1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the PowerPC implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "PPCInstrInfo.h" 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCHazardRecognizers.h" 18 #include "PPCInstrBuilder.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCTargetMachine.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstrBuilder.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/PseudoSourceValue.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/TargetRegistry.h" 33 #include "llvm/Support/raw_ostream.h" 34 35 #define GET_INSTRMAP_INFO 36 #define GET_INSTRINFO_CTOR 37 #include "PPCGenInstrInfo.inc" 38 39 using namespace llvm; 40 41 static cl:: 42 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, 43 cl::desc("Disable analysis for CTR loops")); 44 45 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt", 46 cl::desc("Disable compare instruction optimization"), cl::Hidden); 47 48 PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) 49 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), 50 TM(tm), RI(*TM.getSubtargetImpl()) {} 51 52 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for 53 /// this target when scheduling the DAG. 54 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer( 55 const TargetMachine *TM, 56 const ScheduleDAG *DAG) const { 57 unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective(); 58 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || 59 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { 60 const InstrItineraryData *II = TM->getInstrItineraryData(); 61 return new PPCScoreboardHazardRecognizer(II, DAG); 62 } 63 64 return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG); 65 } 66 67 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer 68 /// to use for this target when scheduling the DAG. 69 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( 70 const InstrItineraryData *II, 71 const ScheduleDAG *DAG) const { 72 unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); 73 74 // Most subtargets use a PPC970 recognizer. 75 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && 76 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { 77 assert(TM.getInstrInfo() && "No InstrInfo?"); 78 79 return new PPCHazardRecognizer970(TM); 80 } 81 82 return new PPCScoreboardHazardRecognizer(II, DAG); 83 } 84 85 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. 86 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, 87 unsigned &SrcReg, unsigned &DstReg, 88 unsigned &SubIdx) const { 89 switch (MI.getOpcode()) { 90 default: return false; 91 case PPC::EXTSW: 92 case PPC::EXTSW_32_64: 93 SrcReg = MI.getOperand(1).getReg(); 94 DstReg = MI.getOperand(0).getReg(); 95 SubIdx = PPC::sub_32; 96 return true; 97 } 98 } 99 100 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 101 int &FrameIndex) const { 102 // Note: This list must be kept consistent with LoadRegFromStackSlot. 103 switch (MI->getOpcode()) { 104 default: break; 105 case PPC::LD: 106 case PPC::LWZ: 107 case PPC::LFS: 108 case PPC::LFD: 109 case PPC::RESTORE_CR: 110 case PPC::LVX: 111 case PPC::RESTORE_VRSAVE: 112 // Check for the operands added by addFrameReference (the immediate is the 113 // offset which defaults to 0). 114 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 115 MI->getOperand(2).isFI()) { 116 FrameIndex = MI->getOperand(2).getIndex(); 117 return MI->getOperand(0).getReg(); 118 } 119 break; 120 } 121 return 0; 122 } 123 124 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 125 int &FrameIndex) const { 126 // Note: This list must be kept consistent with StoreRegToStackSlot. 127 switch (MI->getOpcode()) { 128 default: break; 129 case PPC::STD: 130 case PPC::STW: 131 case PPC::STFS: 132 case PPC::STFD: 133 case PPC::SPILL_CR: 134 case PPC::STVX: 135 case PPC::SPILL_VRSAVE: 136 // Check for the operands added by addFrameReference (the immediate is the 137 // offset which defaults to 0). 138 if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && 139 MI->getOperand(2).isFI()) { 140 FrameIndex = MI->getOperand(2).getIndex(); 141 return MI->getOperand(0).getReg(); 142 } 143 break; 144 } 145 return 0; 146 } 147 148 // commuteInstruction - We can commute rlwimi instructions, but only if the 149 // rotate amt is zero. We also have to munge the immediates a bit. 150 MachineInstr * 151 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { 152 MachineFunction &MF = *MI->getParent()->getParent(); 153 154 // Normal instructions can be commuted the obvious way. 155 if (MI->getOpcode() != PPC::RLWIMI && 156 MI->getOpcode() != PPC::RLWIMIo) 157 return TargetInstrInfo::commuteInstruction(MI, NewMI); 158 159 // Cannot commute if it has a non-zero rotate count. 160 if (MI->getOperand(3).getImm() != 0) 161 return 0; 162 163 // If we have a zero rotate count, we have: 164 // M = mask(MB,ME) 165 // Op0 = (Op1 & ~M) | (Op2 & M) 166 // Change this to: 167 // M = mask((ME+1)&31, (MB-1)&31) 168 // Op0 = (Op2 & ~M) | (Op1 & M) 169 170 // Swap op1/op2 171 unsigned Reg0 = MI->getOperand(0).getReg(); 172 unsigned Reg1 = MI->getOperand(1).getReg(); 173 unsigned Reg2 = MI->getOperand(2).getReg(); 174 bool Reg1IsKill = MI->getOperand(1).isKill(); 175 bool Reg2IsKill = MI->getOperand(2).isKill(); 176 bool ChangeReg0 = false; 177 // If machine instrs are no longer in two-address forms, update 178 // destination register as well. 179 if (Reg0 == Reg1) { 180 // Must be two address instruction! 181 assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && 182 "Expecting a two-address instruction!"); 183 Reg2IsKill = false; 184 ChangeReg0 = true; 185 } 186 187 // Masks. 188 unsigned MB = MI->getOperand(4).getImm(); 189 unsigned ME = MI->getOperand(5).getImm(); 190 191 if (NewMI) { 192 // Create a new instruction. 193 unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); 194 bool Reg0IsDead = MI->getOperand(0).isDead(); 195 return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) 196 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) 197 .addReg(Reg2, getKillRegState(Reg2IsKill)) 198 .addReg(Reg1, getKillRegState(Reg1IsKill)) 199 .addImm((ME+1) & 31) 200 .addImm((MB-1) & 31); 201 } 202 203 if (ChangeReg0) 204 MI->getOperand(0).setReg(Reg2); 205 MI->getOperand(2).setReg(Reg1); 206 MI->getOperand(1).setReg(Reg2); 207 MI->getOperand(2).setIsKill(Reg1IsKill); 208 MI->getOperand(1).setIsKill(Reg2IsKill); 209 210 // Swap the mask around. 211 MI->getOperand(4).setImm((ME+1) & 31); 212 MI->getOperand(5).setImm((MB-1) & 31); 213 return MI; 214 } 215 216 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, 217 MachineBasicBlock::iterator MI) const { 218 DebugLoc DL; 219 BuildMI(MBB, MI, DL, get(PPC::NOP)); 220 } 221 222 223 // Branch analysis. 224 // Note: If the condition register is set to CTR or CTR8 then this is a 225 // BDNZ (imm == 1) or BDZ (imm == 0) branch. 226 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, 227 MachineBasicBlock *&FBB, 228 SmallVectorImpl<MachineOperand> &Cond, 229 bool AllowModify) const { 230 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 231 232 // If the block has no terminators, it just falls into the block after it. 233 MachineBasicBlock::iterator I = MBB.end(); 234 if (I == MBB.begin()) 235 return false; 236 --I; 237 while (I->isDebugValue()) { 238 if (I == MBB.begin()) 239 return false; 240 --I; 241 } 242 if (!isUnpredicatedTerminator(I)) 243 return false; 244 245 // Get the last instruction in the block. 246 MachineInstr *LastInst = I; 247 248 // If there is only one terminator instruction, process it. 249 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { 250 if (LastInst->getOpcode() == PPC::B) { 251 if (!LastInst->getOperand(0).isMBB()) 252 return true; 253 TBB = LastInst->getOperand(0).getMBB(); 254 return false; 255 } else if (LastInst->getOpcode() == PPC::BCC) { 256 if (!LastInst->getOperand(2).isMBB()) 257 return true; 258 // Block ends with fall-through condbranch. 259 TBB = LastInst->getOperand(2).getMBB(); 260 Cond.push_back(LastInst->getOperand(0)); 261 Cond.push_back(LastInst->getOperand(1)); 262 return false; 263 } else if (LastInst->getOpcode() == PPC::BDNZ8 || 264 LastInst->getOpcode() == PPC::BDNZ) { 265 if (!LastInst->getOperand(0).isMBB()) 266 return true; 267 if (DisableCTRLoopAnal) 268 return true; 269 TBB = LastInst->getOperand(0).getMBB(); 270 Cond.push_back(MachineOperand::CreateImm(1)); 271 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 272 true)); 273 return false; 274 } else if (LastInst->getOpcode() == PPC::BDZ8 || 275 LastInst->getOpcode() == PPC::BDZ) { 276 if (!LastInst->getOperand(0).isMBB()) 277 return true; 278 if (DisableCTRLoopAnal) 279 return true; 280 TBB = LastInst->getOperand(0).getMBB(); 281 Cond.push_back(MachineOperand::CreateImm(0)); 282 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 283 true)); 284 return false; 285 } 286 287 // Otherwise, don't know what this is. 288 return true; 289 } 290 291 // Get the instruction before it if it's a terminator. 292 MachineInstr *SecondLastInst = I; 293 294 // If there are three terminators, we don't know what sort of block this is. 295 if (SecondLastInst && I != MBB.begin() && 296 isUnpredicatedTerminator(--I)) 297 return true; 298 299 // If the block ends with PPC::B and PPC:BCC, handle it. 300 if (SecondLastInst->getOpcode() == PPC::BCC && 301 LastInst->getOpcode() == PPC::B) { 302 if (!SecondLastInst->getOperand(2).isMBB() || 303 !LastInst->getOperand(0).isMBB()) 304 return true; 305 TBB = SecondLastInst->getOperand(2).getMBB(); 306 Cond.push_back(SecondLastInst->getOperand(0)); 307 Cond.push_back(SecondLastInst->getOperand(1)); 308 FBB = LastInst->getOperand(0).getMBB(); 309 return false; 310 } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || 311 SecondLastInst->getOpcode() == PPC::BDNZ) && 312 LastInst->getOpcode() == PPC::B) { 313 if (!SecondLastInst->getOperand(0).isMBB() || 314 !LastInst->getOperand(0).isMBB()) 315 return true; 316 if (DisableCTRLoopAnal) 317 return true; 318 TBB = SecondLastInst->getOperand(0).getMBB(); 319 Cond.push_back(MachineOperand::CreateImm(1)); 320 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 321 true)); 322 FBB = LastInst->getOperand(0).getMBB(); 323 return false; 324 } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || 325 SecondLastInst->getOpcode() == PPC::BDZ) && 326 LastInst->getOpcode() == PPC::B) { 327 if (!SecondLastInst->getOperand(0).isMBB() || 328 !LastInst->getOperand(0).isMBB()) 329 return true; 330 if (DisableCTRLoopAnal) 331 return true; 332 TBB = SecondLastInst->getOperand(0).getMBB(); 333 Cond.push_back(MachineOperand::CreateImm(0)); 334 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, 335 true)); 336 FBB = LastInst->getOperand(0).getMBB(); 337 return false; 338 } 339 340 // If the block ends with two PPC:Bs, handle it. The second one is not 341 // executed, so remove it. 342 if (SecondLastInst->getOpcode() == PPC::B && 343 LastInst->getOpcode() == PPC::B) { 344 if (!SecondLastInst->getOperand(0).isMBB()) 345 return true; 346 TBB = SecondLastInst->getOperand(0).getMBB(); 347 I = LastInst; 348 if (AllowModify) 349 I->eraseFromParent(); 350 return false; 351 } 352 353 // Otherwise, can't handle this. 354 return true; 355 } 356 357 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 358 MachineBasicBlock::iterator I = MBB.end(); 359 if (I == MBB.begin()) return 0; 360 --I; 361 while (I->isDebugValue()) { 362 if (I == MBB.begin()) 363 return 0; 364 --I; 365 } 366 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && 367 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 368 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 369 return 0; 370 371 // Remove the branch. 372 I->eraseFromParent(); 373 374 I = MBB.end(); 375 376 if (I == MBB.begin()) return 1; 377 --I; 378 if (I->getOpcode() != PPC::BCC && 379 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && 380 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) 381 return 1; 382 383 // Remove the branch. 384 I->eraseFromParent(); 385 return 2; 386 } 387 388 unsigned 389 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 390 MachineBasicBlock *FBB, 391 const SmallVectorImpl<MachineOperand> &Cond, 392 DebugLoc DL) const { 393 // Shouldn't be a fall through. 394 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 395 assert((Cond.size() == 2 || Cond.size() == 0) && 396 "PPC branch conditions have two components!"); 397 398 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 399 400 // One-way branch. 401 if (FBB == 0) { 402 if (Cond.empty()) // Unconditional branch 403 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); 404 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 405 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 406 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 407 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 408 else // Conditional branch 409 BuildMI(&MBB, DL, get(PPC::BCC)) 410 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); 411 return 1; 412 } 413 414 // Two-way Conditional Branch. 415 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 416 BuildMI(&MBB, DL, get(Cond[0].getImm() ? 417 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 418 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); 419 else 420 BuildMI(&MBB, DL, get(PPC::BCC)) 421 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); 422 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); 423 return 2; 424 } 425 426 // Select analysis. 427 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 428 const SmallVectorImpl<MachineOperand> &Cond, 429 unsigned TrueReg, unsigned FalseReg, 430 int &CondCycles, int &TrueCycles, int &FalseCycles) const { 431 if (!TM.getSubtargetImpl()->hasISEL()) 432 return false; 433 434 if (Cond.size() != 2) 435 return false; 436 437 // If this is really a bdnz-like condition, then it cannot be turned into a 438 // select. 439 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) 440 return false; 441 442 // Check register classes. 443 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 444 const TargetRegisterClass *RC = 445 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 446 if (!RC) 447 return false; 448 449 // isel is for regular integer GPRs only. 450 if (!PPC::GPRCRegClass.hasSubClassEq(RC) && 451 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) && 452 !PPC::G8RCRegClass.hasSubClassEq(RC) && 453 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) 454 return false; 455 456 // FIXME: These numbers are for the A2, how well they work for other cores is 457 // an open question. On the A2, the isel instruction has a 2-cycle latency 458 // but single-cycle throughput. These numbers are used in combination with 459 // the MispredictPenalty setting from the active SchedMachineModel. 460 CondCycles = 1; 461 TrueCycles = 1; 462 FalseCycles = 1; 463 464 return true; 465 } 466 467 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB, 468 MachineBasicBlock::iterator MI, DebugLoc dl, 469 unsigned DestReg, 470 const SmallVectorImpl<MachineOperand> &Cond, 471 unsigned TrueReg, unsigned FalseReg) const { 472 assert(Cond.size() == 2 && 473 "PPC branch conditions have two components!"); 474 475 assert(TM.getSubtargetImpl()->hasISEL() && 476 "Cannot insert select on target without ISEL support"); 477 478 // Get the register classes. 479 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 480 const TargetRegisterClass *RC = 481 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 482 assert(RC && "TrueReg and FalseReg must have overlapping register classes"); 483 484 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) || 485 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC); 486 assert((Is64Bit || 487 PPC::GPRCRegClass.hasSubClassEq(RC) || 488 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) && 489 "isel is for regular integer GPRs only"); 490 491 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL; 492 unsigned SelectPred = Cond[0].getImm(); 493 494 unsigned SubIdx; 495 bool SwapOps; 496 switch (SelectPred) { 497 default: llvm_unreachable("invalid predicate for isel"); 498 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break; 499 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break; 500 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break; 501 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break; 502 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break; 503 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break; 504 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break; 505 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break; 506 } 507 508 unsigned FirstReg = SwapOps ? FalseReg : TrueReg, 509 SecondReg = SwapOps ? TrueReg : FalseReg; 510 511 // The first input register of isel cannot be r0. If it is a member 512 // of a register class that can be r0, then copy it first (the 513 // register allocator should eliminate the copy). 514 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) || 515 MRI.getRegClass(FirstReg)->contains(PPC::X0)) { 516 const TargetRegisterClass *FirstRC = 517 MRI.getRegClass(FirstReg)->contains(PPC::X0) ? 518 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass; 519 unsigned OldFirstReg = FirstReg; 520 FirstReg = MRI.createVirtualRegister(FirstRC); 521 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg) 522 .addReg(OldFirstReg); 523 } 524 525 BuildMI(MBB, MI, dl, get(OpCode), DestReg) 526 .addReg(FirstReg).addReg(SecondReg) 527 .addReg(Cond[1].getReg(), 0, SubIdx); 528 } 529 530 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 531 MachineBasicBlock::iterator I, DebugLoc DL, 532 unsigned DestReg, unsigned SrcReg, 533 bool KillSrc) const { 534 unsigned Opc; 535 if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) 536 Opc = PPC::OR; 537 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) 538 Opc = PPC::OR8; 539 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) 540 Opc = PPC::FMR; 541 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) 542 Opc = PPC::MCRF; 543 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) 544 Opc = PPC::VOR; 545 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) 546 Opc = PPC::CROR; 547 else 548 llvm_unreachable("Impossible reg-to-reg copy"); 549 550 const MCInstrDesc &MCID = get(Opc); 551 if (MCID.getNumOperands() == 3) 552 BuildMI(MBB, I, DL, MCID, DestReg) 553 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); 554 else 555 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); 556 } 557 558 // This function returns true if a CR spill is necessary and false otherwise. 559 bool 560 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, 561 unsigned SrcReg, bool isKill, 562 int FrameIdx, 563 const TargetRegisterClass *RC, 564 SmallVectorImpl<MachineInstr*> &NewMIs, 565 bool &NonRI, bool &SpillsVRS) const{ 566 // Note: If additional store instructions are added here, 567 // update isStoreToStackSlot. 568 569 DebugLoc DL; 570 if (PPC::GPRCRegClass.hasSubClassEq(RC)) { 571 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) 572 .addReg(SrcReg, 573 getKillRegState(isKill)), 574 FrameIdx)); 575 } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) { 576 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) 577 .addReg(SrcReg, 578 getKillRegState(isKill)), 579 FrameIdx)); 580 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 581 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) 582 .addReg(SrcReg, 583 getKillRegState(isKill)), 584 FrameIdx)); 585 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 586 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) 587 .addReg(SrcReg, 588 getKillRegState(isKill)), 589 FrameIdx)); 590 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 591 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) 592 .addReg(SrcReg, 593 getKillRegState(isKill)), 594 FrameIdx)); 595 return true; 596 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 597 // FIXME: We use CRi here because there is no mtcrf on a bit. Since the 598 // backend currently only uses CR1EQ as an individual bit, this should 599 // not cause any bug. If we need other uses of CR bits, the following 600 // code may be invalid. 601 unsigned Reg = 0; 602 if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT || 603 SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN) 604 Reg = PPC::CR0; 605 else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT || 606 SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN) 607 Reg = PPC::CR1; 608 else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT || 609 SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN) 610 Reg = PPC::CR2; 611 else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT || 612 SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN) 613 Reg = PPC::CR3; 614 else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT || 615 SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN) 616 Reg = PPC::CR4; 617 else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT || 618 SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN) 619 Reg = PPC::CR5; 620 else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT || 621 SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN) 622 Reg = PPC::CR6; 623 else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT || 624 SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN) 625 Reg = PPC::CR7; 626 627 return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx, 628 &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS); 629 630 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 631 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX)) 632 .addReg(SrcReg, 633 getKillRegState(isKill)), 634 FrameIdx)); 635 NonRI = true; 636 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 637 assert(TM.getSubtargetImpl()->isDarwin() && 638 "VRSAVE only needs spill/restore on Darwin"); 639 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE)) 640 .addReg(SrcReg, 641 getKillRegState(isKill)), 642 FrameIdx)); 643 SpillsVRS = true; 644 } else { 645 llvm_unreachable("Unknown regclass!"); 646 } 647 648 return false; 649 } 650 651 void 652 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 653 MachineBasicBlock::iterator MI, 654 unsigned SrcReg, bool isKill, int FrameIdx, 655 const TargetRegisterClass *RC, 656 const TargetRegisterInfo *TRI) const { 657 MachineFunction &MF = *MBB.getParent(); 658 SmallVector<MachineInstr*, 4> NewMIs; 659 660 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 661 FuncInfo->setHasSpills(); 662 663 bool NonRI = false, SpillsVRS = false; 664 if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs, 665 NonRI, SpillsVRS)) 666 FuncInfo->setSpillsCR(); 667 668 if (SpillsVRS) 669 FuncInfo->setSpillsVRSAVE(); 670 671 if (NonRI) 672 FuncInfo->setHasNonRISpills(); 673 674 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 675 MBB.insert(MI, NewMIs[i]); 676 677 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 678 MachineMemOperand *MMO = 679 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 680 MachineMemOperand::MOStore, 681 MFI.getObjectSize(FrameIdx), 682 MFI.getObjectAlignment(FrameIdx)); 683 NewMIs.back()->addMemOperand(MF, MMO); 684 } 685 686 bool 687 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, 688 unsigned DestReg, int FrameIdx, 689 const TargetRegisterClass *RC, 690 SmallVectorImpl<MachineInstr*> &NewMIs, 691 bool &NonRI, bool &SpillsVRS) const{ 692 // Note: If additional load instructions are added here, 693 // update isLoadFromStackSlot. 694 695 if (PPC::GPRCRegClass.hasSubClassEq(RC)) { 696 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), 697 DestReg), FrameIdx)); 698 } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) { 699 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), 700 FrameIdx)); 701 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { 702 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), 703 FrameIdx)); 704 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { 705 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), 706 FrameIdx)); 707 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { 708 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 709 get(PPC::RESTORE_CR), DestReg), 710 FrameIdx)); 711 return true; 712 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { 713 714 unsigned Reg = 0; 715 if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT || 716 DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN) 717 Reg = PPC::CR0; 718 else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT || 719 DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN) 720 Reg = PPC::CR1; 721 else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT || 722 DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN) 723 Reg = PPC::CR2; 724 else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT || 725 DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN) 726 Reg = PPC::CR3; 727 else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT || 728 DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN) 729 Reg = PPC::CR4; 730 else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT || 731 DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN) 732 Reg = PPC::CR5; 733 else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT || 734 DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN) 735 Reg = PPC::CR6; 736 else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT || 737 DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN) 738 Reg = PPC::CR7; 739 740 return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx, 741 &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS); 742 743 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { 744 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg), 745 FrameIdx)); 746 NonRI = true; 747 } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) { 748 assert(TM.getSubtargetImpl()->isDarwin() && 749 "VRSAVE only needs spill/restore on Darwin"); 750 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, 751 get(PPC::RESTORE_VRSAVE), 752 DestReg), 753 FrameIdx)); 754 SpillsVRS = true; 755 } else { 756 llvm_unreachable("Unknown regclass!"); 757 } 758 759 return false; 760 } 761 762 void 763 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 764 MachineBasicBlock::iterator MI, 765 unsigned DestReg, int FrameIdx, 766 const TargetRegisterClass *RC, 767 const TargetRegisterInfo *TRI) const { 768 MachineFunction &MF = *MBB.getParent(); 769 SmallVector<MachineInstr*, 4> NewMIs; 770 DebugLoc DL; 771 if (MI != MBB.end()) DL = MI->getDebugLoc(); 772 773 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); 774 FuncInfo->setHasSpills(); 775 776 bool NonRI = false, SpillsVRS = false; 777 if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs, 778 NonRI, SpillsVRS)) 779 FuncInfo->setSpillsCR(); 780 781 if (SpillsVRS) 782 FuncInfo->setSpillsVRSAVE(); 783 784 if (NonRI) 785 FuncInfo->setHasNonRISpills(); 786 787 for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) 788 MBB.insert(MI, NewMIs[i]); 789 790 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 791 MachineMemOperand *MMO = 792 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), 793 MachineMemOperand::MOLoad, 794 MFI.getObjectSize(FrameIdx), 795 MFI.getObjectAlignment(FrameIdx)); 796 NewMIs.back()->addMemOperand(MF, MMO); 797 } 798 799 bool PPCInstrInfo:: 800 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 801 assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); 802 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) 803 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); 804 else 805 // Leave the CR# the same, but invert the condition. 806 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); 807 return false; 808 } 809 810 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, 811 unsigned Reg, MachineRegisterInfo *MRI) const { 812 // For some instructions, it is legal to fold ZERO into the RA register field. 813 // A zero immediate should always be loaded with a single li. 814 unsigned DefOpc = DefMI->getOpcode(); 815 if (DefOpc != PPC::LI && DefOpc != PPC::LI8) 816 return false; 817 if (!DefMI->getOperand(1).isImm()) 818 return false; 819 if (DefMI->getOperand(1).getImm() != 0) 820 return false; 821 822 // Note that we cannot here invert the arguments of an isel in order to fold 823 // a ZERO into what is presented as the second argument. All we have here 824 // is the condition bit, and that might come from a CR-logical bit operation. 825 826 const MCInstrDesc &UseMCID = UseMI->getDesc(); 827 828 // Only fold into real machine instructions. 829 if (UseMCID.isPseudo()) 830 return false; 831 832 unsigned UseIdx; 833 for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx) 834 if (UseMI->getOperand(UseIdx).isReg() && 835 UseMI->getOperand(UseIdx).getReg() == Reg) 836 break; 837 838 assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI"); 839 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg"); 840 841 const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx]; 842 843 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0 844 // register (which might also be specified as a pointer class kind). 845 if (UseInfo->isLookupPtrRegClass()) { 846 if (UseInfo->RegClass /* Kind */ != 1) 847 return false; 848 } else { 849 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID && 850 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID) 851 return false; 852 } 853 854 // Make sure this is not tied to an output register (or otherwise 855 // constrained). This is true for ST?UX registers, for example, which 856 // are tied to their output registers. 857 if (UseInfo->Constraints != 0) 858 return false; 859 860 unsigned ZeroReg; 861 if (UseInfo->isLookupPtrRegClass()) { 862 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 863 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO; 864 } else { 865 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ? 866 PPC::ZERO8 : PPC::ZERO; 867 } 868 869 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 870 UseMI->getOperand(UseIdx).setReg(ZeroReg); 871 872 if (DeleteDef) 873 DefMI->eraseFromParent(); 874 875 return true; 876 } 877 878 static bool MBBDefinesCTR(MachineBasicBlock &MBB) { 879 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); 880 I != IE; ++I) 881 if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8)) 882 return true; 883 return false; 884 } 885 886 // We should make sure that, if we're going to predicate both sides of a 887 // condition (a diamond), that both sides don't define the counter register. We 888 // can predicate counter-decrement-based branches, but while that predicates 889 // the branching, it does not predicate the counter decrement. If we tried to 890 // merge the triangle into one predicated block, we'd decrement the counter 891 // twice. 892 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB, 893 unsigned NumT, unsigned ExtraT, 894 MachineBasicBlock &FMBB, 895 unsigned NumF, unsigned ExtraF, 896 const BranchProbability &Probability) const { 897 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB)); 898 } 899 900 901 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const { 902 // The predicated branches are identified by their type, not really by the 903 // explicit presence of a predicate. Furthermore, some of them can be 904 // predicated more than once. Because if conversion won't try to predicate 905 // any instruction which already claims to be predicated (by returning true 906 // here), always return false. In doing so, we let isPredicable() be the 907 // final word on whether not the instruction can be (further) predicated. 908 909 return false; 910 } 911 912 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 913 if (!MI->isTerminator()) 914 return false; 915 916 // Conditional branch is a special case. 917 if (MI->isBranch() && !MI->isBarrier()) 918 return true; 919 920 return !isPredicated(MI); 921 } 922 923 bool PPCInstrInfo::PredicateInstruction( 924 MachineInstr *MI, 925 const SmallVectorImpl<MachineOperand> &Pred) const { 926 unsigned OpC = MI->getOpcode(); 927 if (OpC == PPC::BLR) { 928 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 929 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 930 MI->setDesc(get(Pred[0].getImm() ? 931 (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) : 932 (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR))); 933 } else { 934 MI->setDesc(get(PPC::BCLR)); 935 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 936 .addImm(Pred[0].getImm()) 937 .addReg(Pred[1].getReg()); 938 } 939 940 return true; 941 } else if (OpC == PPC::B) { 942 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) { 943 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 944 MI->setDesc(get(Pred[0].getImm() ? 945 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : 946 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))); 947 } else { 948 MachineBasicBlock *MBB = MI->getOperand(0).getMBB(); 949 MI->RemoveOperand(0); 950 951 MI->setDesc(get(PPC::BCC)); 952 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 953 .addImm(Pred[0].getImm()) 954 .addReg(Pred[1].getReg()) 955 .addMBB(MBB); 956 } 957 958 return true; 959 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || 960 OpC == PPC::BCTRL || OpC == PPC::BCTRL8) { 961 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) 962 llvm_unreachable("Cannot predicate bctr[l] on the ctr register"); 963 964 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8; 965 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 966 MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) : 967 (setLR ? PPC::BCCTRL : PPC::BCCTR))); 968 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 969 .addImm(Pred[0].getImm()) 970 .addReg(Pred[1].getReg()); 971 return true; 972 } 973 974 return false; 975 } 976 977 bool PPCInstrInfo::SubsumesPredicate( 978 const SmallVectorImpl<MachineOperand> &Pred1, 979 const SmallVectorImpl<MachineOperand> &Pred2) const { 980 assert(Pred1.size() == 2 && "Invalid PPC first predicate"); 981 assert(Pred2.size() == 2 && "Invalid PPC second predicate"); 982 983 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR) 984 return false; 985 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR) 986 return false; 987 988 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm(); 989 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm(); 990 991 if (P1 == P2) 992 return true; 993 994 // Does P1 subsume P2, e.g. GE subsumes GT. 995 if (P1 == PPC::PRED_LE && 996 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ)) 997 return true; 998 if (P1 == PPC::PRED_GE && 999 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ)) 1000 return true; 1001 1002 return false; 1003 } 1004 1005 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI, 1006 std::vector<MachineOperand> &Pred) const { 1007 // Note: At the present time, the contents of Pred from this function is 1008 // unused by IfConversion. This implementation follows ARM by pushing the 1009 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of 1010 // predicate, instructions defining CTR or CTR8 are also included as 1011 // predicate-defining instructions. 1012 1013 const TargetRegisterClass *RCs[] = 1014 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass, 1015 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass }; 1016 1017 bool Found = false; 1018 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1019 const MachineOperand &MO = MI->getOperand(i); 1020 for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) { 1021 const TargetRegisterClass *RC = RCs[c]; 1022 if (MO.isReg()) { 1023 if (MO.isDef() && RC->contains(MO.getReg())) { 1024 Pred.push_back(MO); 1025 Found = true; 1026 } 1027 } else if (MO.isRegMask()) { 1028 for (TargetRegisterClass::iterator I = RC->begin(), 1029 IE = RC->end(); I != IE; ++I) 1030 if (MO.clobbersPhysReg(*I)) { 1031 Pred.push_back(MO); 1032 Found = true; 1033 } 1034 } 1035 } 1036 } 1037 1038 return Found; 1039 } 1040 1041 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const { 1042 unsigned OpC = MI->getOpcode(); 1043 switch (OpC) { 1044 default: 1045 return false; 1046 case PPC::B: 1047 case PPC::BLR: 1048 case PPC::BCTR: 1049 case PPC::BCTR8: 1050 case PPC::BCTRL: 1051 case PPC::BCTRL8: 1052 return true; 1053 } 1054 } 1055 1056 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI, 1057 unsigned &SrcReg, unsigned &SrcReg2, 1058 int &Mask, int &Value) const { 1059 unsigned Opc = MI->getOpcode(); 1060 1061 switch (Opc) { 1062 default: return false; 1063 case PPC::CMPWI: 1064 case PPC::CMPLWI: 1065 case PPC::CMPDI: 1066 case PPC::CMPLDI: 1067 SrcReg = MI->getOperand(1).getReg(); 1068 SrcReg2 = 0; 1069 Value = MI->getOperand(2).getImm(); 1070 Mask = 0xFFFF; 1071 return true; 1072 case PPC::CMPW: 1073 case PPC::CMPLW: 1074 case PPC::CMPD: 1075 case PPC::CMPLD: 1076 case PPC::FCMPUS: 1077 case PPC::FCMPUD: 1078 SrcReg = MI->getOperand(1).getReg(); 1079 SrcReg2 = MI->getOperand(2).getReg(); 1080 return true; 1081 } 1082 } 1083 1084 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr, 1085 unsigned SrcReg, unsigned SrcReg2, 1086 int Mask, int Value, 1087 const MachineRegisterInfo *MRI) const { 1088 if (DisableCmpOpt) 1089 return false; 1090 1091 int OpC = CmpInstr->getOpcode(); 1092 unsigned CRReg = CmpInstr->getOperand(0).getReg(); 1093 1094 // FP record forms set CR1 based on the execption status bits, not a 1095 // comparison with zero. 1096 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD) 1097 return false; 1098 1099 // The record forms set the condition register based on a signed comparison 1100 // with zero (so says the ISA manual). This is not as straightforward as it 1101 // seems, however, because this is always a 64-bit comparison on PPC64, even 1102 // for instructions that are 32-bit in nature (like slw for example). 1103 // So, on PPC32, for unsigned comparisons, we can use the record forms only 1104 // for equality checks (as those don't depend on the sign). On PPC64, 1105 // we are restricted to equality for unsigned 64-bit comparisons and for 1106 // signed 32-bit comparisons the applicability is more restricted. 1107 bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); 1108 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW; 1109 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW; 1110 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD; 1111 1112 // Get the unique definition of SrcReg. 1113 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 1114 if (!MI) return false; 1115 int MIOpC = MI->getOpcode(); 1116 1117 bool equalityOnly = false; 1118 bool noSub = false; 1119 if (isPPC64) { 1120 if (is32BitSignedCompare) { 1121 // We can perform this optimization only if MI is sign-extending. 1122 if (MIOpC == PPC::SRAW || MIOpC == PPC::SRAWo || 1123 MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo || 1124 MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo || 1125 MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo || 1126 MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) { 1127 noSub = true; 1128 } else 1129 return false; 1130 } else if (is32BitUnsignedCompare) { 1131 // We can perform this optimization, equality only, if MI is 1132 // zero-extending. 1133 if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo || 1134 MIOpC == PPC::SLW || MIOpC == PPC::SLWo || 1135 MIOpC == PPC::SRW || MIOpC == PPC::SRWo) { 1136 noSub = true; 1137 equalityOnly = true; 1138 } else 1139 return false; 1140 } else 1141 equalityOnly = is64BitUnsignedCompare; 1142 } else 1143 equalityOnly = is32BitUnsignedCompare; 1144 1145 if (equalityOnly) { 1146 // We need to check the uses of the condition register in order to reject 1147 // non-equality comparisons. 1148 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg), 1149 IE = MRI->use_end(); I != IE; ++I) { 1150 MachineInstr *UseMI = &*I; 1151 if (UseMI->getOpcode() == PPC::BCC) { 1152 unsigned Pred = UseMI->getOperand(0).getImm(); 1153 if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE) 1154 return false; 1155 } else if (UseMI->getOpcode() == PPC::ISEL || 1156 UseMI->getOpcode() == PPC::ISEL8) { 1157 unsigned SubIdx = UseMI->getOperand(3).getSubReg(); 1158 if (SubIdx != PPC::sub_eq) 1159 return false; 1160 } else 1161 return false; 1162 } 1163 } 1164 1165 MachineBasicBlock::iterator I = CmpInstr; 1166 1167 // Scan forward to find the first use of the compare. 1168 for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end(); 1169 I != EL; ++I) { 1170 bool FoundUse = false; 1171 for (MachineRegisterInfo::use_iterator J = MRI->use_begin(CRReg), 1172 JE = MRI->use_end(); J != JE; ++J) 1173 if (&*J == &*I) { 1174 FoundUse = true; 1175 break; 1176 } 1177 1178 if (FoundUse) 1179 break; 1180 } 1181 1182 // There are two possible candidates which can be changed to set CR[01]. 1183 // One is MI, the other is a SUB instruction. 1184 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1). 1185 MachineInstr *Sub = NULL; 1186 if (SrcReg2 != 0) 1187 // MI is not a candidate for CMPrr. 1188 MI = NULL; 1189 // FIXME: Conservatively refuse to convert an instruction which isn't in the 1190 // same BB as the comparison. This is to allow the check below to avoid calls 1191 // (and other explicit clobbers); instead we should really check for these 1192 // more explicitly (in at least a few predecessors). 1193 else if (MI->getParent() != CmpInstr->getParent() || Value != 0) { 1194 // PPC does not have a record-form SUBri. 1195 return false; 1196 } 1197 1198 // Search for Sub. 1199 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1200 --I; 1201 1202 // Get ready to iterate backward from CmpInstr. 1203 MachineBasicBlock::iterator E = MI, 1204 B = CmpInstr->getParent()->begin(); 1205 1206 for (; I != E && !noSub; --I) { 1207 const MachineInstr &Instr = *I; 1208 unsigned IOpC = Instr.getOpcode(); 1209 1210 if (&*I != CmpInstr && ( 1211 Instr.modifiesRegister(PPC::CR0, TRI) || 1212 Instr.readsRegister(PPC::CR0, TRI))) 1213 // This instruction modifies or uses the record condition register after 1214 // the one we want to change. While we could do this transformation, it 1215 // would likely not be profitable. This transformation removes one 1216 // instruction, and so even forcing RA to generate one move probably 1217 // makes it unprofitable. 1218 return false; 1219 1220 // Check whether CmpInstr can be made redundant by the current instruction. 1221 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW || 1222 OpC == PPC::CMPD || OpC == PPC::CMPLD) && 1223 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) && 1224 ((Instr.getOperand(1).getReg() == SrcReg && 1225 Instr.getOperand(2).getReg() == SrcReg2) || 1226 (Instr.getOperand(1).getReg() == SrcReg2 && 1227 Instr.getOperand(2).getReg() == SrcReg))) { 1228 Sub = &*I; 1229 break; 1230 } 1231 1232 if (I == B) 1233 // The 'and' is below the comparison instruction. 1234 return false; 1235 } 1236 1237 // Return false if no candidates exist. 1238 if (!MI && !Sub) 1239 return false; 1240 1241 // The single candidate is called MI. 1242 if (!MI) MI = Sub; 1243 1244 int NewOpC = -1; 1245 MIOpC = MI->getOpcode(); 1246 if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8) 1247 NewOpC = MIOpC; 1248 else { 1249 NewOpC = PPC::getRecordFormOpcode(MIOpC); 1250 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1) 1251 NewOpC = MIOpC; 1252 } 1253 1254 // FIXME: On the non-embedded POWER architectures, only some of the record 1255 // forms are fast, and we should use only the fast ones. 1256 1257 // The defining instruction has a record form (or is already a record 1258 // form). It is possible, however, that we'll need to reverse the condition 1259 // code of the users. 1260 if (NewOpC == -1) 1261 return false; 1262 1263 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate; 1264 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate; 1265 1266 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP 1267 // needs to be updated to be based on SUB. Push the condition code 1268 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the 1269 // condition code of these operands will be modified. 1270 bool ShouldSwap = false; 1271 if (Sub) { 1272 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && 1273 Sub->getOperand(2).getReg() == SrcReg; 1274 1275 // The operands to subf are the opposite of sub, so only in the fixed-point 1276 // case, invert the order. 1277 ShouldSwap = !ShouldSwap; 1278 } 1279 1280 if (ShouldSwap) 1281 for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg), 1282 IE = MRI->use_end(); I != IE; ++I) { 1283 MachineInstr *UseMI = &*I; 1284 if (UseMI->getOpcode() == PPC::BCC) { 1285 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm(); 1286 assert((!equalityOnly || 1287 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) && 1288 "Invalid predicate for equality-only optimization"); 1289 PredsToUpdate.push_back(std::make_pair(&((*I).getOperand(0)), 1290 PPC::getSwappedPredicate(Pred))); 1291 } else if (UseMI->getOpcode() == PPC::ISEL || 1292 UseMI->getOpcode() == PPC::ISEL8) { 1293 unsigned NewSubReg = UseMI->getOperand(3).getSubReg(); 1294 assert((!equalityOnly || NewSubReg == PPC::sub_eq) && 1295 "Invalid CR bit for equality-only optimization"); 1296 1297 if (NewSubReg == PPC::sub_lt) 1298 NewSubReg = PPC::sub_gt; 1299 else if (NewSubReg == PPC::sub_gt) 1300 NewSubReg = PPC::sub_lt; 1301 1302 SubRegsToUpdate.push_back(std::make_pair(&((*I).getOperand(3)), 1303 NewSubReg)); 1304 } else // We need to abort on a user we don't understand. 1305 return false; 1306 } 1307 1308 // Create a new virtual register to hold the value of the CR set by the 1309 // record-form instruction. If the instruction was not previously in 1310 // record form, then set the kill flag on the CR. 1311 CmpInstr->eraseFromParent(); 1312 1313 MachineBasicBlock::iterator MII = MI; 1314 BuildMI(*MI->getParent(), llvm::next(MII), MI->getDebugLoc(), 1315 get(TargetOpcode::COPY), CRReg) 1316 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0); 1317 1318 if (MIOpC != NewOpC) { 1319 // We need to be careful here: we're replacing one instruction with 1320 // another, and we need to make sure that we get all of the right 1321 // implicit uses and defs. On the other hand, the caller may be holding 1322 // an iterator to this instruction, and so we can't delete it (this is 1323 // specifically the case if this is the instruction directly after the 1324 // compare). 1325 1326 const MCInstrDesc &NewDesc = get(NewOpC); 1327 MI->setDesc(NewDesc); 1328 1329 if (NewDesc.ImplicitDefs) 1330 for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs(); 1331 *ImpDefs; ++ImpDefs) 1332 if (!MI->definesRegister(*ImpDefs)) 1333 MI->addOperand(*MI->getParent()->getParent(), 1334 MachineOperand::CreateReg(*ImpDefs, true, true)); 1335 if (NewDesc.ImplicitUses) 1336 for (const uint16_t *ImpUses = NewDesc.getImplicitUses(); 1337 *ImpUses; ++ImpUses) 1338 if (!MI->readsRegister(*ImpUses)) 1339 MI->addOperand(*MI->getParent()->getParent(), 1340 MachineOperand::CreateReg(*ImpUses, false, true)); 1341 } 1342 1343 // Modify the condition code of operands in OperandsToUpdate. 1344 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 1345 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 1346 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++) 1347 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second); 1348 1349 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++) 1350 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second); 1351 1352 return true; 1353 } 1354 1355 /// GetInstSize - Return the number of bytes of code the specified 1356 /// instruction may be. This returns the maximum number of bytes. 1357 /// 1358 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { 1359 switch (MI->getOpcode()) { 1360 case PPC::INLINEASM: { // Inline Asm: Variable size. 1361 const MachineFunction *MF = MI->getParent()->getParent(); 1362 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1363 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1364 } 1365 case PPC::PROLOG_LABEL: 1366 case PPC::EH_LABEL: 1367 case PPC::GC_LABEL: 1368 case PPC::DBG_VALUE: 1369 return 0; 1370 case PPC::BL8_NOP: 1371 case PPC::BLA8_NOP: 1372 return 8; 1373 default: 1374 return 4; // PowerPC instructions are all 4 bytes 1375 } 1376 } 1377 1378 #undef DEBUG_TYPE 1379 #define DEBUG_TYPE "ppc-early-ret" 1380 STATISTIC(NumBCLR, "Number of early conditional returns"); 1381 STATISTIC(NumBLR, "Number of early returns"); 1382 1383 namespace llvm { 1384 void initializePPCEarlyReturnPass(PassRegistry&); 1385 } 1386 1387 namespace { 1388 // PPCEarlyReturn pass - For simple functions without epilogue code, move 1389 // returns up, and create conditional returns, to avoid unnecessary 1390 // branch-to-blr sequences. 1391 struct PPCEarlyReturn : public MachineFunctionPass { 1392 static char ID; 1393 PPCEarlyReturn() : MachineFunctionPass(ID) { 1394 initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry()); 1395 } 1396 1397 const PPCTargetMachine *TM; 1398 const PPCInstrInfo *TII; 1399 1400 protected: 1401 bool processBlock(MachineBasicBlock &ReturnMBB) { 1402 bool Changed = false; 1403 1404 MachineBasicBlock::iterator I = ReturnMBB.begin(); 1405 I = ReturnMBB.SkipPHIsAndLabels(I); 1406 1407 // The block must be essentially empty except for the blr. 1408 if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR || 1409 I != ReturnMBB.getLastNonDebugInstr()) 1410 return Changed; 1411 1412 SmallVector<MachineBasicBlock*, 8> PredToRemove; 1413 for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(), 1414 PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) { 1415 bool OtherReference = false, BlockChanged = false; 1416 for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) { 1417 if (J->getOpcode() == PPC::B) { 1418 if (J->getOperand(0).getMBB() == &ReturnMBB) { 1419 // This is an unconditional branch to the return. Replace the 1420 // branch with a blr. 1421 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR)); 1422 MachineBasicBlock::iterator K = J--; 1423 K->eraseFromParent(); 1424 BlockChanged = true; 1425 ++NumBLR; 1426 continue; 1427 } 1428 } else if (J->getOpcode() == PPC::BCC) { 1429 if (J->getOperand(2).getMBB() == &ReturnMBB) { 1430 // This is a conditional branch to the return. Replace the branch 1431 // with a bclr. 1432 BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCLR)) 1433 .addImm(J->getOperand(0).getImm()) 1434 .addReg(J->getOperand(1).getReg()); 1435 MachineBasicBlock::iterator K = J--; 1436 K->eraseFromParent(); 1437 BlockChanged = true; 1438 ++NumBCLR; 1439 continue; 1440 } 1441 } else if (J->isBranch()) { 1442 if (J->isIndirectBranch()) { 1443 if (ReturnMBB.hasAddressTaken()) 1444 OtherReference = true; 1445 } else 1446 for (unsigned i = 0; i < J->getNumOperands(); ++i) 1447 if (J->getOperand(i).isMBB() && 1448 J->getOperand(i).getMBB() == &ReturnMBB) 1449 OtherReference = true; 1450 } else if (!J->isTerminator() && !J->isDebugValue()) 1451 break; 1452 1453 if (J == (*PI)->begin()) 1454 break; 1455 1456 --J; 1457 } 1458 1459 if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB)) 1460 OtherReference = true; 1461 1462 // Predecessors are stored in a vector and can't be removed here. 1463 if (!OtherReference && BlockChanged) { 1464 PredToRemove.push_back(*PI); 1465 } 1466 1467 if (BlockChanged) 1468 Changed = true; 1469 } 1470 1471 for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i) 1472 PredToRemove[i]->removeSuccessor(&ReturnMBB); 1473 1474 if (Changed && !ReturnMBB.hasAddressTaken()) { 1475 // We now might be able to merge this blr-only block into its 1476 // by-layout predecessor. 1477 if (ReturnMBB.pred_size() == 1 && 1478 (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) { 1479 // Move the blr into the preceding block. 1480 MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin(); 1481 PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I); 1482 PrevMBB.removeSuccessor(&ReturnMBB); 1483 } 1484 1485 if (ReturnMBB.pred_empty()) 1486 ReturnMBB.eraseFromParent(); 1487 } 1488 1489 return Changed; 1490 } 1491 1492 public: 1493 virtual bool runOnMachineFunction(MachineFunction &MF) { 1494 TM = static_cast<const PPCTargetMachine *>(&MF.getTarget()); 1495 TII = TM->getInstrInfo(); 1496 1497 bool Changed = false; 1498 1499 // If the function does not have at least two blocks, then there is 1500 // nothing to do. 1501 if (MF.size() < 2) 1502 return Changed; 1503 1504 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { 1505 MachineBasicBlock &B = *I++; 1506 if (processBlock(B)) 1507 Changed = true; 1508 } 1509 1510 return Changed; 1511 } 1512 1513 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1514 MachineFunctionPass::getAnalysisUsage(AU); 1515 } 1516 }; 1517 } 1518 1519 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE, 1520 "PowerPC Early-Return Creation", false, false) 1521 1522 char PPCEarlyReturn::ID = 0; 1523 FunctionPass* 1524 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); } 1525 1526