Home | History | Annotate | Download | only in alloc
      1 /*
      2  * Copyright (C) 2010 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include <sys/mman.h>  /* for PROT_* */
     18 
     19 #include "Dalvik.h"
     20 #include "alloc/HeapBitmap.h"
     21 #include "alloc/HeapBitmapInlines.h"
     22 #include "alloc/HeapSource.h"
     23 #include "alloc/Visit.h"
     24 
     25 /*
     26  * Maintain a card table from the the write barrier. All writes of
     27  * non-NULL values to heap addresses should go through an entry in
     28  * WriteBarrier, and from there to here.
     29  *
     30  * The heap is divided into "cards" of GC_CARD_SIZE bytes, as
     31  * determined by GC_CARD_SHIFT. The card table contains one byte of
     32  * data per card, to be used by the GC. The value of the byte will be
     33  * one of GC_CARD_CLEAN or GC_CARD_DIRTY.
     34  *
     35  * After any store of a non-NULL object pointer into a heap object,
     36  * code is obliged to mark the card dirty. The setters in
     37  * ObjectInlines.h [such as dvmSetFieldObject] do this for you. The
     38  * JIT and fast interpreters also contain code to mark cards as dirty.
     39  *
     40  * The card table's base [the "biased card table"] gets set to a
     41  * rather strange value.  In order to keep the JIT from having to
     42  * fabricate or load GC_DIRTY_CARD to store into the card table,
     43  * biased base is within the mmap allocation at a point where it's low
     44  * byte is equal to GC_DIRTY_CARD. See dvmCardTableStartup for details.
     45  */
     46 
     47 /*
     48  * Initializes the card table; must be called before any other
     49  * dvmCardTable*() functions.
     50  */
     51 bool dvmCardTableStartup(size_t heapMaximumSize, size_t growthLimit)
     52 {
     53     size_t length;
     54     void *allocBase;
     55     u1 *biasedBase;
     56     GcHeap *gcHeap = gDvm.gcHeap;
     57     int offset;
     58     void *heapBase = dvmHeapSourceGetBase();
     59     assert(gcHeap != NULL);
     60     assert(heapBase != NULL);
     61     /* All zeros is the correct initial value; all clean. */
     62     assert(GC_CARD_CLEAN == 0);
     63 
     64     /* Set up the card table */
     65     length = heapMaximumSize / GC_CARD_SIZE;
     66     /* Allocate an extra 256 bytes to allow fixed low-byte of base */
     67     allocBase = dvmAllocRegion(length + 0x100, PROT_READ | PROT_WRITE,
     68                             "dalvik-card-table");
     69     if (allocBase == NULL) {
     70         return false;
     71     }
     72     gcHeap->cardTableBase = (u1*)allocBase;
     73     gcHeap->cardTableLength = growthLimit / GC_CARD_SIZE;
     74     gcHeap->cardTableMaxLength = length;
     75     biasedBase = (u1 *)((uintptr_t)allocBase -
     76                        ((uintptr_t)heapBase >> GC_CARD_SHIFT));
     77     offset = GC_CARD_DIRTY - ((uintptr_t)biasedBase & 0xff);
     78     gcHeap->cardTableOffset = offset + (offset < 0 ? 0x100 : 0);
     79     biasedBase += gcHeap->cardTableOffset;
     80     assert(((uintptr_t)biasedBase & 0xff) == GC_CARD_DIRTY);
     81     gDvm.biasedCardTableBase = biasedBase;
     82 
     83     return true;
     84 }
     85 
     86 /*
     87  * Tears down the entire CardTable.
     88  */
     89 void dvmCardTableShutdown()
     90 {
     91     gDvm.biasedCardTableBase = NULL;
     92     munmap(gDvm.gcHeap->cardTableBase, gDvm.gcHeap->cardTableLength);
     93 }
     94 
     95 void dvmClearCardTable()
     96 {
     97     /*
     98      * The goal is to zero out some mmap-allocated pages.  We can accomplish
     99      * this with memset() or madvise(MADV_DONTNEED).  The latter has some
    100      * useful properties, notably that the pages are returned to the system,
    101      * so cards for parts of the heap we haven't expanded into won't be
    102      * allocated physical pages.  On the other hand, if we un-map the card
    103      * area, we'll have to fault it back in as we resume dirtying objects,
    104      * which reduces performance.
    105      *
    106      * We don't cause any correctness issues by failing to clear cards; we
    107      * just take a performance hit during the second pause of the concurrent
    108      * collection.  The "advisory" nature of madvise() isn't a big problem.
    109      *
    110      * What we really want to do is:
    111      * (1) zero out all cards that were touched
    112      * (2) use madvise() to release any pages that won't be used in the near
    113      *     future
    114      *
    115      * For #1, we don't really know which cards were touched, but we can
    116      * approximate it with the "live bits max" value, which tells us the
    117      * highest start address at which an object was allocated.  This may
    118      * leave vestigial nonzero entries at the end if temporary objects are
    119      * created during a concurrent GC, but that should be harmless.  (We
    120      * can round up to the end of the card table page to reduce this.)
    121      *
    122      * For #2, we don't know which pages will be used in the future.  Some
    123      * simple experiments suggested that a "typical" app will touch about
    124      * 60KB of pages while initializing, but drops down to 20-24KB while
    125      * idle.  We can save a few hundred KB system-wide with aggressive
    126      * use of madvise().  The cost of mapping those pages back in is paid
    127      * outside of the GC pause, which reduces the impact.  (We might be
    128      * able to get the benefits by only doing this occasionally, e.g. if
    129      * the heap shrinks a lot or we somehow notice that we've been idle.)
    130      *
    131      * Note that cardTableLength is initially set to the growth limit, and
    132      * on request will be expanded to the heap maximum.
    133      */
    134     assert(gDvm.gcHeap->cardTableBase != NULL);
    135 
    136     if (gDvm.lowMemoryMode) {
    137       // zero out cards with madvise(), discarding all pages in the card table
    138       madvise(gDvm.gcHeap->cardTableBase, gDvm.gcHeap->cardTableLength, MADV_DONTNEED);
    139     } else {
    140       // zero out cards with memset(), using liveBits as an estimate
    141       const HeapBitmap* liveBits = dvmHeapSourceGetLiveBits();
    142       size_t maxLiveCard = (liveBits->max - liveBits->base) / GC_CARD_SIZE;
    143       maxLiveCard = ALIGN_UP_TO_PAGE_SIZE(maxLiveCard);
    144       if (maxLiveCard > gDvm.gcHeap->cardTableLength) {
    145           maxLiveCard = gDvm.gcHeap->cardTableLength;
    146       }
    147 
    148       memset(gDvm.gcHeap->cardTableBase, GC_CARD_CLEAN, maxLiveCard);
    149     }
    150 }
    151 
    152 /*
    153  * Returns true iff the address is within the bounds of the card table.
    154  */
    155 bool dvmIsValidCard(const u1 *cardAddr)
    156 {
    157     GcHeap *h = gDvm.gcHeap;
    158     u1* begin = h->cardTableBase + h->cardTableOffset;
    159     u1* end = &begin[h->cardTableLength];
    160     return cardAddr >= begin && cardAddr < end;
    161 }
    162 
    163 /*
    164  * Returns the address of the relevant byte in the card table, given
    165  * an address on the heap.
    166  */
    167 u1 *dvmCardFromAddr(const void *addr)
    168 {
    169     u1 *biasedBase = gDvm.biasedCardTableBase;
    170     u1 *cardAddr = biasedBase + ((uintptr_t)addr >> GC_CARD_SHIFT);
    171     assert(dvmIsValidCard(cardAddr));
    172     return cardAddr;
    173 }
    174 
    175 /*
    176  * Returns the first address in the heap which maps to this card.
    177  */
    178 void *dvmAddrFromCard(const u1 *cardAddr)
    179 {
    180     assert(dvmIsValidCard(cardAddr));
    181     uintptr_t offset = cardAddr - gDvm.biasedCardTableBase;
    182     return (void *)(offset << GC_CARD_SHIFT);
    183 }
    184 
    185 /*
    186  * Dirties the card for the given address.
    187  */
    188 void dvmMarkCard(const void *addr)
    189 {
    190     u1 *cardAddr = dvmCardFromAddr(addr);
    191     *cardAddr = GC_CARD_DIRTY;
    192 }
    193 
    194 /*
    195  * Returns true if the object is on a dirty card.
    196  */
    197 static bool isObjectDirty(const Object *obj)
    198 {
    199     assert(obj != NULL);
    200     assert(dvmIsValidObject(obj));
    201     u1 *card = dvmCardFromAddr(obj);
    202     return *card == GC_CARD_DIRTY;
    203 }
    204 
    205 /*
    206  * Context structure for verifying the card table.
    207  */
    208 struct WhiteReferenceCounter {
    209     HeapBitmap *markBits;
    210     size_t whiteRefs;
    211 };
    212 
    213 /*
    214  * Visitor that counts white referents.
    215  */
    216 static void countWhiteReferenceVisitor(void *addr, void *arg)
    217 {
    218     WhiteReferenceCounter *ctx;
    219     Object *obj;
    220 
    221     assert(addr != NULL);
    222     assert(arg != NULL);
    223     obj = *(Object **)addr;
    224     if (obj == NULL) {
    225         return;
    226     }
    227     assert(dvmIsValidObject(obj));
    228     ctx = (WhiteReferenceCounter *)arg;
    229     if (dvmHeapBitmapIsObjectBitSet(ctx->markBits, obj)) {
    230         return;
    231     }
    232     ctx->whiteRefs += 1;
    233 }
    234 
    235 /*
    236  * Visitor that logs white references.
    237  */
    238 static void dumpWhiteReferenceVisitor(void *addr, void *arg)
    239 {
    240     WhiteReferenceCounter *ctx;
    241     Object *obj;
    242 
    243     assert(addr != NULL);
    244     assert(arg != NULL);
    245     obj = *(Object **)addr;
    246     if (obj == NULL) {
    247         return;
    248     }
    249     assert(dvmIsValidObject(obj));
    250     ctx = (WhiteReferenceCounter*)arg;
    251     if (dvmHeapBitmapIsObjectBitSet(ctx->markBits, obj)) {
    252         return;
    253     }
    254     ALOGE("object %p is white", obj);
    255 }
    256 
    257 /*
    258  * Visitor that signals the caller when a matching reference is found.
    259  */
    260 static void dumpReferencesVisitor(void *pObj, void *arg)
    261 {
    262     Object *obj = *(Object **)pObj;
    263     Object *lookingFor = *(Object **)arg;
    264     if (lookingFor != NULL && lookingFor == obj) {
    265         *(Object **)arg = NULL;
    266     }
    267 }
    268 
    269 static void dumpReferencesCallback(Object *obj, void *arg)
    270 {
    271     if (obj == (Object *)arg) {
    272         return;
    273     }
    274     dvmVisitObject(dumpReferencesVisitor, obj, &arg);
    275     if (arg == NULL) {
    276         ALOGD("Found %p in the heap @ %p", arg, obj);
    277         dvmDumpObject(obj);
    278     }
    279 }
    280 
    281 /*
    282  * Root visitor that looks for matching references.
    283  */
    284 static void dumpReferencesRootVisitor(void *ptr, u4 threadId,
    285                                       RootType type, void *arg)
    286 {
    287     Object *obj = *(Object **)ptr;
    288     Object *lookingFor = *(Object **)arg;
    289     if (obj == lookingFor) {
    290         ALOGD("Found %p in a root @ %p", arg, ptr);
    291     }
    292 }
    293 
    294 /*
    295  * Invokes visitors to search for references to an object.
    296  */
    297 static void dumpReferences(const Object *obj)
    298 {
    299     HeapBitmap *bitmap = dvmHeapSourceGetLiveBits();
    300     void *arg = (void *)obj;
    301     dvmVisitRoots(dumpReferencesRootVisitor, arg);
    302     dvmHeapBitmapWalk(bitmap, dumpReferencesCallback, arg);
    303 }
    304 
    305 /*
    306  * Returns true if the given object is a reference object and the
    307  * just the referent is unmarked.
    308  */
    309 static bool isReferentUnmarked(const Object *obj,
    310                                const WhiteReferenceCounter* ctx)
    311 {
    312     assert(obj != NULL);
    313     assert(obj->clazz != NULL);
    314     assert(ctx != NULL);
    315     if (ctx->whiteRefs != 1) {
    316         return false;
    317     } else if (IS_CLASS_FLAG_SET(obj->clazz, CLASS_ISREFERENCE)) {
    318         size_t offset = gDvm.offJavaLangRefReference_referent;
    319         const Object *referent = dvmGetFieldObject(obj, offset);
    320         return !dvmHeapBitmapIsObjectBitSet(ctx->markBits, referent);
    321     } else {
    322         return false;
    323     }
    324 }
    325 
    326 /*
    327  * Returns true if the given object is a string and has been interned
    328  * by the user.
    329  */
    330 static bool isWeakInternedString(const Object *obj)
    331 {
    332     assert(obj != NULL);
    333     if (obj->clazz == gDvm.classJavaLangString) {
    334         return dvmIsWeakInternedString((StringObject *)obj);
    335     } else {
    336         return false;
    337     }
    338 }
    339 
    340 /*
    341  * Returns true if the given object has been pushed on the mark stack
    342  * by root marking.
    343  */
    344 static bool isPushedOnMarkStack(const Object *obj)
    345 {
    346     GcMarkStack *stack = &gDvm.gcHeap->markContext.stack;
    347     for (const Object **ptr = stack->base; ptr < stack->top; ++ptr) {
    348         if (*ptr == obj) {
    349             return true;
    350         }
    351     }
    352     return false;
    353 }
    354 
    355 /*
    356  * Callback applied to marked objects.  If the object is gray and on
    357  * an unmarked card an error is logged and the VM is aborted.  Card
    358  * table verification occurs between root marking and weak reference
    359  * processing.  We treat objects marked from the roots and weak
    360  * references specially as it is permissible for these objects to be
    361  * gray and on an unmarked card.
    362  */
    363 static void verifyCardTableCallback(Object *obj, void *arg)
    364 {
    365     WhiteReferenceCounter ctx = { (HeapBitmap *)arg, 0 };
    366 
    367     dvmVisitObject(countWhiteReferenceVisitor, obj, &ctx);
    368     if (ctx.whiteRefs == 0) {
    369         return;
    370     } else if (isObjectDirty(obj)) {
    371         return;
    372     } else if (isReferentUnmarked(obj, &ctx)) {
    373         return;
    374     } else if (isWeakInternedString(obj)) {
    375         return;
    376     } else if (isPushedOnMarkStack(obj)) {
    377         return;
    378     } else {
    379         ALOGE("Verify failed, object %p is gray and on an unmarked card", obj);
    380         dvmDumpObject(obj);
    381         dvmVisitObject(dumpWhiteReferenceVisitor, obj, &ctx);
    382         dumpReferences(obj);
    383         dvmAbort();
    384     }
    385 }
    386 
    387 /*
    388  * Verifies that gray objects are on a dirty card.
    389  */
    390 void dvmVerifyCardTable()
    391 {
    392     HeapBitmap *markBits = gDvm.gcHeap->markContext.bitmap;
    393     dvmHeapBitmapWalk(markBits, verifyCardTableCallback, markBits);
    394 }
    395