Home | History | Annotate | Download | only in Thumb2
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * This file contains codegen for the Thumb2 ISA and is intended to be
     19  * includes by:
     20  *
     21  *        Codegen-$(TARGET_ARCH_VARIANT).c
     22  *
     23  */
     24 
     25 /*
     26  * Reserve 6 bytes at the beginning of the trace
     27  *        +----------------------------+
     28  *        | prof count addr (4 bytes)  |
     29  *        +----------------------------+
     30  *        | chain cell offset (2 bytes)|
     31  *        +----------------------------+
     32  *
     33  * ...and then code to increment the execution
     34  *
     35  * For continuous profiling (10 bytes)
     36  *       ldr   r0, [pc-8]   @ get prof count addr    [4 bytes]
     37  *       ldr   r1, [r0]     @ load counter           [2 bytes]
     38  *       add   r1, #1       @ increment              [2 bytes]
     39  *       str   r1, [r0]     @ store                  [2 bytes]
     40  *
     41  * For periodic profiling (4 bytes)
     42  *       call  TEMPLATE_PERIODIC_PROFILING
     43  *
     44  * and return the size (in bytes) of the generated code.
     45  */
     46 
     47 static int genTraceProfileEntry(CompilationUnit *cUnit)
     48 {
     49     intptr_t addr = (intptr_t)dvmJitNextTraceCounter();
     50     assert(__BYTE_ORDER == __LITTLE_ENDIAN);
     51     newLIR1(cUnit, kArm16BitData, addr & 0xffff);
     52     newLIR1(cUnit, kArm16BitData, (addr >> 16) & 0xffff);
     53     cUnit->chainCellOffsetLIR =
     54         (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
     55     cUnit->headerSize = 6;
     56     if ((gDvmJit.profileMode == kTraceProfilingContinuous) ||
     57         (gDvmJit.profileMode == kTraceProfilingDisabled)) {
     58         /* Thumb[2] instruction used directly here to ensure correct size */
     59         newLIR2(cUnit, kThumb2LdrPcReln12, r0, 8);
     60         newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
     61         newLIR2(cUnit, kThumbAddRI8, r1, 1);
     62         newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
     63         return 10;
     64     } else {
     65         int opcode = TEMPLATE_PERIODIC_PROFILING;
     66         newLIR2(cUnit, kThumbBlx1,
     67             (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
     68             (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
     69         newLIR2(cUnit, kThumbBlx2,
     70             (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
     71             (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
     72         return 4;
     73     }
     74 }
     75 
     76 static void genNegFloat(CompilationUnit *cUnit, RegLocation rlDest,
     77                         RegLocation rlSrc)
     78 {
     79     RegLocation rlResult;
     80     rlSrc = loadValue(cUnit, rlSrc, kFPReg);
     81     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
     82     newLIR2(cUnit, kThumb2Vnegs, rlResult.lowReg, rlSrc.lowReg);
     83     storeValue(cUnit, rlDest, rlResult);
     84 }
     85 
     86 static void genNegDouble(CompilationUnit *cUnit, RegLocation rlDest,
     87                          RegLocation rlSrc)
     88 {
     89     RegLocation rlResult;
     90     rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
     91     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
     92     newLIR2(cUnit, kThumb2Vnegd, S2D(rlResult.lowReg, rlResult.highReg),
     93             S2D(rlSrc.lowReg, rlSrc.highReg));
     94     storeValueWide(cUnit, rlDest, rlResult);
     95 }
     96 
     97 /*
     98  * To avoid possible conflicts, we use a lot of temps here.  Note that
     99  * our usage of Thumb2 instruction forms avoids the problems with register
    100  * reuse for multiply instructions prior to arm6.
    101  */
    102 static void genMulLong(CompilationUnit *cUnit, RegLocation rlDest,
    103                        RegLocation rlSrc1, RegLocation rlSrc2)
    104 {
    105     RegLocation rlResult;
    106     int resLo = dvmCompilerAllocTemp(cUnit);
    107     int resHi = dvmCompilerAllocTemp(cUnit);
    108     int tmp1 = dvmCompilerAllocTemp(cUnit);
    109 
    110     rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
    111     rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    112 
    113     newLIR3(cUnit, kThumb2MulRRR, tmp1, rlSrc2.lowReg, rlSrc1.highReg);
    114     newLIR4(cUnit, kThumb2Umull, resLo, resHi, rlSrc2.lowReg, rlSrc1.lowReg);
    115     newLIR4(cUnit, kThumb2Mla, tmp1, rlSrc1.lowReg, rlSrc2.highReg, tmp1);
    116     newLIR4(cUnit, kThumb2AddRRR, resHi, tmp1, resHi, 0);
    117     dvmCompilerFreeTemp(cUnit, tmp1);
    118 
    119     rlResult = dvmCompilerGetReturnWide(cUnit);  // Just as a template, will patch
    120     rlResult.lowReg = resLo;
    121     rlResult.highReg = resHi;
    122     storeValueWide(cUnit, rlDest, rlResult);
    123 }
    124 
    125 static void genLong3Addr(CompilationUnit *cUnit, MIR *mir, OpKind firstOp,
    126                          OpKind secondOp, RegLocation rlDest,
    127                          RegLocation rlSrc1, RegLocation rlSrc2)
    128 {
    129     RegLocation rlResult;
    130     rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
    131     rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    132     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    133     opRegRegReg(cUnit, firstOp, rlResult.lowReg, rlSrc1.lowReg, rlSrc2.lowReg);
    134     opRegRegReg(cUnit, secondOp, rlResult.highReg, rlSrc1.highReg,
    135                 rlSrc2.highReg);
    136     storeValueWide(cUnit, rlDest, rlResult);
    137 }
    138 
    139 void dvmCompilerInitializeRegAlloc(CompilationUnit *cUnit)
    140 {
    141     int numTemps = sizeof(coreTemps)/sizeof(int);
    142     int numFPTemps = sizeof(fpTemps)/sizeof(int);
    143     RegisterPool *pool = (RegisterPool *)dvmCompilerNew(sizeof(*pool), true);
    144     cUnit->regPool = pool;
    145     pool->numCoreTemps = numTemps;
    146     pool->coreTemps = (RegisterInfo *)
    147             dvmCompilerNew(numTemps * sizeof(*cUnit->regPool->coreTemps), true);
    148     pool->numFPTemps = numFPTemps;
    149     pool->FPTemps = (RegisterInfo *)
    150             dvmCompilerNew(numFPTemps * sizeof(*cUnit->regPool->FPTemps), true);
    151     dvmCompilerInitPool(pool->coreTemps, coreTemps, pool->numCoreTemps);
    152     dvmCompilerInitPool(pool->FPTemps, fpTemps, pool->numFPTemps);
    153     pool->nullCheckedRegs =
    154         dvmCompilerAllocBitVector(cUnit->numSSARegs, false);
    155 }
    156 
    157 /*
    158  * Generate a Thumb2 IT instruction, which can nullify up to
    159  * four subsequent instructions based on a condition and its
    160  * inverse.  The condition applies to the first instruction, which
    161  * is executed if the condition is met.  The string "guide" consists
    162  * of 0 to 3 chars, and applies to the 2nd through 4th instruction.
    163  * A "T" means the instruction is executed if the condition is
    164  * met, and an "E" means the instruction is executed if the condition
    165  * is not met.
    166  */
    167 static ArmLIR *genIT(CompilationUnit *cUnit, ArmConditionCode code,
    168                      const char *guide)
    169 {
    170     int mask;
    171     int condBit = code & 1;
    172     int altBit = condBit ^ 1;
    173     int mask3 = 0;
    174     int mask2 = 0;
    175     int mask1 = 0;
    176 
    177     //Note: case fallthroughs intentional
    178     switch(strlen(guide)) {
    179         case 3:
    180             mask1 = (guide[2] == 'T') ? condBit : altBit;
    181         case 2:
    182             mask2 = (guide[1] == 'T') ? condBit : altBit;
    183         case 1:
    184             mask3 = (guide[0] == 'T') ? condBit : altBit;
    185             break;
    186         case 0:
    187             break;
    188         default:
    189             ALOGE("Jit: bad case in genIT");
    190             dvmCompilerAbort(cUnit);
    191     }
    192     mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
    193            (1 << (3 - strlen(guide)));
    194     return newLIR2(cUnit, kThumb2It, code, mask);
    195 }
    196 
    197 /* Export the Dalvik PC assicated with an instruction to the StackSave area */
    198 static ArmLIR *genExportPC(CompilationUnit *cUnit, MIR *mir)
    199 {
    200     ArmLIR *res;
    201     int offset = offsetof(StackSaveArea, xtra.currentPc);
    202     int rDPC = dvmCompilerAllocTemp(cUnit);
    203     res = loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
    204     newLIR3(cUnit, kThumb2StrRRI8Predec, rDPC, r5FP,
    205             sizeof(StackSaveArea) - offset);
    206     dvmCompilerFreeTemp(cUnit, rDPC);
    207     return res;
    208 }
    209 
    210 /*
    211  * Handle simple case (thin lock) inline.  If it's complicated, bail
    212  * out to the heavyweight lock/unlock routines.  We'll use dedicated
    213  * registers here in order to be in the right position in case we
    214  * to bail to dvm[Lock/Unlock]Object(self, object)
    215  *
    216  * r0 -> self pointer [arg0 for dvm[Lock/Unlock]Object
    217  * r1 -> object [arg1 for dvm[Lock/Unlock]Object
    218  * r2 -> intial contents of object->lock, later result of strex
    219  * r3 -> self->threadId
    220  * r7 -> temp to hold new lock value [unlock only]
    221  * r4 -> allow to be used by utilities as general temp
    222  *
    223  * The result of the strex is 0 if we acquire the lock.
    224  *
    225  * See comments in Sync.c for the layout of the lock word.
    226  * Of particular interest to this code is the test for the
    227  * simple case - which we handle inline.  For monitor enter, the
    228  * simple case is thin lock, held by no-one.  For monitor exit,
    229  * the simple case is thin lock, held by the unlocking thread with
    230  * a recurse count of 0.
    231  *
    232  * A minor complication is that there is a field in the lock word
    233  * unrelated to locking: the hash state.  This field must be ignored, but
    234  * preserved.
    235  *
    236  */
    237 static void genMonitorEnter(CompilationUnit *cUnit, MIR *mir)
    238 {
    239     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    240     ArmLIR *target;
    241     ArmLIR *hopTarget;
    242     ArmLIR *branch;
    243     ArmLIR *hopBranch;
    244 
    245     assert(LW_SHAPE_THIN == 0);
    246     loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
    247     dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
    248     dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
    249     genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
    250     loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
    251     newLIR3(cUnit, kThumb2Ldrex, r2, r1,
    252             offsetof(Object, lock) >> 2); // Get object->lock
    253     opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
    254     // Is lock unheld on lock or held by us (==threadId) on unlock?
    255     newLIR4(cUnit, kThumb2Bfi, r3, r2, 0, LW_LOCK_OWNER_SHIFT - 1);
    256     newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
    257             LW_LOCK_OWNER_SHIFT - 1);
    258     hopBranch = newLIR2(cUnit, kThumb2Cbnz, r2, 0);
    259     newLIR4(cUnit, kThumb2Strex, r2, r3, r1, offsetof(Object, lock) >> 2);
    260     dvmCompilerGenMemBarrier(cUnit, kSY);
    261     branch = newLIR2(cUnit, kThumb2Cbz, r2, 0);
    262 
    263     hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
    264     hopTarget->defMask = ENCODE_ALL;
    265     hopBranch->generic.target = (LIR *)hopTarget;
    266 
    267     // Export PC (part 1)
    268     loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));
    269 
    270     /* Get dPC of next insn */
    271     loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
    272                  dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
    273     // Export PC (part 2)
    274     newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
    275             sizeof(StackSaveArea) -
    276             offsetof(StackSaveArea, xtra.currentPc));
    277     /* Call template, and don't return */
    278     genRegCopy(cUnit, r0, r6SELF);
    279     genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
    280     // Resume here
    281     target = newLIR0(cUnit, kArmPseudoTargetLabel);
    282     target->defMask = ENCODE_ALL;
    283     branch->generic.target = (LIR *)target;
    284 }
    285 
    286 /*
    287  * For monitor unlock, we don't have to use ldrex/strex.  Once
    288  * we've determined that the lock is thin and that we own it with
    289  * a zero recursion count, it's safe to punch it back to the
    290  * initial, unlock thin state with a store word.
    291  */
    292 static void genMonitorExit(CompilationUnit *cUnit, MIR *mir)
    293 {
    294     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    295     ArmLIR *target;
    296     ArmLIR *branch;
    297     ArmLIR *hopTarget;
    298     ArmLIR *hopBranch;
    299 
    300     assert(LW_SHAPE_THIN == 0);
    301     loadValueDirectFixed(cUnit, rlSrc, r1);  // Get obj
    302     dvmCompilerLockAllTemps(cUnit);  // Prepare for explicit register usage
    303     dvmCompilerFreeTemp(cUnit, r4PC);  // Free up r4 for general use
    304     genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
    305     loadWordDisp(cUnit, r1, offsetof(Object, lock), r2); // Get object->lock
    306     loadWordDisp(cUnit, r6SELF, offsetof(Thread, threadId), r3); // Get threadId
    307     // Is lock unheld on lock or held by us (==threadId) on unlock?
    308     opRegRegImm(cUnit, kOpAnd, r7, r2,
    309                 (LW_HASH_STATE_MASK << LW_HASH_STATE_SHIFT));
    310     opRegImm(cUnit, kOpLsl, r3, LW_LOCK_OWNER_SHIFT); // Align owner
    311     newLIR3(cUnit, kThumb2Bfc, r2, LW_HASH_STATE_SHIFT,
    312             LW_LOCK_OWNER_SHIFT - 1);
    313     opRegReg(cUnit, kOpSub, r2, r3);
    314     hopBranch = opCondBranch(cUnit, kArmCondNe);
    315     dvmCompilerGenMemBarrier(cUnit, kSY);
    316     storeWordDisp(cUnit, r1, offsetof(Object, lock), r7);
    317     branch = opNone(cUnit, kOpUncondBr);
    318 
    319     hopTarget = newLIR0(cUnit, kArmPseudoTargetLabel);
    320     hopTarget->defMask = ENCODE_ALL;
    321     hopBranch->generic.target = (LIR *)hopTarget;
    322 
    323     // Export PC (part 1)
    324     loadConstant(cUnit, r3, (int) (cUnit->method->insns + mir->offset));
    325 
    326     LOAD_FUNC_ADDR(cUnit, r7, (int)dvmUnlockObject);
    327     genRegCopy(cUnit, r0, r6SELF);
    328     // Export PC (part 2)
    329     newLIR3(cUnit, kThumb2StrRRI8Predec, r3, r5FP,
    330             sizeof(StackSaveArea) -
    331             offsetof(StackSaveArea, xtra.currentPc));
    332     opReg(cUnit, kOpBlx, r7);
    333     /* Did we throw? */
    334     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
    335     loadConstant(cUnit, r0,
    336                  (int) (cUnit->method->insns + mir->offset +
    337                  dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
    338     genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
    339 
    340     // Resume here
    341     target = newLIR0(cUnit, kArmPseudoTargetLabel);
    342     target->defMask = ENCODE_ALL;
    343     branch->generic.target = (LIR *)target;
    344     branchOver->generic.target = (LIR *) target;
    345 }
    346 
    347 static void genMonitor(CompilationUnit *cUnit, MIR *mir)
    348 {
    349     if (mir->dalvikInsn.opcode == OP_MONITOR_ENTER)
    350         genMonitorEnter(cUnit, mir);
    351     else
    352         genMonitorExit(cUnit, mir);
    353 }
    354 
    355 /*
    356  * 64-bit 3way compare function.
    357  *     mov   r7, #-1
    358  *     cmp   op1hi, op2hi
    359  *     blt   done
    360  *     bgt   flip
    361  *     sub   r7, op1lo, op2lo (treat as unsigned)
    362  *     beq   done
    363  *     ite   hi
    364  *     mov(hi)   r7, #-1
    365  *     mov(!hi)  r7, #1
    366  * flip:
    367  *     neg   r7
    368  * done:
    369  */
    370 static void genCmpLong(CompilationUnit *cUnit, MIR *mir,
    371                        RegLocation rlDest, RegLocation rlSrc1,
    372                        RegLocation rlSrc2)
    373 {
    374     RegLocation rlTemp = LOC_C_RETURN; // Just using as template, will change
    375     ArmLIR *target1;
    376     ArmLIR *target2;
    377     rlSrc1 = loadValueWide(cUnit, rlSrc1, kCoreReg);
    378     rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    379     rlTemp.lowReg = dvmCompilerAllocTemp(cUnit);
    380     loadConstant(cUnit, rlTemp.lowReg, -1);
    381     opRegReg(cUnit, kOpCmp, rlSrc1.highReg, rlSrc2.highReg);
    382     ArmLIR *branch1 = opCondBranch(cUnit, kArmCondLt);
    383     ArmLIR *branch2 = opCondBranch(cUnit, kArmCondGt);
    384     opRegRegReg(cUnit, kOpSub, rlTemp.lowReg, rlSrc1.lowReg, rlSrc2.lowReg);
    385     ArmLIR *branch3 = opCondBranch(cUnit, kArmCondEq);
    386 
    387     genIT(cUnit, kArmCondHi, "E");
    388     newLIR2(cUnit, kThumb2MovImmShift, rlTemp.lowReg, modifiedImmediate(-1));
    389     loadConstant(cUnit, rlTemp.lowReg, 1);
    390     genBarrier(cUnit);
    391 
    392     target2 = newLIR0(cUnit, kArmPseudoTargetLabel);
    393     target2->defMask = -1;
    394     opRegReg(cUnit, kOpNeg, rlTemp.lowReg, rlTemp.lowReg);
    395 
    396     target1 = newLIR0(cUnit, kArmPseudoTargetLabel);
    397     target1->defMask = -1;
    398 
    399     storeValue(cUnit, rlDest, rlTemp);
    400 
    401     branch1->generic.target = (LIR *)target1;
    402     branch2->generic.target = (LIR *)target2;
    403     branch3->generic.target = branch1->generic.target;
    404 }
    405 
    406 static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
    407 {
    408     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    409     RegLocation rlDest = inlinedTarget(cUnit, mir, true);
    410     rlSrc = loadValue(cUnit, rlSrc, kFPReg);
    411     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
    412     newLIR2(cUnit, kThumb2Vabss, rlResult.lowReg, rlSrc.lowReg);
    413     storeValue(cUnit, rlDest, rlResult);
    414     return false;
    415 }
    416 
    417 static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
    418 {
    419     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    420     RegLocation rlDest = inlinedTargetWide(cUnit, mir, true);
    421     rlSrc = loadValueWide(cUnit, rlSrc, kFPReg);
    422     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kFPReg, true);
    423     newLIR2(cUnit, kThumb2Vabsd, S2D(rlResult.lowReg, rlResult.highReg),
    424             S2D(rlSrc.lowReg, rlSrc.highReg));
    425     storeValueWide(cUnit, rlDest, rlResult);
    426     return false;
    427 }
    428 
    429 static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin)
    430 {
    431     RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
    432     RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
    433     rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
    434     rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
    435     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
    436     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    437     opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
    438     genIT(cUnit, (isMin) ? kArmCondGt : kArmCondLt, "E");
    439     opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg);
    440     opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg);
    441     genBarrier(cUnit);
    442     storeValue(cUnit, rlDest, rlResult);
    443     return false;
    444 }
    445 
    446 static void genMultiplyByTwoBitMultiplier(CompilationUnit *cUnit,
    447         RegLocation rlSrc, RegLocation rlResult, int lit,
    448         int firstBit, int secondBit)
    449 {
    450     opRegRegRegShift(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, rlSrc.lowReg,
    451                      encodeShift(kArmLsl, secondBit - firstBit));
    452     if (firstBit != 0) {
    453         opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlResult.lowReg, firstBit);
    454     }
    455 }
    456 
    457 static void genMultiplyByShiftAndReverseSubtract(CompilationUnit *cUnit,
    458         RegLocation rlSrc, RegLocation rlResult, int lit)
    459 {
    460     newLIR4(cUnit, kThumb2RsbRRR, rlResult.lowReg, rlSrc.lowReg, rlSrc.lowReg,
    461             encodeShift(kArmLsl, lit));
    462 }
    463