Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The LiveRangeEdit class represents changes done to a virtual register when it
     11 // is spilled or split.
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "regalloc"
     15 #include "llvm/CodeGen/LiveRangeEdit.h"
     16 #include "llvm/ADT/Statistic.h"
     17 #include "llvm/CodeGen/CalcSpillWeights.h"
     18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     19 #include "llvm/CodeGen/MachineRegisterInfo.h"
     20 #include "llvm/CodeGen/VirtRegMap.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 #include "llvm/Target/TargetInstrInfo.h"
     24 
     25 using namespace llvm;
     26 
     27 STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
     28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
     29 STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
     30 
     31 void LiveRangeEdit::Delegate::anchor() { }
     32 
     33 LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg) {
     34   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
     35   if (VRM) {
     36     VRM->grow();
     37     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
     38   }
     39   LiveInterval &LI = LIS.getOrCreateInterval(VReg);
     40   NewRegs.push_back(&LI);
     41   return LI;
     42 }
     43 
     44 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
     45                                           const MachineInstr *DefMI,
     46                                           AliasAnalysis *aa) {
     47   assert(DefMI && "Missing instruction");
     48   ScannedRemattable = true;
     49   if (!TII.isTriviallyReMaterializable(DefMI, aa))
     50     return false;
     51   Remattable.insert(VNI);
     52   return true;
     53 }
     54 
     55 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
     56   for (LiveInterval::vni_iterator I = getParent().vni_begin(),
     57        E = getParent().vni_end(); I != E; ++I) {
     58     VNInfo *VNI = *I;
     59     if (VNI->isUnused())
     60       continue;
     61     MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
     62     if (!DefMI)
     63       continue;
     64     checkRematerializable(VNI, DefMI, aa);
     65   }
     66   ScannedRemattable = true;
     67 }
     68 
     69 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
     70   if (!ScannedRemattable)
     71     scanRemattable(aa);
     72   return !Remattable.empty();
     73 }
     74 
     75 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
     76 /// OrigIdx are also available with the same value at UseIdx.
     77 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
     78                                        SlotIndex OrigIdx,
     79                                        SlotIndex UseIdx) const {
     80   OrigIdx = OrigIdx.getRegSlot(true);
     81   UseIdx = UseIdx.getRegSlot(true);
     82   for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
     83     const MachineOperand &MO = OrigMI->getOperand(i);
     84     if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
     85       continue;
     86 
     87     // We can't remat physreg uses, unless it is a constant.
     88     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
     89       if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
     90         continue;
     91       return false;
     92     }
     93 
     94     LiveInterval &li = LIS.getInterval(MO.getReg());
     95     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
     96     if (!OVNI)
     97       continue;
     98 
     99     // Don't allow rematerialization immediately after the original def.
    100     // It would be incorrect if OrigMI redefines the register.
    101     // See PR14098.
    102     if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
    103       return false;
    104 
    105     if (OVNI != li.getVNInfoAt(UseIdx))
    106       return false;
    107   }
    108   return true;
    109 }
    110 
    111 bool LiveRangeEdit::canRematerializeAt(Remat &RM,
    112                                        SlotIndex UseIdx,
    113                                        bool cheapAsAMove) {
    114   assert(ScannedRemattable && "Call anyRematerializable first");
    115 
    116   // Use scanRemattable info.
    117   if (!Remattable.count(RM.ParentVNI))
    118     return false;
    119 
    120   // No defining instruction provided.
    121   SlotIndex DefIdx;
    122   if (RM.OrigMI)
    123     DefIdx = LIS.getInstructionIndex(RM.OrigMI);
    124   else {
    125     DefIdx = RM.ParentVNI->def;
    126     RM.OrigMI = LIS.getInstructionFromIndex(DefIdx);
    127     assert(RM.OrigMI && "No defining instruction for remattable value");
    128   }
    129 
    130   // If only cheap remats were requested, bail out early.
    131   if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove())
    132     return false;
    133 
    134   // Verify that all used registers are available with the same values.
    135   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
    136     return false;
    137 
    138   return true;
    139 }
    140 
    141 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
    142                                          MachineBasicBlock::iterator MI,
    143                                          unsigned DestReg,
    144                                          const Remat &RM,
    145                                          const TargetRegisterInfo &tri,
    146                                          bool Late) {
    147   assert(RM.OrigMI && "Invalid remat");
    148   TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
    149   Rematted.insert(RM.ParentVNI);
    150   return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
    151            .getRegSlot();
    152 }
    153 
    154 void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
    155   if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
    156     LIS.removeInterval(Reg);
    157 }
    158 
    159 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
    160                                SmallVectorImpl<MachineInstr*> &Dead) {
    161   MachineInstr *DefMI = 0, *UseMI = 0;
    162 
    163   // Check that there is a single def and a single use.
    164   for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg),
    165        E = MRI.reg_nodbg_end(); I != E; ++I) {
    166     MachineOperand &MO = I.getOperand();
    167     MachineInstr *MI = MO.getParent();
    168     if (MO.isDef()) {
    169       if (DefMI && DefMI != MI)
    170         return false;
    171       if (!MI->canFoldAsLoad())
    172         return false;
    173       DefMI = MI;
    174     } else if (!MO.isUndef()) {
    175       if (UseMI && UseMI != MI)
    176         return false;
    177       // FIXME: Targets don't know how to fold subreg uses.
    178       if (MO.getSubReg())
    179         return false;
    180       UseMI = MI;
    181     }
    182   }
    183   if (!DefMI || !UseMI)
    184     return false;
    185 
    186   // Since we're moving the DefMI load, make sure we're not extending any live
    187   // ranges.
    188   if (!allUsesAvailableAt(DefMI,
    189                           LIS.getInstructionIndex(DefMI),
    190                           LIS.getInstructionIndex(UseMI)))
    191     return false;
    192 
    193   // We also need to make sure it is safe to move the load.
    194   // Assume there are stores between DefMI and UseMI.
    195   bool SawStore = true;
    196   if (!DefMI->isSafeToMove(&TII, 0, SawStore))
    197     return false;
    198 
    199   DEBUG(dbgs() << "Try to fold single def: " << *DefMI
    200                << "       into single use: " << *UseMI);
    201 
    202   SmallVector<unsigned, 8> Ops;
    203   if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
    204     return false;
    205 
    206   MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
    207   if (!FoldMI)
    208     return false;
    209   DEBUG(dbgs() << "                folded: " << *FoldMI);
    210   LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
    211   UseMI->eraseFromParent();
    212   DefMI->addRegisterDead(LI->reg, 0);
    213   Dead.push_back(DefMI);
    214   ++NumDCEFoldedLoads;
    215   return true;
    216 }
    217 
    218 /// Find all live intervals that need to shrink, then remove the instruction.
    219 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
    220   assert(MI->allDefsAreDead() && "Def isn't really dead");
    221   SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
    222 
    223   // Never delete a bundled instruction.
    224   if (MI->isBundled()) {
    225     return;
    226   }
    227   // Never delete inline asm.
    228   if (MI->isInlineAsm()) {
    229     DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
    230     return;
    231   }
    232 
    233   // Use the same criteria as DeadMachineInstructionElim.
    234   bool SawStore = false;
    235   if (!MI->isSafeToMove(&TII, 0, SawStore)) {
    236     DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
    237     return;
    238   }
    239 
    240   DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
    241 
    242   // Collect virtual registers to be erased after MI is gone.
    243   SmallVector<unsigned, 8> RegsToErase;
    244   bool ReadsPhysRegs = false;
    245 
    246   // Check for live intervals that may shrink
    247   for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
    248          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
    249     if (!MOI->isReg())
    250       continue;
    251     unsigned Reg = MOI->getReg();
    252     if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
    253       // Check if MI reads any unreserved physregs.
    254       if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
    255         ReadsPhysRegs = true;
    256       else if (MOI->isDef()) {
    257         for (MCRegUnitIterator Units(Reg, MRI.getTargetRegisterInfo());
    258              Units.isValid(); ++Units) {
    259           if (LiveInterval *LI = LIS.getCachedRegUnit(*Units)) {
    260             if (VNInfo *VNI = LI->getVNInfoAt(Idx))
    261               LI->removeValNo(VNI);
    262           }
    263         }
    264       }
    265       continue;
    266     }
    267     LiveInterval &LI = LIS.getInterval(Reg);
    268 
    269     // Shrink read registers, unless it is likely to be expensive and
    270     // unlikely to change anything. We typically don't want to shrink the
    271     // PIC base register that has lots of uses everywhere.
    272     // Always shrink COPY uses that probably come from live range splitting.
    273     if (MI->readsVirtualRegister(Reg) &&
    274         (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
    275          LI.killedAt(Idx)))
    276       ToShrink.insert(&LI);
    277 
    278     // Remove defined value.
    279     if (MOI->isDef()) {
    280       if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
    281         if (TheDelegate)
    282           TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
    283         LI.removeValNo(VNI);
    284         if (LI.empty())
    285           RegsToErase.push_back(Reg);
    286       }
    287     }
    288   }
    289 
    290   // Currently, we don't support DCE of physreg live ranges. If MI reads
    291   // any unreserved physregs, don't erase the instruction, but turn it into
    292   // a KILL instead. This way, the physreg live ranges don't end up
    293   // dangling.
    294   // FIXME: It would be better to have something like shrinkToUses() for
    295   // physregs. That could potentially enable more DCE and it would free up
    296   // the physreg. It would not happen often, though.
    297   if (ReadsPhysRegs) {
    298     MI->setDesc(TII.get(TargetOpcode::KILL));
    299     // Remove all operands that aren't physregs.
    300     for (unsigned i = MI->getNumOperands(); i; --i) {
    301       const MachineOperand &MO = MI->getOperand(i-1);
    302       if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
    303         continue;
    304       MI->RemoveOperand(i-1);
    305     }
    306     DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
    307   } else {
    308     if (TheDelegate)
    309       TheDelegate->LRE_WillEraseInstruction(MI);
    310     LIS.RemoveMachineInstrFromMaps(MI);
    311     MI->eraseFromParent();
    312     ++NumDCEDeleted;
    313   }
    314 
    315   // Erase any virtregs that are now empty and unused. There may be <undef>
    316   // uses around. Keep the empty live range in that case.
    317   for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
    318     unsigned Reg = RegsToErase[i];
    319     if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
    320       ToShrink.remove(&LIS.getInterval(Reg));
    321       eraseVirtReg(Reg);
    322     }
    323   }
    324 }
    325 
    326 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
    327                                       ArrayRef<unsigned> RegsBeingSpilled) {
    328   ToShrinkSet ToShrink;
    329 
    330   for (;;) {
    331     // Erase all dead defs.
    332     while (!Dead.empty())
    333       eliminateDeadDef(Dead.pop_back_val(), ToShrink);
    334 
    335     if (ToShrink.empty())
    336       break;
    337 
    338     // Shrink just one live interval. Then delete new dead defs.
    339     LiveInterval *LI = ToShrink.back();
    340     ToShrink.pop_back();
    341     if (foldAsLoad(LI, Dead))
    342       continue;
    343     if (TheDelegate)
    344       TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
    345     if (!LIS.shrinkToUses(LI, &Dead))
    346       continue;
    347 
    348     // Don't create new intervals for a register being spilled.
    349     // The new intervals would have to be spilled anyway so its not worth it.
    350     // Also they currently aren't spilled so creating them and not spilling
    351     // them results in incorrect code.
    352     bool BeingSpilled = false;
    353     for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
    354       if (LI->reg == RegsBeingSpilled[i]) {
    355         BeingSpilled = true;
    356         break;
    357       }
    358     }
    359 
    360     if (BeingSpilled) continue;
    361 
    362     // LI may have been separated, create new intervals.
    363     LI->RenumberValues(LIS);
    364     ConnectedVNInfoEqClasses ConEQ(LIS);
    365     unsigned NumComp = ConEQ.Classify(LI);
    366     if (NumComp <= 1)
    367       continue;
    368     ++NumFracRanges;
    369     bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
    370     DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
    371     SmallVector<LiveInterval*, 8> Dups(1, LI);
    372     for (unsigned i = 1; i != NumComp; ++i) {
    373       Dups.push_back(&createFrom(LI->reg));
    374       // If LI is an original interval that hasn't been split yet, make the new
    375       // intervals their own originals instead of referring to LI. The original
    376       // interval must contain all the split products, and LI doesn't.
    377       if (IsOriginal)
    378         VRM->setIsSplitFromReg(Dups.back()->reg, 0);
    379       if (TheDelegate)
    380         TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
    381     }
    382     ConEQ.Distribute(&Dups[0], MRI);
    383     DEBUG({
    384       for (unsigned i = 0; i != NumComp; ++i)
    385         dbgs() << '\t' << *Dups[i] << '\n';
    386     });
    387   }
    388 }
    389 
    390 void
    391 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
    392                                         const MachineLoopInfo &Loops,
    393                                         const MachineBlockFrequencyInfo &MBFI) {
    394   VirtRegAuxInfo VRAI(MF, LIS, Loops, MBFI);
    395   for (iterator I = begin(), E = end(); I != E; ++I) {
    396     LiveInterval &LI = **I;
    397     if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
    398       DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
    399                    << MRI.getRegClass(LI.reg)->getName() << '\n');
    400     VRAI.CalculateWeightAndHint(LI);
    401   }
    402 }
    403