Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "PPCInstrInfo.h"
     15 #include "MCTargetDesc/PPCPredicates.h"
     16 #include "PPC.h"
     17 #include "PPCHazardRecognizers.h"
     18 #include "PPCInstrBuilder.h"
     19 #include "PPCMachineFunctionInfo.h"
     20 #include "PPCTargetMachine.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/ADT/STLExtras.h"
     23 #include "llvm/CodeGen/MachineFrameInfo.h"
     24 #include "llvm/CodeGen/MachineFunctionPass.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineMemOperand.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/CodeGen/PseudoSourceValue.h"
     29 #include "llvm/MC/MCAsmInfo.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/ErrorHandling.h"
     32 #include "llvm/Support/TargetRegistry.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 
     35 #define GET_INSTRMAP_INFO
     36 #define GET_INSTRINFO_CTOR
     37 #include "PPCGenInstrInfo.inc"
     38 
     39 using namespace llvm;
     40 
     41 static cl::
     42 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
     43             cl::desc("Disable analysis for CTR loops"));
     44 
     45 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
     46 cl::desc("Disable compare instruction optimization"), cl::Hidden);
     47 
     48 PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm)
     49   : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
     50     TM(tm), RI(*TM.getSubtargetImpl()) {}
     51 
     52 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
     53 /// this target when scheduling the DAG.
     54 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer(
     55   const TargetMachine *TM,
     56   const ScheduleDAG *DAG) const {
     57   unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective();
     58   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
     59       Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
     60     const InstrItineraryData *II = TM->getInstrItineraryData();
     61     return new PPCScoreboardHazardRecognizer(II, DAG);
     62   }
     63 
     64   return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG);
     65 }
     66 
     67 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
     68 /// to use for this target when scheduling the DAG.
     69 ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer(
     70   const InstrItineraryData *II,
     71   const ScheduleDAG *DAG) const {
     72   unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
     73 
     74   // Most subtargets use a PPC970 recognizer.
     75   if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
     76       Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
     77     assert(TM.getInstrInfo() && "No InstrInfo?");
     78 
     79     return new PPCHazardRecognizer970(TM);
     80   }
     81 
     82   return new PPCScoreboardHazardRecognizer(II, DAG);
     83 }
     84 
     85 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
     86 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
     87                                          unsigned &SrcReg, unsigned &DstReg,
     88                                          unsigned &SubIdx) const {
     89   switch (MI.getOpcode()) {
     90   default: return false;
     91   case PPC::EXTSW:
     92   case PPC::EXTSW_32_64:
     93     SrcReg = MI.getOperand(1).getReg();
     94     DstReg = MI.getOperand(0).getReg();
     95     SubIdx = PPC::sub_32;
     96     return true;
     97   }
     98 }
     99 
    100 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
    101                                            int &FrameIndex) const {
    102   // Note: This list must be kept consistent with LoadRegFromStackSlot.
    103   switch (MI->getOpcode()) {
    104   default: break;
    105   case PPC::LD:
    106   case PPC::LWZ:
    107   case PPC::LFS:
    108   case PPC::LFD:
    109   case PPC::RESTORE_CR:
    110   case PPC::LVX:
    111   case PPC::RESTORE_VRSAVE:
    112     // Check for the operands added by addFrameReference (the immediate is the
    113     // offset which defaults to 0).
    114     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
    115         MI->getOperand(2).isFI()) {
    116       FrameIndex = MI->getOperand(2).getIndex();
    117       return MI->getOperand(0).getReg();
    118     }
    119     break;
    120   }
    121   return 0;
    122 }
    123 
    124 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
    125                                           int &FrameIndex) const {
    126   // Note: This list must be kept consistent with StoreRegToStackSlot.
    127   switch (MI->getOpcode()) {
    128   default: break;
    129   case PPC::STD:
    130   case PPC::STW:
    131   case PPC::STFS:
    132   case PPC::STFD:
    133   case PPC::SPILL_CR:
    134   case PPC::STVX:
    135   case PPC::SPILL_VRSAVE:
    136     // Check for the operands added by addFrameReference (the immediate is the
    137     // offset which defaults to 0).
    138     if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
    139         MI->getOperand(2).isFI()) {
    140       FrameIndex = MI->getOperand(2).getIndex();
    141       return MI->getOperand(0).getReg();
    142     }
    143     break;
    144   }
    145   return 0;
    146 }
    147 
    148 // commuteInstruction - We can commute rlwimi instructions, but only if the
    149 // rotate amt is zero.  We also have to munge the immediates a bit.
    150 MachineInstr *
    151 PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
    152   MachineFunction &MF = *MI->getParent()->getParent();
    153 
    154   // Normal instructions can be commuted the obvious way.
    155   if (MI->getOpcode() != PPC::RLWIMI &&
    156       MI->getOpcode() != PPC::RLWIMIo)
    157     return TargetInstrInfo::commuteInstruction(MI, NewMI);
    158 
    159   // Cannot commute if it has a non-zero rotate count.
    160   if (MI->getOperand(3).getImm() != 0)
    161     return 0;
    162 
    163   // If we have a zero rotate count, we have:
    164   //   M = mask(MB,ME)
    165   //   Op0 = (Op1 & ~M) | (Op2 & M)
    166   // Change this to:
    167   //   M = mask((ME+1)&31, (MB-1)&31)
    168   //   Op0 = (Op2 & ~M) | (Op1 & M)
    169 
    170   // Swap op1/op2
    171   unsigned Reg0 = MI->getOperand(0).getReg();
    172   unsigned Reg1 = MI->getOperand(1).getReg();
    173   unsigned Reg2 = MI->getOperand(2).getReg();
    174   bool Reg1IsKill = MI->getOperand(1).isKill();
    175   bool Reg2IsKill = MI->getOperand(2).isKill();
    176   bool ChangeReg0 = false;
    177   // If machine instrs are no longer in two-address forms, update
    178   // destination register as well.
    179   if (Reg0 == Reg1) {
    180     // Must be two address instruction!
    181     assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
    182            "Expecting a two-address instruction!");
    183     Reg2IsKill = false;
    184     ChangeReg0 = true;
    185   }
    186 
    187   // Masks.
    188   unsigned MB = MI->getOperand(4).getImm();
    189   unsigned ME = MI->getOperand(5).getImm();
    190 
    191   if (NewMI) {
    192     // Create a new instruction.
    193     unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
    194     bool Reg0IsDead = MI->getOperand(0).isDead();
    195     return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
    196       .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
    197       .addReg(Reg2, getKillRegState(Reg2IsKill))
    198       .addReg(Reg1, getKillRegState(Reg1IsKill))
    199       .addImm((ME+1) & 31)
    200       .addImm((MB-1) & 31);
    201   }
    202 
    203   if (ChangeReg0)
    204     MI->getOperand(0).setReg(Reg2);
    205   MI->getOperand(2).setReg(Reg1);
    206   MI->getOperand(1).setReg(Reg2);
    207   MI->getOperand(2).setIsKill(Reg1IsKill);
    208   MI->getOperand(1).setIsKill(Reg2IsKill);
    209 
    210   // Swap the mask around.
    211   MI->getOperand(4).setImm((ME+1) & 31);
    212   MI->getOperand(5).setImm((MB-1) & 31);
    213   return MI;
    214 }
    215 
    216 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
    217                               MachineBasicBlock::iterator MI) const {
    218   DebugLoc DL;
    219   BuildMI(MBB, MI, DL, get(PPC::NOP));
    220 }
    221 
    222 
    223 // Branch analysis.
    224 // Note: If the condition register is set to CTR or CTR8 then this is a
    225 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
    226 bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
    227                                  MachineBasicBlock *&FBB,
    228                                  SmallVectorImpl<MachineOperand> &Cond,
    229                                  bool AllowModify) const {
    230   bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
    231 
    232   // If the block has no terminators, it just falls into the block after it.
    233   MachineBasicBlock::iterator I = MBB.end();
    234   if (I == MBB.begin())
    235     return false;
    236   --I;
    237   while (I->isDebugValue()) {
    238     if (I == MBB.begin())
    239       return false;
    240     --I;
    241   }
    242   if (!isUnpredicatedTerminator(I))
    243     return false;
    244 
    245   // Get the last instruction in the block.
    246   MachineInstr *LastInst = I;
    247 
    248   // If there is only one terminator instruction, process it.
    249   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
    250     if (LastInst->getOpcode() == PPC::B) {
    251       if (!LastInst->getOperand(0).isMBB())
    252         return true;
    253       TBB = LastInst->getOperand(0).getMBB();
    254       return false;
    255     } else if (LastInst->getOpcode() == PPC::BCC) {
    256       if (!LastInst->getOperand(2).isMBB())
    257         return true;
    258       // Block ends with fall-through condbranch.
    259       TBB = LastInst->getOperand(2).getMBB();
    260       Cond.push_back(LastInst->getOperand(0));
    261       Cond.push_back(LastInst->getOperand(1));
    262       return false;
    263     } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
    264                LastInst->getOpcode() == PPC::BDNZ) {
    265       if (!LastInst->getOperand(0).isMBB())
    266         return true;
    267       if (DisableCTRLoopAnal)
    268         return true;
    269       TBB = LastInst->getOperand(0).getMBB();
    270       Cond.push_back(MachineOperand::CreateImm(1));
    271       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    272                                                true));
    273       return false;
    274     } else if (LastInst->getOpcode() == PPC::BDZ8 ||
    275                LastInst->getOpcode() == PPC::BDZ) {
    276       if (!LastInst->getOperand(0).isMBB())
    277         return true;
    278       if (DisableCTRLoopAnal)
    279         return true;
    280       TBB = LastInst->getOperand(0).getMBB();
    281       Cond.push_back(MachineOperand::CreateImm(0));
    282       Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    283                                                true));
    284       return false;
    285     }
    286 
    287     // Otherwise, don't know what this is.
    288     return true;
    289   }
    290 
    291   // Get the instruction before it if it's a terminator.
    292   MachineInstr *SecondLastInst = I;
    293 
    294   // If there are three terminators, we don't know what sort of block this is.
    295   if (SecondLastInst && I != MBB.begin() &&
    296       isUnpredicatedTerminator(--I))
    297     return true;
    298 
    299   // If the block ends with PPC::B and PPC:BCC, handle it.
    300   if (SecondLastInst->getOpcode() == PPC::BCC &&
    301       LastInst->getOpcode() == PPC::B) {
    302     if (!SecondLastInst->getOperand(2).isMBB() ||
    303         !LastInst->getOperand(0).isMBB())
    304       return true;
    305     TBB =  SecondLastInst->getOperand(2).getMBB();
    306     Cond.push_back(SecondLastInst->getOperand(0));
    307     Cond.push_back(SecondLastInst->getOperand(1));
    308     FBB = LastInst->getOperand(0).getMBB();
    309     return false;
    310   } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
    311               SecondLastInst->getOpcode() == PPC::BDNZ) &&
    312       LastInst->getOpcode() == PPC::B) {
    313     if (!SecondLastInst->getOperand(0).isMBB() ||
    314         !LastInst->getOperand(0).isMBB())
    315       return true;
    316     if (DisableCTRLoopAnal)
    317       return true;
    318     TBB = SecondLastInst->getOperand(0).getMBB();
    319     Cond.push_back(MachineOperand::CreateImm(1));
    320     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    321                                              true));
    322     FBB = LastInst->getOperand(0).getMBB();
    323     return false;
    324   } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
    325               SecondLastInst->getOpcode() == PPC::BDZ) &&
    326       LastInst->getOpcode() == PPC::B) {
    327     if (!SecondLastInst->getOperand(0).isMBB() ||
    328         !LastInst->getOperand(0).isMBB())
    329       return true;
    330     if (DisableCTRLoopAnal)
    331       return true;
    332     TBB = SecondLastInst->getOperand(0).getMBB();
    333     Cond.push_back(MachineOperand::CreateImm(0));
    334     Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
    335                                              true));
    336     FBB = LastInst->getOperand(0).getMBB();
    337     return false;
    338   }
    339 
    340   // If the block ends with two PPC:Bs, handle it.  The second one is not
    341   // executed, so remove it.
    342   if (SecondLastInst->getOpcode() == PPC::B &&
    343       LastInst->getOpcode() == PPC::B) {
    344     if (!SecondLastInst->getOperand(0).isMBB())
    345       return true;
    346     TBB = SecondLastInst->getOperand(0).getMBB();
    347     I = LastInst;
    348     if (AllowModify)
    349       I->eraseFromParent();
    350     return false;
    351   }
    352 
    353   // Otherwise, can't handle this.
    354   return true;
    355 }
    356 
    357 unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
    358   MachineBasicBlock::iterator I = MBB.end();
    359   if (I == MBB.begin()) return 0;
    360   --I;
    361   while (I->isDebugValue()) {
    362     if (I == MBB.begin())
    363       return 0;
    364     --I;
    365   }
    366   if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
    367       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
    368       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    369     return 0;
    370 
    371   // Remove the branch.
    372   I->eraseFromParent();
    373 
    374   I = MBB.end();
    375 
    376   if (I == MBB.begin()) return 1;
    377   --I;
    378   if (I->getOpcode() != PPC::BCC &&
    379       I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
    380       I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
    381     return 1;
    382 
    383   // Remove the branch.
    384   I->eraseFromParent();
    385   return 2;
    386 }
    387 
    388 unsigned
    389 PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
    390                            MachineBasicBlock *FBB,
    391                            const SmallVectorImpl<MachineOperand> &Cond,
    392                            DebugLoc DL) const {
    393   // Shouldn't be a fall through.
    394   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
    395   assert((Cond.size() == 2 || Cond.size() == 0) &&
    396          "PPC branch conditions have two components!");
    397 
    398   bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
    399 
    400   // One-way branch.
    401   if (FBB == 0) {
    402     if (Cond.empty())   // Unconditional branch
    403       BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
    404     else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    405       BuildMI(&MBB, DL, get(Cond[0].getImm() ?
    406                               (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
    407                               (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
    408     else                // Conditional branch
    409       BuildMI(&MBB, DL, get(PPC::BCC))
    410         .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
    411     return 1;
    412   }
    413 
    414   // Two-way Conditional Branch.
    415   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    416     BuildMI(&MBB, DL, get(Cond[0].getImm() ?
    417                             (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
    418                             (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
    419   else
    420     BuildMI(&MBB, DL, get(PPC::BCC))
    421       .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
    422   BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
    423   return 2;
    424 }
    425 
    426 // Select analysis.
    427 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
    428                 const SmallVectorImpl<MachineOperand> &Cond,
    429                 unsigned TrueReg, unsigned FalseReg,
    430                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
    431   if (!TM.getSubtargetImpl()->hasISEL())
    432     return false;
    433 
    434   if (Cond.size() != 2)
    435     return false;
    436 
    437   // If this is really a bdnz-like condition, then it cannot be turned into a
    438   // select.
    439   if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
    440     return false;
    441 
    442   // Check register classes.
    443   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
    444   const TargetRegisterClass *RC =
    445     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
    446   if (!RC)
    447     return false;
    448 
    449   // isel is for regular integer GPRs only.
    450   if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
    451       !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
    452       !PPC::G8RCRegClass.hasSubClassEq(RC) &&
    453       !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
    454     return false;
    455 
    456   // FIXME: These numbers are for the A2, how well they work for other cores is
    457   // an open question. On the A2, the isel instruction has a 2-cycle latency
    458   // but single-cycle throughput. These numbers are used in combination with
    459   // the MispredictPenalty setting from the active SchedMachineModel.
    460   CondCycles = 1;
    461   TrueCycles = 1;
    462   FalseCycles = 1;
    463 
    464   return true;
    465 }
    466 
    467 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
    468                                 MachineBasicBlock::iterator MI, DebugLoc dl,
    469                                 unsigned DestReg,
    470                                 const SmallVectorImpl<MachineOperand> &Cond,
    471                                 unsigned TrueReg, unsigned FalseReg) const {
    472   assert(Cond.size() == 2 &&
    473          "PPC branch conditions have two components!");
    474 
    475   assert(TM.getSubtargetImpl()->hasISEL() &&
    476          "Cannot insert select on target without ISEL support");
    477 
    478   // Get the register classes.
    479   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
    480   const TargetRegisterClass *RC =
    481     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
    482   assert(RC && "TrueReg and FalseReg must have overlapping register classes");
    483 
    484   bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
    485                  PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
    486   assert((Is64Bit ||
    487           PPC::GPRCRegClass.hasSubClassEq(RC) ||
    488           PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
    489          "isel is for regular integer GPRs only");
    490 
    491   unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
    492   unsigned SelectPred = Cond[0].getImm();
    493 
    494   unsigned SubIdx;
    495   bool SwapOps;
    496   switch (SelectPred) {
    497   default: llvm_unreachable("invalid predicate for isel");
    498   case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
    499   case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
    500   case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
    501   case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
    502   case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
    503   case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
    504   case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
    505   case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
    506   }
    507 
    508   unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
    509            SecondReg = SwapOps ? TrueReg  : FalseReg;
    510 
    511   // The first input register of isel cannot be r0. If it is a member
    512   // of a register class that can be r0, then copy it first (the
    513   // register allocator should eliminate the copy).
    514   if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
    515       MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
    516     const TargetRegisterClass *FirstRC =
    517       MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
    518         &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
    519     unsigned OldFirstReg = FirstReg;
    520     FirstReg = MRI.createVirtualRegister(FirstRC);
    521     BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
    522       .addReg(OldFirstReg);
    523   }
    524 
    525   BuildMI(MBB, MI, dl, get(OpCode), DestReg)
    526     .addReg(FirstReg).addReg(SecondReg)
    527     .addReg(Cond[1].getReg(), 0, SubIdx);
    528 }
    529 
    530 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
    531                                MachineBasicBlock::iterator I, DebugLoc DL,
    532                                unsigned DestReg, unsigned SrcReg,
    533                                bool KillSrc) const {
    534   unsigned Opc;
    535   if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
    536     Opc = PPC::OR;
    537   else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
    538     Opc = PPC::OR8;
    539   else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
    540     Opc = PPC::FMR;
    541   else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
    542     Opc = PPC::MCRF;
    543   else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
    544     Opc = PPC::VOR;
    545   else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
    546     Opc = PPC::CROR;
    547   else
    548     llvm_unreachable("Impossible reg-to-reg copy");
    549 
    550   const MCInstrDesc &MCID = get(Opc);
    551   if (MCID.getNumOperands() == 3)
    552     BuildMI(MBB, I, DL, MCID, DestReg)
    553       .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
    554   else
    555     BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
    556 }
    557 
    558 // This function returns true if a CR spill is necessary and false otherwise.
    559 bool
    560 PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
    561                                   unsigned SrcReg, bool isKill,
    562                                   int FrameIdx,
    563                                   const TargetRegisterClass *RC,
    564                                   SmallVectorImpl<MachineInstr*> &NewMIs,
    565                                   bool &NonRI, bool &SpillsVRS) const{
    566   // Note: If additional store instructions are added here,
    567   // update isStoreToStackSlot.
    568 
    569   DebugLoc DL;
    570   if (PPC::GPRCRegClass.hasSubClassEq(RC)) {
    571     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
    572                                        .addReg(SrcReg,
    573                                                getKillRegState(isKill)),
    574                                        FrameIdx));
    575   } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) {
    576     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
    577                                        .addReg(SrcReg,
    578                                                getKillRegState(isKill)),
    579                                        FrameIdx));
    580   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
    581     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
    582                                        .addReg(SrcReg,
    583                                                getKillRegState(isKill)),
    584                                        FrameIdx));
    585   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
    586     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
    587                                        .addReg(SrcReg,
    588                                                getKillRegState(isKill)),
    589                                        FrameIdx));
    590   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
    591     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
    592                                        .addReg(SrcReg,
    593                                                getKillRegState(isKill)),
    594                                        FrameIdx));
    595     return true;
    596   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
    597     // FIXME: We use CRi here because there is no mtcrf on a bit. Since the
    598     // backend currently only uses CR1EQ as an individual bit, this should
    599     // not cause any bug. If we need other uses of CR bits, the following
    600     // code may be invalid.
    601     unsigned Reg = 0;
    602     if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT ||
    603         SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN)
    604       Reg = PPC::CR0;
    605     else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT ||
    606              SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN)
    607       Reg = PPC::CR1;
    608     else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT ||
    609              SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN)
    610       Reg = PPC::CR2;
    611     else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT ||
    612              SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN)
    613       Reg = PPC::CR3;
    614     else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT ||
    615              SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN)
    616       Reg = PPC::CR4;
    617     else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT ||
    618              SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN)
    619       Reg = PPC::CR5;
    620     else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT ||
    621              SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN)
    622       Reg = PPC::CR6;
    623     else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT ||
    624              SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN)
    625       Reg = PPC::CR7;
    626 
    627     return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx,
    628                                &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS);
    629 
    630   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
    631     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
    632                                        .addReg(SrcReg,
    633                                                getKillRegState(isKill)),
    634                                        FrameIdx));
    635     NonRI = true;
    636   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
    637     assert(TM.getSubtargetImpl()->isDarwin() &&
    638            "VRSAVE only needs spill/restore on Darwin");
    639     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
    640                                        .addReg(SrcReg,
    641                                                getKillRegState(isKill)),
    642                                        FrameIdx));
    643     SpillsVRS = true;
    644   } else {
    645     llvm_unreachable("Unknown regclass!");
    646   }
    647 
    648   return false;
    649 }
    650 
    651 void
    652 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
    653                                   MachineBasicBlock::iterator MI,
    654                                   unsigned SrcReg, bool isKill, int FrameIdx,
    655                                   const TargetRegisterClass *RC,
    656                                   const TargetRegisterInfo *TRI) const {
    657   MachineFunction &MF = *MBB.getParent();
    658   SmallVector<MachineInstr*, 4> NewMIs;
    659 
    660   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
    661   FuncInfo->setHasSpills();
    662 
    663   bool NonRI = false, SpillsVRS = false;
    664   if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
    665                           NonRI, SpillsVRS))
    666     FuncInfo->setSpillsCR();
    667 
    668   if (SpillsVRS)
    669     FuncInfo->setSpillsVRSAVE();
    670 
    671   if (NonRI)
    672     FuncInfo->setHasNonRISpills();
    673 
    674   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
    675     MBB.insert(MI, NewMIs[i]);
    676 
    677   const MachineFrameInfo &MFI = *MF.getFrameInfo();
    678   MachineMemOperand *MMO =
    679     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
    680                             MachineMemOperand::MOStore,
    681                             MFI.getObjectSize(FrameIdx),
    682                             MFI.getObjectAlignment(FrameIdx));
    683   NewMIs.back()->addMemOperand(MF, MMO);
    684 }
    685 
    686 bool
    687 PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
    688                                    unsigned DestReg, int FrameIdx,
    689                                    const TargetRegisterClass *RC,
    690                                    SmallVectorImpl<MachineInstr*> &NewMIs,
    691                                    bool &NonRI, bool &SpillsVRS) const{
    692   // Note: If additional load instructions are added here,
    693   // update isLoadFromStackSlot.
    694 
    695   if (PPC::GPRCRegClass.hasSubClassEq(RC)) {
    696     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
    697                                                DestReg), FrameIdx));
    698   } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) {
    699     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
    700                                        FrameIdx));
    701   } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
    702     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
    703                                        FrameIdx));
    704   } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
    705     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
    706                                        FrameIdx));
    707   } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
    708     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
    709                                                get(PPC::RESTORE_CR), DestReg),
    710                                        FrameIdx));
    711     return true;
    712   } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
    713 
    714     unsigned Reg = 0;
    715     if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT ||
    716         DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN)
    717       Reg = PPC::CR0;
    718     else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT ||
    719              DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN)
    720       Reg = PPC::CR1;
    721     else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT ||
    722              DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN)
    723       Reg = PPC::CR2;
    724     else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT ||
    725              DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN)
    726       Reg = PPC::CR3;
    727     else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT ||
    728              DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN)
    729       Reg = PPC::CR4;
    730     else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT ||
    731              DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN)
    732       Reg = PPC::CR5;
    733     else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT ||
    734              DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN)
    735       Reg = PPC::CR6;
    736     else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT ||
    737              DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN)
    738       Reg = PPC::CR7;
    739 
    740     return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx,
    741                                 &PPC::CRRCRegClass, NewMIs, NonRI, SpillsVRS);
    742 
    743   } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
    744     NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
    745                                        FrameIdx));
    746     NonRI = true;
    747   } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
    748     assert(TM.getSubtargetImpl()->isDarwin() &&
    749            "VRSAVE only needs spill/restore on Darwin");
    750     NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
    751                                                get(PPC::RESTORE_VRSAVE),
    752                                                DestReg),
    753                                        FrameIdx));
    754     SpillsVRS = true;
    755   } else {
    756     llvm_unreachable("Unknown regclass!");
    757   }
    758 
    759   return false;
    760 }
    761 
    762 void
    763 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
    764                                    MachineBasicBlock::iterator MI,
    765                                    unsigned DestReg, int FrameIdx,
    766                                    const TargetRegisterClass *RC,
    767                                    const TargetRegisterInfo *TRI) const {
    768   MachineFunction &MF = *MBB.getParent();
    769   SmallVector<MachineInstr*, 4> NewMIs;
    770   DebugLoc DL;
    771   if (MI != MBB.end()) DL = MI->getDebugLoc();
    772 
    773   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
    774   FuncInfo->setHasSpills();
    775 
    776   bool NonRI = false, SpillsVRS = false;
    777   if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
    778                            NonRI, SpillsVRS))
    779     FuncInfo->setSpillsCR();
    780 
    781   if (SpillsVRS)
    782     FuncInfo->setSpillsVRSAVE();
    783 
    784   if (NonRI)
    785     FuncInfo->setHasNonRISpills();
    786 
    787   for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
    788     MBB.insert(MI, NewMIs[i]);
    789 
    790   const MachineFrameInfo &MFI = *MF.getFrameInfo();
    791   MachineMemOperand *MMO =
    792     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
    793                             MachineMemOperand::MOLoad,
    794                             MFI.getObjectSize(FrameIdx),
    795                             MFI.getObjectAlignment(FrameIdx));
    796   NewMIs.back()->addMemOperand(MF, MMO);
    797 }
    798 
    799 bool PPCInstrInfo::
    800 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
    801   assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
    802   if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
    803     Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
    804   else
    805     // Leave the CR# the same, but invert the condition.
    806     Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
    807   return false;
    808 }
    809 
    810 bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
    811                              unsigned Reg, MachineRegisterInfo *MRI) const {
    812   // For some instructions, it is legal to fold ZERO into the RA register field.
    813   // A zero immediate should always be loaded with a single li.
    814   unsigned DefOpc = DefMI->getOpcode();
    815   if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
    816     return false;
    817   if (!DefMI->getOperand(1).isImm())
    818     return false;
    819   if (DefMI->getOperand(1).getImm() != 0)
    820     return false;
    821 
    822   // Note that we cannot here invert the arguments of an isel in order to fold
    823   // a ZERO into what is presented as the second argument. All we have here
    824   // is the condition bit, and that might come from a CR-logical bit operation.
    825 
    826   const MCInstrDesc &UseMCID = UseMI->getDesc();
    827 
    828   // Only fold into real machine instructions.
    829   if (UseMCID.isPseudo())
    830     return false;
    831 
    832   unsigned UseIdx;
    833   for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
    834     if (UseMI->getOperand(UseIdx).isReg() &&
    835         UseMI->getOperand(UseIdx).getReg() == Reg)
    836       break;
    837 
    838   assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
    839   assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
    840 
    841   const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
    842 
    843   // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
    844   // register (which might also be specified as a pointer class kind).
    845   if (UseInfo->isLookupPtrRegClass()) {
    846     if (UseInfo->RegClass /* Kind */ != 1)
    847       return false;
    848   } else {
    849     if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
    850         UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
    851       return false;
    852   }
    853 
    854   // Make sure this is not tied to an output register (or otherwise
    855   // constrained). This is true for ST?UX registers, for example, which
    856   // are tied to their output registers.
    857   if (UseInfo->Constraints != 0)
    858     return false;
    859 
    860   unsigned ZeroReg;
    861   if (UseInfo->isLookupPtrRegClass()) {
    862     bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
    863     ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
    864   } else {
    865     ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
    866               PPC::ZERO8 : PPC::ZERO;
    867   }
    868 
    869   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
    870   UseMI->getOperand(UseIdx).setReg(ZeroReg);
    871 
    872   if (DeleteDef)
    873     DefMI->eraseFromParent();
    874 
    875   return true;
    876 }
    877 
    878 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
    879   for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
    880        I != IE; ++I)
    881     if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
    882       return true;
    883   return false;
    884 }
    885 
    886 // We should make sure that, if we're going to predicate both sides of a
    887 // condition (a diamond), that both sides don't define the counter register. We
    888 // can predicate counter-decrement-based branches, but while that predicates
    889 // the branching, it does not predicate the counter decrement. If we tried to
    890 // merge the triangle into one predicated block, we'd decrement the counter
    891 // twice.
    892 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
    893                      unsigned NumT, unsigned ExtraT,
    894                      MachineBasicBlock &FMBB,
    895                      unsigned NumF, unsigned ExtraF,
    896                      const BranchProbability &Probability) const {
    897   return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
    898 }
    899 
    900 
    901 bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
    902   // The predicated branches are identified by their type, not really by the
    903   // explicit presence of a predicate. Furthermore, some of them can be
    904   // predicated more than once. Because if conversion won't try to predicate
    905   // any instruction which already claims to be predicated (by returning true
    906   // here), always return false. In doing so, we let isPredicable() be the
    907   // final word on whether not the instruction can be (further) predicated.
    908 
    909   return false;
    910 }
    911 
    912 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
    913   if (!MI->isTerminator())
    914     return false;
    915 
    916   // Conditional branch is a special case.
    917   if (MI->isBranch() && !MI->isBarrier())
    918     return true;
    919 
    920   return !isPredicated(MI);
    921 }
    922 
    923 bool PPCInstrInfo::PredicateInstruction(
    924                      MachineInstr *MI,
    925                      const SmallVectorImpl<MachineOperand> &Pred) const {
    926   unsigned OpC = MI->getOpcode();
    927   if (OpC == PPC::BLR) {
    928     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
    929       bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
    930       MI->setDesc(get(Pred[0].getImm() ?
    931                       (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
    932                       (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
    933     } else {
    934       MI->setDesc(get(PPC::BCLR));
    935       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
    936         .addImm(Pred[0].getImm())
    937         .addReg(Pred[1].getReg());
    938     }
    939 
    940     return true;
    941   } else if (OpC == PPC::B) {
    942     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
    943       bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
    944       MI->setDesc(get(Pred[0].getImm() ?
    945                       (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
    946                       (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
    947     } else {
    948       MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
    949       MI->RemoveOperand(0);
    950 
    951       MI->setDesc(get(PPC::BCC));
    952       MachineInstrBuilder(*MI->getParent()->getParent(), MI)
    953         .addImm(Pred[0].getImm())
    954         .addReg(Pred[1].getReg())
    955         .addMBB(MBB);
    956     }
    957 
    958     return true;
    959   } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
    960              OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
    961     if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
    962       llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
    963 
    964     bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
    965     bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
    966     MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
    967                               (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
    968     MachineInstrBuilder(*MI->getParent()->getParent(), MI)
    969       .addImm(Pred[0].getImm())
    970       .addReg(Pred[1].getReg());
    971     return true;
    972   }
    973 
    974   return false;
    975 }
    976 
    977 bool PPCInstrInfo::SubsumesPredicate(
    978                      const SmallVectorImpl<MachineOperand> &Pred1,
    979                      const SmallVectorImpl<MachineOperand> &Pred2) const {
    980   assert(Pred1.size() == 2 && "Invalid PPC first predicate");
    981   assert(Pred2.size() == 2 && "Invalid PPC second predicate");
    982 
    983   if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
    984     return false;
    985   if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
    986     return false;
    987 
    988   PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
    989   PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
    990 
    991   if (P1 == P2)
    992     return true;
    993 
    994   // Does P1 subsume P2, e.g. GE subsumes GT.
    995   if (P1 == PPC::PRED_LE &&
    996       (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
    997     return true;
    998   if (P1 == PPC::PRED_GE &&
    999       (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
   1000     return true;
   1001 
   1002   return false;
   1003 }
   1004 
   1005 bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
   1006                                     std::vector<MachineOperand> &Pred) const {
   1007   // Note: At the present time, the contents of Pred from this function is
   1008   // unused by IfConversion. This implementation follows ARM by pushing the
   1009   // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
   1010   // predicate, instructions defining CTR or CTR8 are also included as
   1011   // predicate-defining instructions.
   1012 
   1013   const TargetRegisterClass *RCs[] =
   1014     { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
   1015       &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
   1016 
   1017   bool Found = false;
   1018   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
   1019     const MachineOperand &MO = MI->getOperand(i);
   1020     for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
   1021       const TargetRegisterClass *RC = RCs[c];
   1022       if (MO.isReg()) {
   1023         if (MO.isDef() && RC->contains(MO.getReg())) {
   1024           Pred.push_back(MO);
   1025           Found = true;
   1026         }
   1027       } else if (MO.isRegMask()) {
   1028         for (TargetRegisterClass::iterator I = RC->begin(),
   1029              IE = RC->end(); I != IE; ++I)
   1030           if (MO.clobbersPhysReg(*I)) {
   1031             Pred.push_back(MO);
   1032             Found = true;
   1033           }
   1034       }
   1035     }
   1036   }
   1037 
   1038   return Found;
   1039 }
   1040 
   1041 bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
   1042   unsigned OpC = MI->getOpcode();
   1043   switch (OpC) {
   1044   default:
   1045     return false;
   1046   case PPC::B:
   1047   case PPC::BLR:
   1048   case PPC::BCTR:
   1049   case PPC::BCTR8:
   1050   case PPC::BCTRL:
   1051   case PPC::BCTRL8:
   1052     return true;
   1053   }
   1054 }
   1055 
   1056 bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
   1057                                   unsigned &SrcReg, unsigned &SrcReg2,
   1058                                   int &Mask, int &Value) const {
   1059   unsigned Opc = MI->getOpcode();
   1060 
   1061   switch (Opc) {
   1062   default: return false;
   1063   case PPC::CMPWI:
   1064   case PPC::CMPLWI:
   1065   case PPC::CMPDI:
   1066   case PPC::CMPLDI:
   1067     SrcReg = MI->getOperand(1).getReg();
   1068     SrcReg2 = 0;
   1069     Value = MI->getOperand(2).getImm();
   1070     Mask = 0xFFFF;
   1071     return true;
   1072   case PPC::CMPW:
   1073   case PPC::CMPLW:
   1074   case PPC::CMPD:
   1075   case PPC::CMPLD:
   1076   case PPC::FCMPUS:
   1077   case PPC::FCMPUD:
   1078     SrcReg = MI->getOperand(1).getReg();
   1079     SrcReg2 = MI->getOperand(2).getReg();
   1080     return true;
   1081   }
   1082 }
   1083 
   1084 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
   1085                                         unsigned SrcReg, unsigned SrcReg2,
   1086                                         int Mask, int Value,
   1087                                         const MachineRegisterInfo *MRI) const {
   1088   if (DisableCmpOpt)
   1089     return false;
   1090 
   1091   int OpC = CmpInstr->getOpcode();
   1092   unsigned CRReg = CmpInstr->getOperand(0).getReg();
   1093 
   1094   // FP record forms set CR1 based on the execption status bits, not a
   1095   // comparison with zero.
   1096   if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
   1097     return false;
   1098 
   1099   // The record forms set the condition register based on a signed comparison
   1100   // with zero (so says the ISA manual). This is not as straightforward as it
   1101   // seems, however, because this is always a 64-bit comparison on PPC64, even
   1102   // for instructions that are 32-bit in nature (like slw for example).
   1103   // So, on PPC32, for unsigned comparisons, we can use the record forms only
   1104   // for equality checks (as those don't depend on the sign). On PPC64,
   1105   // we are restricted to equality for unsigned 64-bit comparisons and for
   1106   // signed 32-bit comparisons the applicability is more restricted.
   1107   bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
   1108   bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
   1109   bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
   1110   bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
   1111 
   1112   // Get the unique definition of SrcReg.
   1113   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
   1114   if (!MI) return false;
   1115   int MIOpC = MI->getOpcode();
   1116 
   1117   bool equalityOnly = false;
   1118   bool noSub = false;
   1119   if (isPPC64) {
   1120     if (is32BitSignedCompare) {
   1121       // We can perform this optimization only if MI is sign-extending.
   1122       if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
   1123           MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
   1124           MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
   1125           MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
   1126           MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
   1127         noSub = true;
   1128       } else
   1129         return false;
   1130     } else if (is32BitUnsignedCompare) {
   1131       // We can perform this optimization, equality only, if MI is
   1132       // zero-extending.
   1133       if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
   1134           MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
   1135           MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
   1136         noSub = true;
   1137         equalityOnly = true;
   1138       } else
   1139         return false;
   1140     } else
   1141       equalityOnly = is64BitUnsignedCompare;
   1142   } else
   1143     equalityOnly = is32BitUnsignedCompare;
   1144 
   1145   if (equalityOnly) {
   1146     // We need to check the uses of the condition register in order to reject
   1147     // non-equality comparisons.
   1148     for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg),
   1149          IE = MRI->use_end(); I != IE; ++I) {
   1150       MachineInstr *UseMI = &*I;
   1151       if (UseMI->getOpcode() == PPC::BCC) {
   1152         unsigned Pred = UseMI->getOperand(0).getImm();
   1153         if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
   1154           return false;
   1155       } else if (UseMI->getOpcode() == PPC::ISEL ||
   1156                  UseMI->getOpcode() == PPC::ISEL8) {
   1157         unsigned SubIdx = UseMI->getOperand(3).getSubReg();
   1158         if (SubIdx != PPC::sub_eq)
   1159           return false;
   1160       } else
   1161         return false;
   1162     }
   1163   }
   1164 
   1165   MachineBasicBlock::iterator I = CmpInstr;
   1166 
   1167   // Scan forward to find the first use of the compare.
   1168   for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
   1169        I != EL; ++I) {
   1170     bool FoundUse = false;
   1171     for (MachineRegisterInfo::use_iterator J = MRI->use_begin(CRReg),
   1172          JE = MRI->use_end(); J != JE; ++J)
   1173       if (&*J == &*I) {
   1174         FoundUse = true;
   1175         break;
   1176       }
   1177 
   1178     if (FoundUse)
   1179       break;
   1180   }
   1181 
   1182   // There are two possible candidates which can be changed to set CR[01].
   1183   // One is MI, the other is a SUB instruction.
   1184   // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
   1185   MachineInstr *Sub = NULL;
   1186   if (SrcReg2 != 0)
   1187     // MI is not a candidate for CMPrr.
   1188     MI = NULL;
   1189   // FIXME: Conservatively refuse to convert an instruction which isn't in the
   1190   // same BB as the comparison. This is to allow the check below to avoid calls
   1191   // (and other explicit clobbers); instead we should really check for these
   1192   // more explicitly (in at least a few predecessors).
   1193   else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
   1194     // PPC does not have a record-form SUBri.
   1195     return false;
   1196   }
   1197 
   1198   // Search for Sub.
   1199   const TargetRegisterInfo *TRI = &getRegisterInfo();
   1200   --I;
   1201 
   1202   // Get ready to iterate backward from CmpInstr.
   1203   MachineBasicBlock::iterator E = MI,
   1204                               B = CmpInstr->getParent()->begin();
   1205 
   1206   for (; I != E && !noSub; --I) {
   1207     const MachineInstr &Instr = *I;
   1208     unsigned IOpC = Instr.getOpcode();
   1209 
   1210     if (&*I != CmpInstr && (
   1211         Instr.modifiesRegister(PPC::CR0, TRI) ||
   1212         Instr.readsRegister(PPC::CR0, TRI)))
   1213       // This instruction modifies or uses the record condition register after
   1214       // the one we want to change. While we could do this transformation, it
   1215       // would likely not be profitable. This transformation removes one
   1216       // instruction, and so even forcing RA to generate one move probably
   1217       // makes it unprofitable.
   1218       return false;
   1219 
   1220     // Check whether CmpInstr can be made redundant by the current instruction.
   1221     if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
   1222          OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
   1223         (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
   1224         ((Instr.getOperand(1).getReg() == SrcReg &&
   1225           Instr.getOperand(2).getReg() == SrcReg2) ||
   1226         (Instr.getOperand(1).getReg() == SrcReg2 &&
   1227          Instr.getOperand(2).getReg() == SrcReg))) {
   1228       Sub = &*I;
   1229       break;
   1230     }
   1231 
   1232     if (I == B)
   1233       // The 'and' is below the comparison instruction.
   1234       return false;
   1235   }
   1236 
   1237   // Return false if no candidates exist.
   1238   if (!MI && !Sub)
   1239     return false;
   1240 
   1241   // The single candidate is called MI.
   1242   if (!MI) MI = Sub;
   1243 
   1244   int NewOpC = -1;
   1245   MIOpC = MI->getOpcode();
   1246   if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
   1247     NewOpC = MIOpC;
   1248   else {
   1249     NewOpC = PPC::getRecordFormOpcode(MIOpC);
   1250     if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
   1251       NewOpC = MIOpC;
   1252   }
   1253 
   1254   // FIXME: On the non-embedded POWER architectures, only some of the record
   1255   // forms are fast, and we should use only the fast ones.
   1256 
   1257   // The defining instruction has a record form (or is already a record
   1258   // form). It is possible, however, that we'll need to reverse the condition
   1259   // code of the users.
   1260   if (NewOpC == -1)
   1261     return false;
   1262 
   1263   SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
   1264   SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
   1265 
   1266   // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
   1267   // needs to be updated to be based on SUB.  Push the condition code
   1268   // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
   1269   // condition code of these operands will be modified.
   1270   bool ShouldSwap = false;
   1271   if (Sub) {
   1272     ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
   1273       Sub->getOperand(2).getReg() == SrcReg;
   1274 
   1275     // The operands to subf are the opposite of sub, so only in the fixed-point
   1276     // case, invert the order.
   1277     ShouldSwap = !ShouldSwap;
   1278   }
   1279 
   1280   if (ShouldSwap)
   1281     for (MachineRegisterInfo::use_iterator I = MRI->use_begin(CRReg),
   1282          IE = MRI->use_end(); I != IE; ++I) {
   1283       MachineInstr *UseMI = &*I;
   1284       if (UseMI->getOpcode() == PPC::BCC) {
   1285         PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
   1286         assert((!equalityOnly ||
   1287                 Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
   1288                "Invalid predicate for equality-only optimization");
   1289         PredsToUpdate.push_back(std::make_pair(&((*I).getOperand(0)),
   1290                                 PPC::getSwappedPredicate(Pred)));
   1291       } else if (UseMI->getOpcode() == PPC::ISEL ||
   1292                  UseMI->getOpcode() == PPC::ISEL8) {
   1293         unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
   1294         assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
   1295                "Invalid CR bit for equality-only optimization");
   1296 
   1297         if (NewSubReg == PPC::sub_lt)
   1298           NewSubReg = PPC::sub_gt;
   1299         else if (NewSubReg == PPC::sub_gt)
   1300           NewSubReg = PPC::sub_lt;
   1301 
   1302         SubRegsToUpdate.push_back(std::make_pair(&((*I).getOperand(3)),
   1303                                                  NewSubReg));
   1304       } else // We need to abort on a user we don't understand.
   1305         return false;
   1306     }
   1307 
   1308   // Create a new virtual register to hold the value of the CR set by the
   1309   // record-form instruction. If the instruction was not previously in
   1310   // record form, then set the kill flag on the CR.
   1311   CmpInstr->eraseFromParent();
   1312 
   1313   MachineBasicBlock::iterator MII = MI;
   1314   BuildMI(*MI->getParent(), llvm::next(MII), MI->getDebugLoc(),
   1315           get(TargetOpcode::COPY), CRReg)
   1316     .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
   1317 
   1318   if (MIOpC != NewOpC) {
   1319     // We need to be careful here: we're replacing one instruction with
   1320     // another, and we need to make sure that we get all of the right
   1321     // implicit uses and defs. On the other hand, the caller may be holding
   1322     // an iterator to this instruction, and so we can't delete it (this is
   1323     // specifically the case if this is the instruction directly after the
   1324     // compare).
   1325 
   1326     const MCInstrDesc &NewDesc = get(NewOpC);
   1327     MI->setDesc(NewDesc);
   1328 
   1329     if (NewDesc.ImplicitDefs)
   1330       for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
   1331            *ImpDefs; ++ImpDefs)
   1332         if (!MI->definesRegister(*ImpDefs))
   1333           MI->addOperand(*MI->getParent()->getParent(),
   1334                          MachineOperand::CreateReg(*ImpDefs, true, true));
   1335     if (NewDesc.ImplicitUses)
   1336       for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
   1337            *ImpUses; ++ImpUses)
   1338         if (!MI->readsRegister(*ImpUses))
   1339           MI->addOperand(*MI->getParent()->getParent(),
   1340                          MachineOperand::CreateReg(*ImpUses, false, true));
   1341   }
   1342 
   1343   // Modify the condition code of operands in OperandsToUpdate.
   1344   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
   1345   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
   1346   for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
   1347     PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
   1348 
   1349   for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
   1350     SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
   1351 
   1352   return true;
   1353 }
   1354 
   1355 /// GetInstSize - Return the number of bytes of code the specified
   1356 /// instruction may be.  This returns the maximum number of bytes.
   1357 ///
   1358 unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
   1359   switch (MI->getOpcode()) {
   1360   case PPC::INLINEASM: {       // Inline Asm: Variable size.
   1361     const MachineFunction *MF = MI->getParent()->getParent();
   1362     const char *AsmStr = MI->getOperand(0).getSymbolName();
   1363     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
   1364   }
   1365   case PPC::PROLOG_LABEL:
   1366   case PPC::EH_LABEL:
   1367   case PPC::GC_LABEL:
   1368   case PPC::DBG_VALUE:
   1369     return 0;
   1370   case PPC::BL8_NOP:
   1371   case PPC::BLA8_NOP:
   1372     return 8;
   1373   default:
   1374     return 4; // PowerPC instructions are all 4 bytes
   1375   }
   1376 }
   1377 
   1378 #undef DEBUG_TYPE
   1379 #define DEBUG_TYPE "ppc-early-ret"
   1380 STATISTIC(NumBCLR, "Number of early conditional returns");
   1381 STATISTIC(NumBLR,  "Number of early returns");
   1382 
   1383 namespace llvm {
   1384   void initializePPCEarlyReturnPass(PassRegistry&);
   1385 }
   1386 
   1387 namespace {
   1388   // PPCEarlyReturn pass - For simple functions without epilogue code, move
   1389   // returns up, and create conditional returns, to avoid unnecessary
   1390   // branch-to-blr sequences.
   1391   struct PPCEarlyReturn : public MachineFunctionPass {
   1392     static char ID;
   1393     PPCEarlyReturn() : MachineFunctionPass(ID) {
   1394       initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry());
   1395     }
   1396 
   1397     const PPCTargetMachine *TM;
   1398     const PPCInstrInfo *TII;
   1399 
   1400 protected:
   1401     bool processBlock(MachineBasicBlock &ReturnMBB) {
   1402       bool Changed = false;
   1403 
   1404       MachineBasicBlock::iterator I = ReturnMBB.begin();
   1405       I = ReturnMBB.SkipPHIsAndLabels(I);
   1406 
   1407       // The block must be essentially empty except for the blr.
   1408       if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR ||
   1409           I != ReturnMBB.getLastNonDebugInstr())
   1410         return Changed;
   1411 
   1412       SmallVector<MachineBasicBlock*, 8> PredToRemove;
   1413       for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(),
   1414            PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) {
   1415         bool OtherReference = false, BlockChanged = false;
   1416         for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) {
   1417           if (J->getOpcode() == PPC::B) {
   1418             if (J->getOperand(0).getMBB() == &ReturnMBB) {
   1419               // This is an unconditional branch to the return. Replace the
   1420 	      // branch with a blr.
   1421               BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR));
   1422               MachineBasicBlock::iterator K = J--;
   1423               K->eraseFromParent();
   1424               BlockChanged = true;
   1425               ++NumBLR;
   1426               continue;
   1427             }
   1428           } else if (J->getOpcode() == PPC::BCC) {
   1429             if (J->getOperand(2).getMBB() == &ReturnMBB) {
   1430               // This is a conditional branch to the return. Replace the branch
   1431               // with a bclr.
   1432               BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCLR))
   1433                 .addImm(J->getOperand(0).getImm())
   1434                 .addReg(J->getOperand(1).getReg());
   1435               MachineBasicBlock::iterator K = J--;
   1436               K->eraseFromParent();
   1437               BlockChanged = true;
   1438               ++NumBCLR;
   1439               continue;
   1440             }
   1441           } else if (J->isBranch()) {
   1442             if (J->isIndirectBranch()) {
   1443               if (ReturnMBB.hasAddressTaken())
   1444                 OtherReference = true;
   1445             } else
   1446               for (unsigned i = 0; i < J->getNumOperands(); ++i)
   1447                 if (J->getOperand(i).isMBB() &&
   1448                     J->getOperand(i).getMBB() == &ReturnMBB)
   1449                   OtherReference = true;
   1450           } else if (!J->isTerminator() && !J->isDebugValue())
   1451             break;
   1452 
   1453           if (J == (*PI)->begin())
   1454             break;
   1455 
   1456           --J;
   1457         }
   1458 
   1459         if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB))
   1460           OtherReference = true;
   1461 
   1462 	// Predecessors are stored in a vector and can't be removed here.
   1463         if (!OtherReference && BlockChanged) {
   1464           PredToRemove.push_back(*PI);
   1465         }
   1466 
   1467         if (BlockChanged)
   1468           Changed = true;
   1469       }
   1470 
   1471       for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i)
   1472         PredToRemove[i]->removeSuccessor(&ReturnMBB);
   1473 
   1474       if (Changed && !ReturnMBB.hasAddressTaken()) {
   1475         // We now might be able to merge this blr-only block into its
   1476         // by-layout predecessor.
   1477         if (ReturnMBB.pred_size() == 1 &&
   1478             (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) {
   1479           // Move the blr into the preceding block.
   1480           MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin();
   1481           PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I);
   1482           PrevMBB.removeSuccessor(&ReturnMBB);
   1483         }
   1484 
   1485         if (ReturnMBB.pred_empty())
   1486           ReturnMBB.eraseFromParent();
   1487       }
   1488 
   1489       return Changed;
   1490     }
   1491 
   1492 public:
   1493     virtual bool runOnMachineFunction(MachineFunction &MF) {
   1494       TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
   1495       TII = TM->getInstrInfo();
   1496 
   1497       bool Changed = false;
   1498 
   1499       // If the function does not have at least two blocks, then there is
   1500       // nothing to do.
   1501       if (MF.size() < 2)
   1502         return Changed;
   1503 
   1504       for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
   1505         MachineBasicBlock &B = *I++;
   1506         if (processBlock(B))
   1507           Changed = true;
   1508       }
   1509 
   1510       return Changed;
   1511     }
   1512 
   1513     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
   1514       MachineFunctionPass::getAnalysisUsage(AU);
   1515     }
   1516   };
   1517 }
   1518 
   1519 INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE,
   1520                 "PowerPC Early-Return Creation", false, false)
   1521 
   1522 char PPCEarlyReturn::ID = 0;
   1523 FunctionPass*
   1524 llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); }
   1525 
   1526