
   4018     writeRuleText(out, rp);
   4019     fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++;
   4020   }
   4021   fprintf(out,"        break;\n"); lineno++;
   4022   tplt_xfer(lemp->name,in,out,&lineno);
   4023 
   4024   /* Generate code which executes if a parse fails */
   4025   tplt_print(out,lemp,lemp->failure,&lineno);
   4026   tplt_xfer(lemp->name,in,out,&lineno);
   4027 
   4028   /* Generate code which executes when a syntax error occurs */
   4029   tplt_print(out,lemp,lemp->error,&lineno);
   4030   tplt_xfer(lemp->name,in,out,&lineno);
   4031 
   4032   /* Generate code which executes when the parser accepts its input */
   4033   tplt_print(out,lemp,lemp->accept,&lineno);
   4034   tplt_xfer(lemp->name,in,out,&lineno);
   4035 
   4036   /* Append any addition code the user desires */
   4037   tplt_print(out,lemp,lemp->extracode,&lineno);
   4038 
   4039   fclose(in);
   4040   fclose(out);
   4041   return;
   4042 }
   4043 
   4044 /* Generate a header file for the parser */
   4045 void ReportHeader(struct lemon *lemp)
   4046 {
   4047   FILE *out, *in;
   4048   const char *prefix;
   4049   char line[LINESIZE];
   4050   char pattern[LINESIZE];
   4051   int i;
   4052 
   4053   if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
   4054   else                    prefix = "";
   4055   in = file_open(lemp,".h","rb");
   4056   if( in ){
   4057     for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
   4058       sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
   4059       if( strcmp(line,pattern) ) break;
   4060     }
   4061     fclose(in);
   4062     if( i==lemp->nterminal ){
   4063       /* No change in the file.  Don't rewrite it. */
   4064       return;
   4065     }
   4066   }
   4067   out = file_open(lemp,".h","wb");
   4068   if( out ){
   4069     for(i=1; i<lemp->nterminal; i++){
   4070       fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
   4071     }
   4072     fclose(out);
   4073   }
   4074   return;
   4075 }
   4076 
   4077 /* Reduce the size of the action tables, if possible, by making use
   4078 ** of defaults.
   4079 **
   4080 ** In this version, we take the most frequent REDUCE action and make
   4081 ** it the default.  Except, there is no default if the wildcard token
   4082 ** is a possible look-ahead.
   4083 */
   4084 void CompressTables(struct lemon *lemp)
   4085 {
   4086   struct state *stp;
   4087   struct action *ap, *ap2;
   4088   struct rule *rp, *rp2, *rbest;
   4089   int nbest, n;
   4090   int i;
   4091   int usesWildcard;
   4092 
   4093   for(i=0; i<lemp->nstate; i++){
   4094     stp = lemp->sorted[i];
   4095     nbest = 0;
   4096     rbest = 0;
   4097     usesWildcard = 0;
   4098 
   4099     for(ap=stp->ap; ap; ap=ap->next){
   4100       if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
   4101         usesWildcard = 1;
   4102       }
   4103       if( ap->type!=REDUCE ) continue;
   4104       rp = ap->x.rp;
   4105       if( rp->lhsStart ) continue;
   4106       if( rp==rbest ) continue;
   4107       n = 1;
   4108       for(ap2=ap->next; ap2; ap2=ap2->next){
   4109         if( ap2->type!=REDUCE ) continue;
   4110         rp2 = ap2->x.rp;
   4111         if( rp2==rbest ) continue;
   4112         if( rp2==rp ) n++;
   4113       }
   4114       if( n>nbest ){
   4115         nbest = n;
   4116         rbest = rp;
   4117       }
   4118     }
   4119 
   4120     /* Do not make a default if the number of rules to default
   4121     ** is not at least 1 or if the wildcard token is a possible
   4122     ** lookahead.
   4123     */
   4124     if( nbest<1 || usesWildcard ) continue;
   4125 
   4126 
   4127     /* Combine matching REDUCE actions into a single default */
   4128     for(ap=stp->ap; ap; ap=ap->next){
   4129       if( ap->type==REDUCE && ap->x.rp==rbest ) break;
   4130     }
   4131     assert( ap );
   4132     ap->sp = Symbol_new("{default}");
   4133     for(ap=ap->next; ap; ap=ap->next){
   4134       if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
   4135     }
   4136     stp->ap = Action_sort(stp->ap);
   4137   }
   4138 }
   4139 
   4140 
   4141 /*
   4142 ** Compare two states for sorting purposes.  The smaller state is the
   4143 ** one with the most non-terminal actions.  If they have the same number
   4144 ** of non-terminal actions, then the smaller is the one with the most
   4145 ** token actions.
   4146 */
   4147 static int stateResortCompare(const void *a, const void *b){
   4148   const struct state *pA = *(const struct state**)a;
   4149   const struct state *pB = *(const struct state**)b;
   4150   int n;
   4151 
   4152   n = pB->nNtAct - pA->nNtAct;
   4153   if( n==0 ){
   4154     n = pB->nTknAct - pA->nTknAct;
   4155     if( n==0 ){
   4156       n = pB->statenum - pA->statenum;
   4157     }
   4158   }
   4159   assert( n!=0 );
   4160   return n;
   4161 }
   4162 
   4163 
   4164 /*
   4165 ** Renumber and resort states so that states with fewer choices
   4166 ** occur at the end.  Except, keep state 0 as the first state.
   4167 */
   4168 void ResortStates(struct lemon *lemp)
   4169 {
   4170   int i;
   4171   struct state *stp;
   4172   struct action *ap;
   4173 
   4174   for(i=0; i<lemp->nstate; i++){
   4175     stp = lemp->sorted[i];
   4176     stp->nTknAct = stp->nNtAct = 0;
   4177     stp->iDflt = lemp->nstate + lemp->nrule;
   4178     stp->iTknOfst = NO_OFFSET;
   4179     stp->iNtOfst = NO_OFFSET;
   4180     for(ap=stp->ap; ap; ap=ap->next){
   4181       if( compute_action(lemp,ap)>=0 ){
   4182         if( ap->sp->index<lemp->nterminal ){
   4183           stp->nTknAct++;
   4184         }else if( ap->sp->index<lemp->nsymbol ){
   4185           stp->nNtAct++;
   4186         }else{
   4187           stp->iDflt = compute_action(lemp, ap);
   4188         }
   4189       }
   4190     }
   4191   }
   4192   qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
   4193         stateResortCompare);
   4194   for(i=0; i<lemp->nstate; i++){
   4195     lemp->sorted[i]->statenum = i;
   4196   }
   4197 }
   4198 
   4199 
   4200 /***************** From the file "set.c" ************************************/
   4201 /*
   4202 ** Set manipulation routines for the LEMON parser generator.
   4203 */
   4204 
   4205 static int size = 0;
   4206 
   4207 /* Set the set size */
   4208 void SetSize(int n)
   4209 {
   4210   size = n+1;
   4211 }
   4212 
   4213 /* Allocate a new set */
   4214 char *SetNew(){
   4215   char *s;
   4216   s = (char*)calloc( size, 1);
   4217   if( s==0 ){
   4218     extern void memory_error();
   4219     memory_error();
   4220   }
   4221   return s;
   4222 }
   4223 
   4224 /* Deallocate a set */
   4225 void SetFree(char *s)
   4226 {
   4227   free(s);
   4228 }
   4229 
   4230 /* Add a new element to the set.  Return TRUE if the element was added
   4231 ** and FALSE if it was already there. */
   4232 int SetAdd(char *s, int e)
   4233 {
   4234   int rv;
   4235   assert( e>=0 && e<size );
   4236   rv = s[e];
   4237   s[e] = 1;
   4238   return !rv;
   4239 }
   4240 
   4241 /* Add every element of s2 to s1.  Return TRUE if s1 changes. */
   4242 int SetUnion(char *s1, char *s2)
   4243 {
   4244   int i, progress;
   4245   progress = 0;
   4246   for(i=0; i<size; i++){
   4247     if( s2[i]==0 ) continue;
   4248     if( s1[i]==0 ){
   4249       progress = 1;
   4250       s1[i] = 1;
   4251     }
   4252   }
   4253   return progress;
   4254 }
   4255 /********************** From the file "table.c" ****************************/
   4256 /*
   4257 ** All code in this file has been automatically generated
   4258 ** from a specification in the file
   4259 **              "table.q"
   4260 ** by the associative array code building program "aagen".
   4261 ** Do not edit this file!  Instead, edit the specification
   4262 ** file, then rerun aagen.
   4263 */
   4264 /*
   4265 ** Code for processing tables in the LEMON parser generator.
   4266 */
   4267 
   4268 PRIVATE int strhash(const char *x)
   4269 {
   4270   int h = 0;
   4271   while( *x) h = h*13 + *(x++);
   4272   return h;
   4273 }
   4274 
   4275 /* Works like strdup, sort of.  Save a string in malloced memory, but
   4276 ** keep strings in a table so that the same string is not in more
   4277 ** than one place.
   4278 */
   4279 const char *Strsafe(const char *y)
   4280 {
   4281   const char *z;
   4282   char *cpy;
   4283 
   4284   if( y==0 ) return 0;
   4285   z = Strsafe_find(y);
   4286   if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
   4287     strcpy(cpy,y);
   4288     z = cpy;
   4289     Strsafe_insert(z);
   4290   }
   4291   MemoryCheck(z);
   4292   return z;
   4293 }
   4294 
   4295 /* There is one instance of the following structure for each
   4296 ** associative array of type "x1".
   4297 */
   4298 struct s_x1 {
   4299   int size;               /* The number of available slots. */
   4300                           /*   Must be a power of 2 greater than or */
   4301                           /*   equal to 1 */
   4302   int count;              /* Number of currently slots filled */
   4303   struct s_x1node *tbl;  /* The data stored here */
   4304   struct s_x1node **ht;  /* Hash table for lookups */
   4305 };
   4306 
   4307 /* There is one instance of this structure for every data element
   4308 ** in an associative array of type "x1".
   4309 */
   4310 typedef struct s_x1node {
   4311   const char *data;        /* The data */
   4312   struct s_x1node *next;   /* Next entry with the same hash */
   4313   struct s_x1node **from;  /* Previous link */
   4314 } x1node;
   4315 
   4316 /* There is only one instance of the array, which is the following */
   4317 static struct s_x1 *x1a;
   4318 
   4319 /* Allocate a new associative array */
   4320 void Strsafe_init(){
   4321   if( x1a ) return;
   4322   x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
   4323   if( x1a ){
   4324     x1a->size = 1024;
   4325     x1a->count = 0;
   4326     x1a->tbl = (x1node*)malloc(
   4327       (sizeof(x1node) + sizeof(x1node*))*1024 );
   4328     if( x1a->tbl==0 ){
   4329       free(x1a);
   4330       x1a = 0;
   4331     }else{
   4332       int i;
   4333       x1a->ht = (x1node**)&(x1a->tbl[1024]);
   4334       for(i=0; i<1024; i++) x1a->ht[i] = 0;
   4335     }
   4336   }
   4337 }
   4338 /* Insert a new record into the array.  Return TRUE if successful.
   4339 ** Prior data with the same key is NOT overwritten */
   4340 int Strsafe_insert(const char *data)
   4341 {
   4342   x1node *np;
   4343   int h;
   4344   int ph;
   4345 
   4346   if( x1a==0 ) return 0;
   4347   ph = strhash(data);
   4348   h = ph & (x1a->size-1);
   4349   np = x1a->ht[h];
   4350   while( np ){
   4351     if( strcmp(np->data,data)==0 ){
   4352       /* An existing entry with the same key is found. */
   4353       /* Fail because overwrite is not allows. */
   4354       return 0;
   4355     }
   4356     np = np->next;
   4357   }
   4358   if( x1a->count>=x1a->size ){
   4359     /* Need to make the hash table bigger */
   4360     int i,size;
   4361     struct s_x1 array;
   4362     array.size = size = x1a->size*2;
   4363     array.count = x1a->count;
   4364     array.tbl = (x1node*)malloc(
   4365       (sizeof(x1node) + sizeof(x1node*))*size );
   4366     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
   4367     array.ht = (x1node**)&(array.tbl[size]);
   4368     for(i=0; i<size; i++) array.ht[i] = 0;
   4369     for(i=0; i<x1a->count; i++){
   4370       x1node *oldnp, *newnp;
   4371       oldnp = &(x1a->tbl[i]);
   4372       h = strhash(oldnp->data) & (size-1);
   4373       newnp = &(array.tbl[i]);
   4374       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
   4375       newnp->next = array.ht[h];
   4376       newnp->data = oldnp->data;
   4377       newnp->from = &(array.ht[h]);
   4378       array.ht[h] = newnp;
   4379     }
   4380     free(x1a->tbl);
   4381     *x1a = array;
   4382   }
   4383   /* Insert the new data */
   4384   h = ph & (x1a->size-1);
   4385   np = &(x1a->tbl[x1a->count++]);
   4386   np->data = data;
   4387   if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
   4388   np->next = x1a->ht[h];
   4389   x1a->ht[h] = np;
   4390   np->from = &(x1a->ht[h]);
   4391   return 1;
   4392 }
   4393 
   4394 /* Return a pointer to data assigned to the given key.  Return NULL
   4395 ** if no such key. */
   4396 const char *Strsafe_find(const char *key)
   4397 {
   4398   int h;
   4399   x1node *np;
   4400 
   4401   if( x1a==0 ) return 0;
   4402   h = strhash(key) & (x1a->size-1);
   4403   np = x1a->ht[h];
   4404   while( np ){
   4405     if( strcmp(np->data,key)==0 ) break;
   4406     np = np->next;
   4407   }
   4408   return np ? np->data : 0;
   4409 }
   4410 
   4411 /* Return a pointer to the (terminal or nonterminal) symbol "x".
   4412 ** Create a new symbol if this is the first time "x" has been seen.
   4413 */
   4414 struct symbol *Symbol_new(const char *x)
   4415 {
   4416   struct symbol *sp;
   4417 
   4418   sp = Symbol_find(x);
   4419   if( sp==0 ){
   4420     sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
   4421     MemoryCheck(sp);
   4422     sp->name = Strsafe(x);
   4423     sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
   4424     sp->rule = 0;
   4425     sp->fallback = 0;
   4426     sp->prec = -1;
   4427     sp->assoc = UNK;
   4428     sp->firstset = 0;
   4429     sp->lambda = LEMON_FALSE;
   4430     sp->destructor = 0;
   4431     sp->destLineno = 0;
   4432     sp->datatype = 0;
   4433     sp->useCnt = 0;
   4434     Symbol_insert(sp,sp->name);
   4435   }
   4436   sp->useCnt++;
   4437   return sp;
   4438 }
   4439 
   4440 /* Compare two symbols for working purposes
   4441 **
   4442 ** Symbols that begin with upper case letters (terminals or tokens)
   4443 ** must sort before symbols that begin with lower case letters
   4444 ** (non-terminals).  Other than that, the order does not matter.
   4445 **
   4446 ** We find experimentally that leaving the symbols in their original
   4447 ** order (the order they appeared in the grammar file) gives the
   4448 ** smallest parser tables in SQLite.
   4449 */
   4450 int Symbolcmpp(const void *_a, const void *_b)
   4451 {
   4452   const struct symbol **a = (const struct symbol **) _a;
   4453   const struct symbol **b = (const struct symbol **) _b;
   4454   int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
   4455   int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
   4456   assert( i1!=i2 || strcmp((**a).name,(**b).name)==0 );
   4457   return i1-i2;
   4458 }
   4459 
   4460 /* There is one instance of the following structure for each
   4461 ** associative array of type "x2".
   4462 */
   4463 struct s_x2 {
   4464   int size;               /* The number of available slots. */
   4465                           /*   Must be a power of 2 greater than or */
   4466                           /*   equal to 1 */
   4467   int count;              /* Number of currently slots filled */
   4468   struct s_x2node *tbl;  /* The data stored here */
   4469   struct s_x2node **ht;  /* Hash table for lookups */
   4470 };
   4471 
   4472 /* There is one instance of this structure for every data element
   4473 ** in an associative array of type "x2".
   4474 */
   4475 typedef struct s_x2node {
   4476   struct symbol *data;     /* The data */
   4477   const char *key;         /* The key */
   4478   struct s_x2node *next;   /* Next entry with the same hash */
   4479   struct s_x2node **from;  /* Previous link */
   4480 } x2node;
   4481 
   4482 /* There is only one instance of the array, which is the following */
   4483 static struct s_x2 *x2a;
   4484 
   4485 /* Allocate a new associative array */
   4486 void Symbol_init(){
   4487   if( x2a ) return;
   4488   x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
   4489   if( x2a ){
   4490     x2a->size = 128;
   4491     x2a->count = 0;
   4492     x2a->tbl = (x2node*)malloc(
   4493       (sizeof(x2node) + sizeof(x2node*))*128 );
   4494     if( x2a->tbl==0 ){
   4495       free(x2a);
   4496       x2a = 0;
   4497     }else{
   4498       int i;
   4499       x2a->ht = (x2node**)&(x2a->tbl[128]);
   4500       for(i=0; i<128; i++) x2a->ht[i] = 0;
   4501     }
   4502   }
   4503 }
   4504 /* Insert a new record into the array.  Return TRUE if successful.
   4505 ** Prior data with the same key is NOT overwritten */
   4506 int Symbol_insert(struct symbol *data, const char *key)
   4507 {
   4508   x2node *np;
   4509   int h;
   4510   int ph;
   4511 
   4512   if( x2a==0 ) return 0;
   4513   ph = strhash(key);
   4514   h = ph & (x2a->size-1);
   4515   np = x2a->ht[h];
   4516   while( np ){
   4517     if( strcmp(np->key,key)==0 ){
   4518       /* An existing entry with the same key is found. */
   4519       /* Fail because overwrite is not allows. */
   4520       return 0;
   4521     }
   4522     np = np->next;
   4523   }
   4524   if( x2a->count>=x2a->size ){
   4525     /* Need to make the hash table bigger */
   4526     int i,size;
   4527     struct s_x2 array;
   4528     array.size = size = x2a->size*2;
   4529     array.count = x2a->count;
   4530     array.tbl = (x2node*)malloc(
   4531       (sizeof(x2node) + sizeof(x2node*))*size );
   4532     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
   4533     array.ht = (x2node**)&(array.tbl[size]);
   4534     for(i=0; i<size; i++) array.ht[i] = 0;
   4535     for(i=0; i<x2a->count; i++){
   4536       x2node *oldnp, *newnp;
   4537       oldnp = &(x2a->tbl[i]);
   4538       h = strhash(oldnp->key) & (size-1);
   4539       newnp = &(array.tbl[i]);
   4540       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
   4541       newnp->next = array.ht[h];
   4542       newnp->key = oldnp->key;
   4543       newnp->data = oldnp->data;
   4544       newnp->from = &(array.ht[h]);
   4545       array.ht[h] = newnp;
   4546     }
   4547     free(x2a->tbl);
   4548     *x2a = array;
   4549   }
   4550   /* Insert the new data */
   4551   h = ph & (x2a->size-1);
   4552   np = &(x2a->tbl[x2a->count++]);
   4553   np->key = key;
   4554   np->data = data;
   4555   if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
   4556   np->next = x2a->ht[h];
   4557   x2a->ht[h] = np;
   4558   np->from = &(x2a->ht[h]);
   4559   return 1;
   4560 }
   4561 
   4562 /* Return a pointer to data assigned to the given key.  Return NULL
   4563 ** if no such key. */
   4564 struct symbol *Symbol_find(const char *key)
   4565 {
   4566   int h;
   4567   x2node *np;
   4568 
   4569   if( x2a==0 ) return 0;
   4570   h = strhash(key) & (x2a->size-1);
   4571   np = x2a->ht[h];
   4572   while( np ){
   4573     if( strcmp(np->key,key)==0 ) break;
   4574     np = np->next;
   4575   }
   4576   return np ? np->data : 0;
   4577 }
   4578 
   4579 /* Return the n-th data.  Return NULL if n is out of range. */
   4580 struct symbol *Symbol_Nth(int n)
   4581 {
   4582   struct symbol *data;
   4583   if( x2a && n>0 && n<=x2a->count ){
   4584     data = x2a->tbl[n-1].data;
   4585   }else{
   4586     data = 0;
   4587   }
   4588   return data;
   4589 }
   4590 
   4591 /* Return the size of the array */
   4592 int Symbol_count()
   4593 {
   4594   return x2a ? x2a->count : 0;
   4595 }
   4596 
   4597 /* Return an array of pointers to all data in the table.
   4598 ** The array is obtained from malloc.  Return NULL if memory allocation
   4599 ** problems, or if the array is empty. */
   4600 struct symbol **Symbol_arrayof()
   4601 {
   4602   struct symbol **array;
   4603   int i,size;
   4604   if( x2a==0 ) return 0;
   4605   size = x2a->count;
   4606   array = (struct symbol **)calloc(size, sizeof(struct symbol *));
   4607   if( array ){
   4608     for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
   4609   }
   4610   return array;
   4611 }
   4612 
   4613 /* Compare two configurations */
   4614 int Configcmp(const char *_a,const char *_b)
   4615 {
   4616   const struct config *a = (struct config *) _a;
   4617   const struct config *b = (struct config *) _b;
   4618   int x;
   4619   x = a->rp->index - b->rp->index;
   4620   if( x==0 ) x = a->dot - b->dot;
   4621   return x;
   4622 }
   4623 
   4624 /* Compare two states */
   4625 PRIVATE int statecmp(struct config *a, struct config *b)
   4626 {
   4627   int rc;
   4628   for(rc=0; rc==0 && a && b;  a=a->bp, b=b->bp){
   4629     rc = a->rp->index - b->rp->index;
   4630     if( rc==0 ) rc = a->dot - b->dot;
   4631   }
   4632   if( rc==0 ){
   4633     if( a ) rc = 1;
   4634     if( b ) rc = -1;
   4635   }
   4636   return rc;
   4637 }
   4638 
   4639 /* Hash a state */
   4640 PRIVATE int statehash(struct config *a)
   4641 {
   4642   int h=0;
   4643   while( a ){
   4644     h = h*571 + a->rp->index*37 + a->dot;
   4645     a = a->bp;
   4646   }
   4647   return h;
   4648 }
   4649 
   4650 /* Allocate a new state structure */
   4651 struct state *State_new()
   4652 {
   4653   struct state *newstate;
   4654   newstate = (struct state *)calloc(1, sizeof(struct state) );
   4655   MemoryCheck(newstate);
   4656   return newstate;
   4657 }
   4658 
   4659 /* There is one instance of the following structure for each
   4660 ** associative array of type "x3".
   4661 */
   4662 struct s_x3 {
   4663   int size;               /* The number of available slots. */
   4664                           /*   Must be a power of 2 greater than or */
   4665                           /*   equal to 1 */
   4666   int count;              /* Number of currently slots filled */
   4667   struct s_x3node *tbl;  /* The data stored here */
   4668   struct s_x3node **ht;  /* Hash table for lookups */
   4669 };
   4670 
   4671 /* There is one instance of this structure for every data element
   4672 ** in an associative array of type "x3".
   4673 */
   4674 typedef struct s_x3node {
   4675   struct state *data;                  /* The data */
   4676   struct config *key;                   /* The key */
   4677   struct s_x3node *next;   /* Next entry with the same hash */
   4678   struct s_x3node **from;  /* Previous link */
   4679 } x3node;
   4680 
   4681 /* There is only one instance of the array, which is the following */
   4682 static struct s_x3 *x3a;
   4683 
   4684 /* Allocate a new associative array */
   4685 void State_init(){
   4686   if( x3a ) return;
   4687   x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
   4688   if( x3a ){
   4689     x3a->size = 128;
   4690     x3a->count = 0;
   4691     x3a->tbl = (x3node*)malloc(
   4692       (sizeof(x3node) + sizeof(x3node*))*128 );
   4693     if( x3a->tbl==0 ){
   4694       free(x3a);
   4695       x3a = 0;
   4696     }else{
   4697       int i;
   4698       x3a->ht = (x3node**)&(x3a->tbl[128]);
   4699       for(i=0; i<128; i++) x3a->ht[i] = 0;
   4700     }
   4701   }
   4702 }
   4703 /* Insert a new record into the array.  Return TRUE if successful.
   4704 ** Prior data with the same key is NOT overwritten */
   4705 int State_insert(struct state *data, struct config *key)
   4706 {
   4707   x3node *np;
   4708   int h;
   4709   int ph;
   4710 
   4711   if( x3a==0 ) return 0;
   4712   ph = statehash(key);
   4713   h = ph & (x3a->size-1);
   4714   np = x3a->ht[h];
   4715   while( np ){
   4716     if( statecmp(np->key,key)==0 ){
   4717       /* An existing entry with the same key is found. */
   4718       /* Fail because overwrite is not allows. */
   4719       return 0;
   4720     }
   4721     np = np->next;
   4722   }
   4723   if( x3a->count>=x3a->size ){
   4724     /* Need to make the hash table bigger */
   4725     int i,size;
   4726     struct s_x3 array;
   4727     array.size = size = x3a->size*2;
   4728     array.count = x3a->count;
   4729     array.tbl = (x3node*)malloc(
   4730       (sizeof(x3node) + sizeof(x3node*))*size );
   4731     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
   4732     array.ht = (x3node**)&(array.tbl[size]);
   4733     for(i=0; i<size; i++) array.ht[i] = 0;
   4734     for(i=0; i<x3a->count; i++){
   4735       x3node *oldnp, *newnp;
   4736       oldnp = &(x3a->tbl[i]);
   4737       h = statehash(oldnp->key) & (size-1);
   4738       newnp = &(array.tbl[i]);
   4739       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
   4740       newnp->next = array.ht[h];
   4741       newnp->key = oldnp->key;
   4742       newnp->data = oldnp->data;
   4743       newnp->from = &(array.ht[h]);
   4744       array.ht[h] = newnp;
   4745     }
   4746     free(x3a->tbl);
   4747     *x3a = array;
   4748   }
   4749   /* Insert the new data */
   4750   h = ph & (x3a->size-1);
   4751   np = &(x3a->tbl[x3a->count++]);
   4752   np->key = key;
   4753   np->data = data;
   4754   if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
   4755   np->next = x3a->ht[h];
   4756   x3a->ht[h] = np;
   4757   np->from = &(x3a->ht[h]);
   4758   return 1;
   4759 }
   4760 
   4761 /* Return a pointer to data assigned to the given key.  Return NULL
   4762 ** if no such key. */
   4763 struct state *State_find(struct config *key)
   4764 {
   4765   int h;
   4766   x3node *np;
   4767 
   4768   if( x3a==0 ) return 0;
   4769   h = statehash(key) & (x3a->size-1);
   4770   np = x3a->ht[h];
   4771   while( np ){
   4772     if( statecmp(np->key,key)==0 ) break;
   4773     np = np->next;
   4774   }
   4775   return np ? np->data : 0;
   4776 }
   4777 
   4778 /* Return an array of pointers to all data in the table.
   4779 ** The array is obtained from malloc.  Return NULL if memory allocation
   4780 ** problems, or if the array is empty. */
   4781 struct state **State_arrayof()
   4782 {
   4783   struct state **array;
   4784   int i,size;
   4785   if( x3a==0 ) return 0;
   4786   size = x3a->count;
   4787   array = (struct state **)malloc( sizeof(struct state *)*size );
   4788   if( array ){
   4789     for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
   4790   }
   4791   return array;
   4792 }
   4793 
   4794 /* Hash a configuration */
   4795 PRIVATE int confighash(struct config *a)
   4796 {
   4797   int h=0;
   4798   h = h*571 + a->rp->index*37 + a->dot;
   4799   return h;
   4800 }
   4801 
   4802 /* There is one instance of the following structure for each
   4803 ** associative array of type "x4".
   4804 */
   4805 struct s_x4 {
   4806   int size;               /* The number of available slots. */
   4807                           /*   Must be a power of 2 greater than or */
   4808                           /*   equal to 1 */
   4809   int count;              /* Number of currently slots filled */
   4810   struct s_x4node *tbl;  /* The data stored here */
   4811   struct s_x4node **ht;  /* Hash table for lookups */
   4812 };
   4813 
   4814 /* There is one instance of this structure for every data element
   4815 ** in an associative array of type "x4".
   4816 */
   4817 typedef struct s_x4node {
   4818   struct config *data;                  /* The data */
   4819   struct s_x4node *next;   /* Next entry with the same hash */
   4820   struct s_x4node **from;  /* Previous link */
   4821 } x4node;
   4822 
   4823 /* There is only one instance of the array, which is the following */
   4824 static struct s_x4 *x4a;
   4825 
   4826 /* Allocate a new associative array */
   4827 void Configtable_init(){
   4828   if( x4a ) return;
   4829   x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
   4830   if( x4a ){
   4831     x4a->size = 64;
   4832     x4a->count = 0;
   4833     x4a->tbl = (x4node*)malloc(
   4834       (sizeof(x4node) + sizeof(x4node*))*64 );
   4835     if( x4a->tbl==0 ){
   4836       free(x4a);
   4837       x4a = 0;
   4838     }else{
   4839       int i;
   4840       x4a->ht = (x4node**)&(x4a->tbl[64]);
   4841       for(i=0; i<64; i++) x4a->ht[i] = 0;
   4842     }
   4843   }
   4844 }
   4845 /* Insert a new record into the array.  Return TRUE if successful.
   4846 ** Prior data with the same key is NOT overwritten */
   4847 int Configtable_insert(struct config *data)
   4848 {
   4849   x4node *np;
   4850   int h;
   4851   int ph;
   4852 
   4853   if( x4a==0 ) return 0;
   4854   ph = confighash(data);
   4855   h = ph & (x4a->size-1);
   4856   np = x4a->ht[h];
   4857   while( np ){
   4858     if( Configcmp((const char *) np->data,(const char *) data)==0 ){
   4859       /* An existing entry with the same key is found. */
   4860       /* Fail because overwrite is not allows. */
   4861       return 0;
   4862     }
   4863     np = np->next;
   4864   }
   4865   if( x4a->count>=x4a->size ){
   4866     /* Need to make the hash table bigger */
   4867     int i,size;
   4868     struct s_x4 array;
   4869     array.size = size = x4a->size*2;
   4870     array.count = x4a->count;
   4871     array.tbl = (x4node*)malloc(
   4872       (sizeof(x4node) + sizeof(x4node*))*size );
   4873     if( array.tbl==0 ) return 0;  /* Fail due to malloc failure */
   4874     array.ht = (x4node**)&(array.tbl[size]);
   4875     for(i=0; i<size; i++) array.ht[i] = 0;
   4876     for(i=0; i<x4a->count; i++){
   4877       x4node *oldnp, *newnp;
   4878       oldnp = &(x4a->tbl[i]);
   4879       h = confighash(oldnp->data) & (size-1);
   4880       newnp = &(array.tbl[i]);
   4881       if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
   4882       newnp->next = array.ht[h];
   4883       newnp->data = oldnp->data;
   4884       newnp->from = &(array.ht[h]);
   4885       array.ht[h] = newnp;
   4886     }
   4887     free(x4a->tbl);
   4888     *x4a = array;
   4889   }
   4890   /* Insert the new data */
   4891   h = ph & (x4a->size-1);
   4892   np = &(x4a->tbl[x4a->count++]);
   4893   np->data = data;
   4894   if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
   4895   np->next = x4a->ht[h];
   4896   x4a->ht[h] = np;
   4897   np->from = &(x4a->ht[h]);
   4898   return 1;
   4899 }
   4900 
   4901 /* Return a pointer to data assigned to the given key.  Return NULL
   4902 ** if no such key. */
   4903 struct config *Configtable_find(struct config *key)
   4904 {
   4905   int h;
   4906   x4node *np;
   4907 
   4908   if( x4a==0 ) return 0;
   4909   h = confighash(key) & (x4a->size-1);
   4910   np = x4a->ht[h];
   4911   while( np ){
   4912     if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
   4913     np = np->next;
   4914   }
   4915   return np ? np->data : 0;
   4916 }
   4917 
   4918 /* Remove all data from the table.  Pass each data to the function "f"
   4919 ** as it is removed.  ("f" may be null to avoid this step.) */
   4920 void Configtable_clear(int(*f)(struct config *))
   4921 {
   4922   int i;
   4923   if( x4a==0 || x4a->count==0 ) return;
   4924   if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
   4925   for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
   4926   x4a->count = 0;
   4927   return;
   4928 }
   4929