1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LiveRangeEdit class represents changes done to a virtual register when it 11 // is spilled or split. 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "regalloc" 15 #include "llvm/CodeGen/LiveRangeEdit.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/CodeGen/CalcSpillWeights.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/VirtRegMap.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetInstrInfo.h" 24 25 using namespace llvm; 26 27 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 29 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 30 31 void LiveRangeEdit::Delegate::anchor() { } 32 33 LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg) { 34 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 35 if (VRM) { 36 VRM->grow(); 37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 38 } 39 LiveInterval &LI = LIS.getOrCreateInterval(VReg); 40 NewRegs.push_back(&LI); 41 return LI; 42 } 43 44 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 45 const MachineInstr *DefMI, 46 AliasAnalysis *aa) { 47 assert(DefMI && "Missing instruction"); 48 ScannedRemattable = true; 49 if (!TII.isTriviallyReMaterializable(DefMI, aa)) 50 return false; 51 Remattable.insert(VNI); 52 return true; 53 } 54 55 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) { 56 for (LiveInterval::vni_iterator I = getParent().vni_begin(), 57 E = getParent().vni_end(); I != E; ++I) { 58 VNInfo *VNI = *I; 59 if (VNI->isUnused()) 60 continue; 61 MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def); 62 if (!DefMI) 63 continue; 64 checkRematerializable(VNI, DefMI, aa); 65 } 66 ScannedRemattable = true; 67 } 68 69 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) { 70 if (!ScannedRemattable) 71 scanRemattable(aa); 72 return !Remattable.empty(); 73 } 74 75 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 76 /// OrigIdx are also available with the same value at UseIdx. 77 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 78 SlotIndex OrigIdx, 79 SlotIndex UseIdx) const { 80 OrigIdx = OrigIdx.getRegSlot(true); 81 UseIdx = UseIdx.getRegSlot(true); 82 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { 83 const MachineOperand &MO = OrigMI->getOperand(i); 84 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 85 continue; 86 87 // We can't remat physreg uses, unless it is a constant. 88 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 89 if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent())) 90 continue; 91 return false; 92 } 93 94 LiveInterval &li = LIS.getInterval(MO.getReg()); 95 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 96 if (!OVNI) 97 continue; 98 99 // Don't allow rematerialization immediately after the original def. 100 // It would be incorrect if OrigMI redefines the register. 101 // See PR14098. 102 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 103 return false; 104 105 if (OVNI != li.getVNInfoAt(UseIdx)) 106 return false; 107 } 108 return true; 109 } 110 111 bool LiveRangeEdit::canRematerializeAt(Remat &RM, 112 SlotIndex UseIdx, 113 bool cheapAsAMove) { 114 assert(ScannedRemattable && "Call anyRematerializable first"); 115 116 // Use scanRemattable info. 117 if (!Remattable.count(RM.ParentVNI)) 118 return false; 119 120 // No defining instruction provided. 121 SlotIndex DefIdx; 122 if (RM.OrigMI) 123 DefIdx = LIS.getInstructionIndex(RM.OrigMI); 124 else { 125 DefIdx = RM.ParentVNI->def; 126 RM.OrigMI = LIS.getInstructionFromIndex(DefIdx); 127 assert(RM.OrigMI && "No defining instruction for remattable value"); 128 } 129 130 // If only cheap remats were requested, bail out early. 131 if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove()) 132 return false; 133 134 // Verify that all used registers are available with the same values. 135 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 136 return false; 137 138 return true; 139 } 140 141 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 142 MachineBasicBlock::iterator MI, 143 unsigned DestReg, 144 const Remat &RM, 145 const TargetRegisterInfo &tri, 146 bool Late) { 147 assert(RM.OrigMI && "Invalid remat"); 148 TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri); 149 Rematted.insert(RM.ParentVNI); 150 return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late) 151 .getRegSlot(); 152 } 153 154 void LiveRangeEdit::eraseVirtReg(unsigned Reg) { 155 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 156 LIS.removeInterval(Reg); 157 } 158 159 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 160 SmallVectorImpl<MachineInstr*> &Dead) { 161 MachineInstr *DefMI = 0, *UseMI = 0; 162 163 // Check that there is a single def and a single use. 164 for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg), 165 E = MRI.reg_nodbg_end(); I != E; ++I) { 166 MachineOperand &MO = I.getOperand(); 167 MachineInstr *MI = MO.getParent(); 168 if (MO.isDef()) { 169 if (DefMI && DefMI != MI) 170 return false; 171 if (!MI->canFoldAsLoad()) 172 return false; 173 DefMI = MI; 174 } else if (!MO.isUndef()) { 175 if (UseMI && UseMI != MI) 176 return false; 177 // FIXME: Targets don't know how to fold subreg uses. 178 if (MO.getSubReg()) 179 return false; 180 UseMI = MI; 181 } 182 } 183 if (!DefMI || !UseMI) 184 return false; 185 186 // Since we're moving the DefMI load, make sure we're not extending any live 187 // ranges. 188 if (!allUsesAvailableAt(DefMI, 189 LIS.getInstructionIndex(DefMI), 190 LIS.getInstructionIndex(UseMI))) 191 return false; 192 193 // We also need to make sure it is safe to move the load. 194 // Assume there are stores between DefMI and UseMI. 195 bool SawStore = true; 196 if (!DefMI->isSafeToMove(&TII, 0, SawStore)) 197 return false; 198 199 DEBUG(dbgs() << "Try to fold single def: " << *DefMI 200 << " into single use: " << *UseMI); 201 202 SmallVector<unsigned, 8> Ops; 203 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) 204 return false; 205 206 MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI); 207 if (!FoldMI) 208 return false; 209 DEBUG(dbgs() << " folded: " << *FoldMI); 210 LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI); 211 UseMI->eraseFromParent(); 212 DefMI->addRegisterDead(LI->reg, 0); 213 Dead.push_back(DefMI); 214 ++NumDCEFoldedLoads; 215 return true; 216 } 217 218 /// Find all live intervals that need to shrink, then remove the instruction. 219 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) { 220 assert(MI->allDefsAreDead() && "Def isn't really dead"); 221 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 222 223 // Never delete a bundled instruction. 224 if (MI->isBundled()) { 225 return; 226 } 227 // Never delete inline asm. 228 if (MI->isInlineAsm()) { 229 DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 230 return; 231 } 232 233 // Use the same criteria as DeadMachineInstructionElim. 234 bool SawStore = false; 235 if (!MI->isSafeToMove(&TII, 0, SawStore)) { 236 DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 237 return; 238 } 239 240 DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 241 242 // Collect virtual registers to be erased after MI is gone. 243 SmallVector<unsigned, 8> RegsToErase; 244 bool ReadsPhysRegs = false; 245 246 // Check for live intervals that may shrink 247 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 248 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 249 if (!MOI->isReg()) 250 continue; 251 unsigned Reg = MOI->getReg(); 252 if (!TargetRegisterInfo::isVirtualRegister(Reg)) { 253 // Check if MI reads any unreserved physregs. 254 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) 255 ReadsPhysRegs = true; 256 else if (MOI->isDef()) { 257 for (MCRegUnitIterator Units(Reg, MRI.getTargetRegisterInfo()); 258 Units.isValid(); ++Units) { 259 if (LiveInterval *LI = LIS.getCachedRegUnit(*Units)) { 260 if (VNInfo *VNI = LI->getVNInfoAt(Idx)) 261 LI->removeValNo(VNI); 262 } 263 } 264 } 265 continue; 266 } 267 LiveInterval &LI = LIS.getInterval(Reg); 268 269 // Shrink read registers, unless it is likely to be expensive and 270 // unlikely to change anything. We typically don't want to shrink the 271 // PIC base register that has lots of uses everywhere. 272 // Always shrink COPY uses that probably come from live range splitting. 273 if (MI->readsVirtualRegister(Reg) && 274 (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) || 275 LI.killedAt(Idx))) 276 ToShrink.insert(&LI); 277 278 // Remove defined value. 279 if (MOI->isDef()) { 280 if (VNInfo *VNI = LI.getVNInfoAt(Idx)) { 281 if (TheDelegate) 282 TheDelegate->LRE_WillShrinkVirtReg(LI.reg); 283 LI.removeValNo(VNI); 284 if (LI.empty()) 285 RegsToErase.push_back(Reg); 286 } 287 } 288 } 289 290 // Currently, we don't support DCE of physreg live ranges. If MI reads 291 // any unreserved physregs, don't erase the instruction, but turn it into 292 // a KILL instead. This way, the physreg live ranges don't end up 293 // dangling. 294 // FIXME: It would be better to have something like shrinkToUses() for 295 // physregs. That could potentially enable more DCE and it would free up 296 // the physreg. It would not happen often, though. 297 if (ReadsPhysRegs) { 298 MI->setDesc(TII.get(TargetOpcode::KILL)); 299 // Remove all operands that aren't physregs. 300 for (unsigned i = MI->getNumOperands(); i; --i) { 301 const MachineOperand &MO = MI->getOperand(i-1); 302 if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 303 continue; 304 MI->RemoveOperand(i-1); 305 } 306 DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 307 } else { 308 if (TheDelegate) 309 TheDelegate->LRE_WillEraseInstruction(MI); 310 LIS.RemoveMachineInstrFromMaps(MI); 311 MI->eraseFromParent(); 312 ++NumDCEDeleted; 313 } 314 315 // Erase any virtregs that are now empty and unused. There may be <undef> 316 // uses around. Keep the empty live range in that case. 317 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 318 unsigned Reg = RegsToErase[i]; 319 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 320 ToShrink.remove(&LIS.getInterval(Reg)); 321 eraseVirtReg(Reg); 322 } 323 } 324 } 325 326 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead, 327 ArrayRef<unsigned> RegsBeingSpilled) { 328 ToShrinkSet ToShrink; 329 330 for (;;) { 331 // Erase all dead defs. 332 while (!Dead.empty()) 333 eliminateDeadDef(Dead.pop_back_val(), ToShrink); 334 335 if (ToShrink.empty()) 336 break; 337 338 // Shrink just one live interval. Then delete new dead defs. 339 LiveInterval *LI = ToShrink.back(); 340 ToShrink.pop_back(); 341 if (foldAsLoad(LI, Dead)) 342 continue; 343 if (TheDelegate) 344 TheDelegate->LRE_WillShrinkVirtReg(LI->reg); 345 if (!LIS.shrinkToUses(LI, &Dead)) 346 continue; 347 348 // Don't create new intervals for a register being spilled. 349 // The new intervals would have to be spilled anyway so its not worth it. 350 // Also they currently aren't spilled so creating them and not spilling 351 // them results in incorrect code. 352 bool BeingSpilled = false; 353 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { 354 if (LI->reg == RegsBeingSpilled[i]) { 355 BeingSpilled = true; 356 break; 357 } 358 } 359 360 if (BeingSpilled) continue; 361 362 // LI may have been separated, create new intervals. 363 LI->RenumberValues(LIS); 364 ConnectedVNInfoEqClasses ConEQ(LIS); 365 unsigned NumComp = ConEQ.Classify(LI); 366 if (NumComp <= 1) 367 continue; 368 ++NumFracRanges; 369 bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg; 370 DEBUG(dbgs() << NumComp << " components: " << *LI << '\n'); 371 SmallVector<LiveInterval*, 8> Dups(1, LI); 372 for (unsigned i = 1; i != NumComp; ++i) { 373 Dups.push_back(&createFrom(LI->reg)); 374 // If LI is an original interval that hasn't been split yet, make the new 375 // intervals their own originals instead of referring to LI. The original 376 // interval must contain all the split products, and LI doesn't. 377 if (IsOriginal) 378 VRM->setIsSplitFromReg(Dups.back()->reg, 0); 379 if (TheDelegate) 380 TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg); 381 } 382 ConEQ.Distribute(&Dups[0], MRI); 383 DEBUG({ 384 for (unsigned i = 0; i != NumComp; ++i) 385 dbgs() << '\t' << *Dups[i] << '\n'; 386 }); 387 } 388 } 389 390 void 391 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 392 const MachineLoopInfo &Loops, 393 const MachineBlockFrequencyInfo &MBFI) { 394 VirtRegAuxInfo VRAI(MF, LIS, Loops, MBFI); 395 for (iterator I = begin(), E = end(); I != E; ++I) { 396 LiveInterval &LI = **I; 397 if (MRI.recomputeRegClass(LI.reg, MF.getTarget())) 398 DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to " 399 << MRI.getRegClass(LI.reg)->getName() << '\n'); 400 VRAI.CalculateWeightAndHint(LI); 401 } 402 } 403