Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Collect the sequence of machine instructions for a basic block.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/MachineBasicBlock.h"
     15 #include "llvm/ADT/SmallPtrSet.h"
     16 #include "llvm/ADT/SmallString.h"
     17 #include "llvm/Assembly/Writer.h"
     18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     19 #include "llvm/CodeGen/LiveVariables.h"
     20 #include "llvm/CodeGen/MachineDominators.h"
     21 #include "llvm/CodeGen/MachineFunction.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineLoopInfo.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/CodeGen/SlotIndexes.h"
     26 #include "llvm/IR/BasicBlock.h"
     27 #include "llvm/IR/DataLayout.h"
     28 #include "llvm/MC/MCAsmInfo.h"
     29 #include "llvm/MC/MCContext.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/LeakDetector.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/Target/TargetInstrInfo.h"
     34 #include "llvm/Target/TargetMachine.h"
     35 #include "llvm/Target/TargetRegisterInfo.h"
     36 #include <algorithm>
     37 using namespace llvm;
     38 
     39 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
     40   : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
     41     AddressTaken(false), CachedMCSymbol(NULL) {
     42   Insts.Parent = this;
     43 }
     44 
     45 MachineBasicBlock::~MachineBasicBlock() {
     46   LeakDetector::removeGarbageObject(this);
     47 }
     48 
     49 /// getSymbol - Return the MCSymbol for this basic block.
     50 ///
     51 MCSymbol *MachineBasicBlock::getSymbol() const {
     52   if (!CachedMCSymbol) {
     53     const MachineFunction *MF = getParent();
     54     MCContext &Ctx = MF->getContext();
     55     const char *Prefix = Ctx.getAsmInfo()->getPrivateGlobalPrefix();
     56     CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
     57                                            Twine(MF->getFunctionNumber()) +
     58                                            "_" + Twine(getNumber()));
     59   }
     60 
     61   return CachedMCSymbol;
     62 }
     63 
     64 
     65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
     66   MBB.print(OS);
     67   return OS;
     68 }
     69 
     70 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
     71 /// parent pointer of the MBB, the MBB numbering, and any instructions in the
     72 /// MBB to be on the right operand list for registers.
     73 ///
     74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
     75 /// gets the next available unique MBB number. If it is removed from a
     76 /// MachineFunction, it goes back to being #-1.
     77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
     78   MachineFunction &MF = *N->getParent();
     79   N->Number = MF.addToMBBNumbering(N);
     80 
     81   // Make sure the instructions have their operands in the reginfo lists.
     82   MachineRegisterInfo &RegInfo = MF.getRegInfo();
     83   for (MachineBasicBlock::instr_iterator
     84          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
     85     I->AddRegOperandsToUseLists(RegInfo);
     86 
     87   LeakDetector::removeGarbageObject(N);
     88 }
     89 
     90 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
     91   N->getParent()->removeFromMBBNumbering(N->Number);
     92   N->Number = -1;
     93   LeakDetector::addGarbageObject(N);
     94 }
     95 
     96 
     97 /// addNodeToList (MI) - When we add an instruction to a basic block
     98 /// list, we update its parent pointer and add its operands from reg use/def
     99 /// lists if appropriate.
    100 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
    101   assert(N->getParent() == 0 && "machine instruction already in a basic block");
    102   N->setParent(Parent);
    103 
    104   // Add the instruction's register operands to their corresponding
    105   // use/def lists.
    106   MachineFunction *MF = Parent->getParent();
    107   N->AddRegOperandsToUseLists(MF->getRegInfo());
    108 
    109   LeakDetector::removeGarbageObject(N);
    110 }
    111 
    112 /// removeNodeFromList (MI) - When we remove an instruction from a basic block
    113 /// list, we update its parent pointer and remove its operands from reg use/def
    114 /// lists if appropriate.
    115 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
    116   assert(N->getParent() != 0 && "machine instruction not in a basic block");
    117 
    118   // Remove from the use/def lists.
    119   if (MachineFunction *MF = N->getParent()->getParent())
    120     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
    121 
    122   N->setParent(0);
    123 
    124   LeakDetector::addGarbageObject(N);
    125 }
    126 
    127 /// transferNodesFromList (MI) - When moving a range of instructions from one
    128 /// MBB list to another, we need to update the parent pointers and the use/def
    129 /// lists.
    130 void ilist_traits<MachineInstr>::
    131 transferNodesFromList(ilist_traits<MachineInstr> &fromList,
    132                       ilist_iterator<MachineInstr> first,
    133                       ilist_iterator<MachineInstr> last) {
    134   assert(Parent->getParent() == fromList.Parent->getParent() &&
    135         "MachineInstr parent mismatch!");
    136 
    137   // Splice within the same MBB -> no change.
    138   if (Parent == fromList.Parent) return;
    139 
    140   // If splicing between two blocks within the same function, just update the
    141   // parent pointers.
    142   for (; first != last; ++first)
    143     first->setParent(Parent);
    144 }
    145 
    146 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
    147   assert(!MI->getParent() && "MI is still in a block!");
    148   Parent->getParent()->DeleteMachineInstr(MI);
    149 }
    150 
    151 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
    152   instr_iterator I = instr_begin(), E = instr_end();
    153   while (I != E && I->isPHI())
    154     ++I;
    155   assert((I == E || !I->isInsideBundle()) &&
    156          "First non-phi MI cannot be inside a bundle!");
    157   return I;
    158 }
    159 
    160 MachineBasicBlock::iterator
    161 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
    162   iterator E = end();
    163   while (I != E && (I->isPHI() || I->isLabel() || I->isDebugValue()))
    164     ++I;
    165   // FIXME: This needs to change if we wish to bundle labels / dbg_values
    166   // inside the bundle.
    167   assert((I == E || !I->isInsideBundle()) &&
    168          "First non-phi / non-label instruction is inside a bundle!");
    169   return I;
    170 }
    171 
    172 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
    173   iterator B = begin(), E = end(), I = E;
    174   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
    175     ; /*noop */
    176   while (I != E && !I->isTerminator())
    177     ++I;
    178   return I;
    179 }
    180 
    181 MachineBasicBlock::const_iterator
    182 MachineBasicBlock::getFirstTerminator() const {
    183   const_iterator B = begin(), E = end(), I = E;
    184   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
    185     ; /*noop */
    186   while (I != E && !I->isTerminator())
    187     ++I;
    188   return I;
    189 }
    190 
    191 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
    192   instr_iterator B = instr_begin(), E = instr_end(), I = E;
    193   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
    194     ; /*noop */
    195   while (I != E && !I->isTerminator())
    196     ++I;
    197   return I;
    198 }
    199 
    200 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
    201   // Skip over end-of-block dbg_value instructions.
    202   instr_iterator B = instr_begin(), I = instr_end();
    203   while (I != B) {
    204     --I;
    205     // Return instruction that starts a bundle.
    206     if (I->isDebugValue() || I->isInsideBundle())
    207       continue;
    208     return I;
    209   }
    210   // The block is all debug values.
    211   return end();
    212 }
    213 
    214 MachineBasicBlock::const_iterator
    215 MachineBasicBlock::getLastNonDebugInstr() const {
    216   // Skip over end-of-block dbg_value instructions.
    217   const_instr_iterator B = instr_begin(), I = instr_end();
    218   while (I != B) {
    219     --I;
    220     // Return instruction that starts a bundle.
    221     if (I->isDebugValue() || I->isInsideBundle())
    222       continue;
    223     return I;
    224   }
    225   // The block is all debug values.
    226   return end();
    227 }
    228 
    229 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
    230   // A block with a landing pad successor only has one other successor.
    231   if (succ_size() > 2)
    232     return 0;
    233   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
    234     if ((*I)->isLandingPad())
    235       return *I;
    236   return 0;
    237 }
    238 
    239 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    240 void MachineBasicBlock::dump() const {
    241   print(dbgs());
    242 }
    243 #endif
    244 
    245 StringRef MachineBasicBlock::getName() const {
    246   if (const BasicBlock *LBB = getBasicBlock())
    247     return LBB->getName();
    248   else
    249     return "(null)";
    250 }
    251 
    252 /// Return a hopefully unique identifier for this block.
    253 std::string MachineBasicBlock::getFullName() const {
    254   std::string Name;
    255   if (getParent())
    256     Name = (getParent()->getName() + ":").str();
    257   if (getBasicBlock())
    258     Name += getBasicBlock()->getName();
    259   else
    260     Name += (Twine("BB") + Twine(getNumber())).str();
    261   return Name;
    262 }
    263 
    264 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
    265   const MachineFunction *MF = getParent();
    266   if (!MF) {
    267     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
    268        << " is null\n";
    269     return;
    270   }
    271 
    272   if (Indexes)
    273     OS << Indexes->getMBBStartIdx(this) << '\t';
    274 
    275   OS << "BB#" << getNumber() << ": ";
    276 
    277   const char *Comma = "";
    278   if (const BasicBlock *LBB = getBasicBlock()) {
    279     OS << Comma << "derived from LLVM BB ";
    280     WriteAsOperand(OS, LBB, /*PrintType=*/false);
    281     Comma = ", ";
    282   }
    283   if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
    284   if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
    285   if (Alignment)
    286     OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
    287        << " bytes)";
    288 
    289   OS << '\n';
    290 
    291   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
    292   if (!livein_empty()) {
    293     if (Indexes) OS << '\t';
    294     OS << "    Live Ins:";
    295     for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
    296       OS << ' ' << PrintReg(*I, TRI);
    297     OS << '\n';
    298   }
    299   // Print the preds of this block according to the CFG.
    300   if (!pred_empty()) {
    301     if (Indexes) OS << '\t';
    302     OS << "    Predecessors according to CFG:";
    303     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
    304       OS << " BB#" << (*PI)->getNumber();
    305     OS << '\n';
    306   }
    307 
    308   for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
    309     if (Indexes) {
    310       if (Indexes->hasIndex(I))
    311         OS << Indexes->getInstructionIndex(I);
    312       OS << '\t';
    313     }
    314     OS << '\t';
    315     if (I->isInsideBundle())
    316       OS << "  * ";
    317     I->print(OS, &getParent()->getTarget());
    318   }
    319 
    320   // Print the successors of this block according to the CFG.
    321   if (!succ_empty()) {
    322     if (Indexes) OS << '\t';
    323     OS << "    Successors according to CFG:";
    324     for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
    325       OS << " BB#" << (*SI)->getNumber();
    326       if (!Weights.empty())
    327         OS << '(' << *getWeightIterator(SI) << ')';
    328     }
    329     OS << '\n';
    330   }
    331 }
    332 
    333 void MachineBasicBlock::removeLiveIn(unsigned Reg) {
    334   std::vector<unsigned>::iterator I =
    335     std::find(LiveIns.begin(), LiveIns.end(), Reg);
    336   if (I != LiveIns.end())
    337     LiveIns.erase(I);
    338 }
    339 
    340 bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
    341   livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
    342   return I != livein_end();
    343 }
    344 
    345 unsigned
    346 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) {
    347   assert(getParent() && "MBB must be inserted in function");
    348   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
    349   assert(RC && "Register class is required");
    350   assert((isLandingPad() || this == &getParent()->front()) &&
    351          "Only the entry block and landing pads can have physreg live ins");
    352 
    353   bool LiveIn = isLiveIn(PhysReg);
    354   iterator I = SkipPHIsAndLabels(begin()), E = end();
    355   MachineRegisterInfo &MRI = getParent()->getRegInfo();
    356   const TargetInstrInfo &TII = *getParent()->getTarget().getInstrInfo();
    357 
    358   // Look for an existing copy.
    359   if (LiveIn)
    360     for (;I != E && I->isCopy(); ++I)
    361       if (I->getOperand(1).getReg() == PhysReg) {
    362         unsigned VirtReg = I->getOperand(0).getReg();
    363         if (!MRI.constrainRegClass(VirtReg, RC))
    364           llvm_unreachable("Incompatible live-in register class.");
    365         return VirtReg;
    366       }
    367 
    368   // No luck, create a virtual register.
    369   unsigned VirtReg = MRI.createVirtualRegister(RC);
    370   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
    371     .addReg(PhysReg, RegState::Kill);
    372   if (!LiveIn)
    373     addLiveIn(PhysReg);
    374   return VirtReg;
    375 }
    376 
    377 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
    378   getParent()->splice(NewAfter, this);
    379 }
    380 
    381 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
    382   MachineFunction::iterator BBI = NewBefore;
    383   getParent()->splice(++BBI, this);
    384 }
    385 
    386 void MachineBasicBlock::updateTerminator() {
    387   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
    388   // A block with no successors has no concerns with fall-through edges.
    389   if (this->succ_empty()) return;
    390 
    391   MachineBasicBlock *TBB = 0, *FBB = 0;
    392   SmallVector<MachineOperand, 4> Cond;
    393   DebugLoc dl;  // FIXME: this is nowhere
    394   bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
    395   (void) B;
    396   assert(!B && "UpdateTerminators requires analyzable predecessors!");
    397   if (Cond.empty()) {
    398     if (TBB) {
    399       // The block has an unconditional branch. If its successor is now
    400       // its layout successor, delete the branch.
    401       if (isLayoutSuccessor(TBB))
    402         TII->RemoveBranch(*this);
    403     } else {
    404       // The block has an unconditional fallthrough. If its successor is not
    405       // its layout successor, insert a branch. First we have to locate the
    406       // only non-landing-pad successor, as that is the fallthrough block.
    407       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
    408         if ((*SI)->isLandingPad())
    409           continue;
    410         assert(!TBB && "Found more than one non-landing-pad successor!");
    411         TBB = *SI;
    412       }
    413 
    414       // If there is no non-landing-pad successor, the block has no
    415       // fall-through edges to be concerned with.
    416       if (!TBB)
    417         return;
    418 
    419       // Finally update the unconditional successor to be reached via a branch
    420       // if it would not be reached by fallthrough.
    421       if (!isLayoutSuccessor(TBB))
    422         TII->InsertBranch(*this, TBB, 0, Cond, dl);
    423     }
    424   } else {
    425     if (FBB) {
    426       // The block has a non-fallthrough conditional branch. If one of its
    427       // successors is its layout successor, rewrite it to a fallthrough
    428       // conditional branch.
    429       if (isLayoutSuccessor(TBB)) {
    430         if (TII->ReverseBranchCondition(Cond))
    431           return;
    432         TII->RemoveBranch(*this);
    433         TII->InsertBranch(*this, FBB, 0, Cond, dl);
    434       } else if (isLayoutSuccessor(FBB)) {
    435         TII->RemoveBranch(*this);
    436         TII->InsertBranch(*this, TBB, 0, Cond, dl);
    437       }
    438     } else {
    439       // Walk through the successors and find the successor which is not
    440       // a landing pad and is not the conditional branch destination (in TBB)
    441       // as the fallthrough successor.
    442       MachineBasicBlock *FallthroughBB = 0;
    443       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
    444         if ((*SI)->isLandingPad() || *SI == TBB)
    445           continue;
    446         assert(!FallthroughBB && "Found more than one fallthrough successor.");
    447         FallthroughBB = *SI;
    448       }
    449       if (!FallthroughBB && canFallThrough()) {
    450         // We fallthrough to the same basic block as the conditional jump
    451         // targets. Remove the conditional jump, leaving unconditional
    452         // fallthrough.
    453         // FIXME: This does not seem like a reasonable pattern to support, but it
    454         // has been seen in the wild coming out of degenerate ARM test cases.
    455         TII->RemoveBranch(*this);
    456 
    457         // Finally update the unconditional successor to be reached via a branch
    458         // if it would not be reached by fallthrough.
    459         if (!isLayoutSuccessor(TBB))
    460           TII->InsertBranch(*this, TBB, 0, Cond, dl);
    461         return;
    462       }
    463 
    464       // The block has a fallthrough conditional branch.
    465       if (isLayoutSuccessor(TBB)) {
    466         if (TII->ReverseBranchCondition(Cond)) {
    467           // We can't reverse the condition, add an unconditional branch.
    468           Cond.clear();
    469           TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
    470           return;
    471         }
    472         TII->RemoveBranch(*this);
    473         TII->InsertBranch(*this, FallthroughBB, 0, Cond, dl);
    474       } else if (!isLayoutSuccessor(FallthroughBB)) {
    475         TII->RemoveBranch(*this);
    476         TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
    477       }
    478     }
    479   }
    480 }
    481 
    482 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
    483 
    484   // If we see non-zero value for the first time it means we actually use Weight
    485   // list, so we fill all Weights with 0's.
    486   if (weight != 0 && Weights.empty())
    487     Weights.resize(Successors.size());
    488 
    489   if (weight != 0 || !Weights.empty())
    490     Weights.push_back(weight);
    491 
    492    Successors.push_back(succ);
    493    succ->addPredecessor(this);
    494  }
    495 
    496 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
    497   succ->removePredecessor(this);
    498   succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
    499   assert(I != Successors.end() && "Not a current successor!");
    500 
    501   // If Weight list is empty it means we don't use it (disabled optimization).
    502   if (!Weights.empty()) {
    503     weight_iterator WI = getWeightIterator(I);
    504     Weights.erase(WI);
    505   }
    506 
    507   Successors.erase(I);
    508 }
    509 
    510 MachineBasicBlock::succ_iterator
    511 MachineBasicBlock::removeSuccessor(succ_iterator I) {
    512   assert(I != Successors.end() && "Not a current successor!");
    513 
    514   // If Weight list is empty it means we don't use it (disabled optimization).
    515   if (!Weights.empty()) {
    516     weight_iterator WI = getWeightIterator(I);
    517     Weights.erase(WI);
    518   }
    519 
    520   (*I)->removePredecessor(this);
    521   return Successors.erase(I);
    522 }
    523 
    524 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
    525                                          MachineBasicBlock *New) {
    526   if (Old == New)
    527     return;
    528 
    529   succ_iterator E = succ_end();
    530   succ_iterator NewI = E;
    531   succ_iterator OldI = E;
    532   for (succ_iterator I = succ_begin(); I != E; ++I) {
    533     if (*I == Old) {
    534       OldI = I;
    535       if (NewI != E)
    536         break;
    537     }
    538     if (*I == New) {
    539       NewI = I;
    540       if (OldI != E)
    541         break;
    542     }
    543   }
    544   assert(OldI != E && "Old is not a successor of this block");
    545   Old->removePredecessor(this);
    546 
    547   // If New isn't already a successor, let it take Old's place.
    548   if (NewI == E) {
    549     New->addPredecessor(this);
    550     *OldI = New;
    551     return;
    552   }
    553 
    554   // New is already a successor.
    555   // Update its weight instead of adding a duplicate edge.
    556   if (!Weights.empty()) {
    557     weight_iterator OldWI = getWeightIterator(OldI);
    558     *getWeightIterator(NewI) += *OldWI;
    559     Weights.erase(OldWI);
    560   }
    561   Successors.erase(OldI);
    562 }
    563 
    564 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
    565   Predecessors.push_back(pred);
    566 }
    567 
    568 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
    569   pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
    570   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
    571   Predecessors.erase(I);
    572 }
    573 
    574 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
    575   if (this == fromMBB)
    576     return;
    577 
    578   while (!fromMBB->succ_empty()) {
    579     MachineBasicBlock *Succ = *fromMBB->succ_begin();
    580     uint32_t Weight = 0;
    581 
    582     // If Weight list is empty it means we don't use it (disabled optimization).
    583     if (!fromMBB->Weights.empty())
    584       Weight = *fromMBB->Weights.begin();
    585 
    586     addSuccessor(Succ, Weight);
    587     fromMBB->removeSuccessor(Succ);
    588   }
    589 }
    590 
    591 void
    592 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
    593   if (this == fromMBB)
    594     return;
    595 
    596   while (!fromMBB->succ_empty()) {
    597     MachineBasicBlock *Succ = *fromMBB->succ_begin();
    598     uint32_t Weight = 0;
    599     if (!fromMBB->Weights.empty())
    600       Weight = *fromMBB->Weights.begin();
    601     addSuccessor(Succ, Weight);
    602     fromMBB->removeSuccessor(Succ);
    603 
    604     // Fix up any PHI nodes in the successor.
    605     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
    606            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
    607       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
    608         MachineOperand &MO = MI->getOperand(i);
    609         if (MO.getMBB() == fromMBB)
    610           MO.setMBB(this);
    611       }
    612   }
    613 }
    614 
    615 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
    616   return std::find(pred_begin(), pred_end(), MBB) != pred_end();
    617 }
    618 
    619 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
    620   return std::find(succ_begin(), succ_end(), MBB) != succ_end();
    621 }
    622 
    623 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
    624   MachineFunction::const_iterator I(this);
    625   return llvm::next(I) == MachineFunction::const_iterator(MBB);
    626 }
    627 
    628 bool MachineBasicBlock::canFallThrough() {
    629   MachineFunction::iterator Fallthrough = this;
    630   ++Fallthrough;
    631   // If FallthroughBlock is off the end of the function, it can't fall through.
    632   if (Fallthrough == getParent()->end())
    633     return false;
    634 
    635   // If FallthroughBlock isn't a successor, no fallthrough is possible.
    636   if (!isSuccessor(Fallthrough))
    637     return false;
    638 
    639   // Analyze the branches, if any, at the end of the block.
    640   MachineBasicBlock *TBB = 0, *FBB = 0;
    641   SmallVector<MachineOperand, 4> Cond;
    642   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
    643   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
    644     // If we couldn't analyze the branch, examine the last instruction.
    645     // If the block doesn't end in a known control barrier, assume fallthrough
    646     // is possible. The isPredicated check is needed because this code can be
    647     // called during IfConversion, where an instruction which is normally a
    648     // Barrier is predicated and thus no longer an actual control barrier.
    649     return empty() || !back().isBarrier() || TII->isPredicated(&back());
    650   }
    651 
    652   // If there is no branch, control always falls through.
    653   if (TBB == 0) return true;
    654 
    655   // If there is some explicit branch to the fallthrough block, it can obviously
    656   // reach, even though the branch should get folded to fall through implicitly.
    657   if (MachineFunction::iterator(TBB) == Fallthrough ||
    658       MachineFunction::iterator(FBB) == Fallthrough)
    659     return true;
    660 
    661   // If it's an unconditional branch to some block not the fall through, it
    662   // doesn't fall through.
    663   if (Cond.empty()) return false;
    664 
    665   // Otherwise, if it is conditional and has no explicit false block, it falls
    666   // through.
    667   return FBB == 0;
    668 }
    669 
    670 MachineBasicBlock *
    671 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
    672   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
    673   // it in this generic function.
    674   if (Succ->isLandingPad())
    675     return NULL;
    676 
    677   MachineFunction *MF = getParent();
    678   DebugLoc dl;  // FIXME: this is nowhere
    679 
    680   // We may need to update this's terminator, but we can't do that if
    681   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
    682   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
    683   MachineBasicBlock *TBB = 0, *FBB = 0;
    684   SmallVector<MachineOperand, 4> Cond;
    685   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
    686     return NULL;
    687 
    688   // Avoid bugpoint weirdness: A block may end with a conditional branch but
    689   // jumps to the same MBB is either case. We have duplicate CFG edges in that
    690   // case that we can't handle. Since this never happens in properly optimized
    691   // code, just skip those edges.
    692   if (TBB && TBB == FBB) {
    693     DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
    694                  << getNumber() << '\n');
    695     return NULL;
    696   }
    697 
    698   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
    699   MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
    700   DEBUG(dbgs() << "Splitting critical edge:"
    701         " BB#" << getNumber()
    702         << " -- BB#" << NMBB->getNumber()
    703         << " -- BB#" << Succ->getNumber() << '\n');
    704 
    705   LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
    706   SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
    707   if (LIS)
    708     LIS->insertMBBInMaps(NMBB);
    709   else if (Indexes)
    710     Indexes->insertMBBInMaps(NMBB);
    711 
    712   // On some targets like Mips, branches may kill virtual registers. Make sure
    713   // that LiveVariables is properly updated after updateTerminator replaces the
    714   // terminators.
    715   LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
    716 
    717   // Collect a list of virtual registers killed by the terminators.
    718   SmallVector<unsigned, 4> KilledRegs;
    719   if (LV)
    720     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
    721          I != E; ++I) {
    722       MachineInstr *MI = I;
    723       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
    724            OE = MI->operands_end(); OI != OE; ++OI) {
    725         if (!OI->isReg() || OI->getReg() == 0 ||
    726             !OI->isUse() || !OI->isKill() || OI->isUndef())
    727           continue;
    728         unsigned Reg = OI->getReg();
    729         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
    730             LV->getVarInfo(Reg).removeKill(MI)) {
    731           KilledRegs.push_back(Reg);
    732           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
    733           OI->setIsKill(false);
    734         }
    735       }
    736     }
    737 
    738   SmallVector<unsigned, 4> UsedRegs;
    739   if (LIS) {
    740     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
    741          I != E; ++I) {
    742       MachineInstr *MI = I;
    743 
    744       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
    745            OE = MI->operands_end(); OI != OE; ++OI) {
    746         if (!OI->isReg() || OI->getReg() == 0)
    747           continue;
    748 
    749         unsigned Reg = OI->getReg();
    750         if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
    751           UsedRegs.push_back(Reg);
    752       }
    753     }
    754   }
    755 
    756   ReplaceUsesOfBlockWith(Succ, NMBB);
    757 
    758   // If updateTerminator() removes instructions, we need to remove them from
    759   // SlotIndexes.
    760   SmallVector<MachineInstr*, 4> Terminators;
    761   if (Indexes) {
    762     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
    763          I != E; ++I)
    764       Terminators.push_back(I);
    765   }
    766 
    767   updateTerminator();
    768 
    769   if (Indexes) {
    770     SmallVector<MachineInstr*, 4> NewTerminators;
    771     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
    772          I != E; ++I)
    773       NewTerminators.push_back(I);
    774 
    775     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
    776         E = Terminators.end(); I != E; ++I) {
    777       if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
    778           NewTerminators.end())
    779        Indexes->removeMachineInstrFromMaps(*I);
    780     }
    781   }
    782 
    783   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
    784   NMBB->addSuccessor(Succ);
    785   if (!NMBB->isLayoutSuccessor(Succ)) {
    786     Cond.clear();
    787     MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
    788 
    789     if (Indexes) {
    790       for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
    791            I != E; ++I) {
    792         // Some instructions may have been moved to NMBB by updateTerminator(),
    793         // so we first remove any instruction that already has an index.
    794         if (Indexes->hasIndex(I))
    795           Indexes->removeMachineInstrFromMaps(I);
    796         Indexes->insertMachineInstrInMaps(I);
    797       }
    798     }
    799   }
    800 
    801   // Fix PHI nodes in Succ so they refer to NMBB instead of this
    802   for (MachineBasicBlock::instr_iterator
    803          i = Succ->instr_begin(),e = Succ->instr_end();
    804        i != e && i->isPHI(); ++i)
    805     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
    806       if (i->getOperand(ni+1).getMBB() == this)
    807         i->getOperand(ni+1).setMBB(NMBB);
    808 
    809   // Inherit live-ins from the successor
    810   for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
    811          E = Succ->livein_end(); I != E; ++I)
    812     NMBB->addLiveIn(*I);
    813 
    814   // Update LiveVariables.
    815   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
    816   if (LV) {
    817     // Restore kills of virtual registers that were killed by the terminators.
    818     while (!KilledRegs.empty()) {
    819       unsigned Reg = KilledRegs.pop_back_val();
    820       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
    821         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
    822           continue;
    823         if (TargetRegisterInfo::isVirtualRegister(Reg))
    824           LV->getVarInfo(Reg).Kills.push_back(I);
    825         DEBUG(dbgs() << "Restored terminator kill: " << *I);
    826         break;
    827       }
    828     }
    829     // Update relevant live-through information.
    830     LV->addNewBlock(NMBB, this, Succ);
    831   }
    832 
    833   if (LIS) {
    834     // After splitting the edge and updating SlotIndexes, live intervals may be
    835     // in one of two situations, depending on whether this block was the last in
    836     // the function. If the original block was the last in the function, all live
    837     // intervals will end prior to the beginning of the new split block. If the
    838     // original block was not at the end of the function, all live intervals will
    839     // extend to the end of the new split block.
    840 
    841     bool isLastMBB =
    842       llvm::next(MachineFunction::iterator(NMBB)) == getParent()->end();
    843 
    844     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
    845     SlotIndex PrevIndex = StartIndex.getPrevSlot();
    846     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
    847 
    848     // Find the registers used from NMBB in PHIs in Succ.
    849     SmallSet<unsigned, 8> PHISrcRegs;
    850     for (MachineBasicBlock::instr_iterator
    851          I = Succ->instr_begin(), E = Succ->instr_end();
    852          I != E && I->isPHI(); ++I) {
    853       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
    854         if (I->getOperand(ni+1).getMBB() == NMBB) {
    855           MachineOperand &MO = I->getOperand(ni);
    856           unsigned Reg = MO.getReg();
    857           PHISrcRegs.insert(Reg);
    858           if (MO.isUndef())
    859             continue;
    860 
    861           LiveInterval &LI = LIS->getInterval(Reg);
    862           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
    863           assert(VNI && "PHI sources should be live out of their predecessors.");
    864           LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
    865         }
    866       }
    867     }
    868 
    869     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
    870     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    871       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    872       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
    873         continue;
    874 
    875       LiveInterval &LI = LIS->getInterval(Reg);
    876       if (!LI.liveAt(PrevIndex))
    877         continue;
    878 
    879       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
    880       if (isLiveOut && isLastMBB) {
    881         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
    882         assert(VNI && "LiveInterval should have VNInfo where it is live.");
    883         LI.addRange(LiveRange(StartIndex, EndIndex, VNI));
    884       } else if (!isLiveOut && !isLastMBB) {
    885         LI.removeRange(StartIndex, EndIndex);
    886       }
    887     }
    888 
    889     // Update all intervals for registers whose uses may have been modified by
    890     // updateTerminator().
    891     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
    892   }
    893 
    894   if (MachineDominatorTree *MDT =
    895       P->getAnalysisIfAvailable<MachineDominatorTree>()) {
    896     // Update dominator information.
    897     MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
    898 
    899     bool IsNewIDom = true;
    900     for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
    901          PI != E; ++PI) {
    902       MachineBasicBlock *PredBB = *PI;
    903       if (PredBB == NMBB)
    904         continue;
    905       if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
    906         IsNewIDom = false;
    907         break;
    908       }
    909     }
    910 
    911     // We know "this" dominates the newly created basic block.
    912     MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
    913 
    914     // If all the other predecessors of "Succ" are dominated by "Succ" itself
    915     // then the new block is the new immediate dominator of "Succ". Otherwise,
    916     // the new block doesn't dominate anything.
    917     if (IsNewIDom)
    918       MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
    919   }
    920 
    921   if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
    922     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
    923       // If one or the other blocks were not in a loop, the new block is not
    924       // either, and thus LI doesn't need to be updated.
    925       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
    926         if (TIL == DestLoop) {
    927           // Both in the same loop, the NMBB joins loop.
    928           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
    929         } else if (TIL->contains(DestLoop)) {
    930           // Edge from an outer loop to an inner loop.  Add to the outer loop.
    931           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
    932         } else if (DestLoop->contains(TIL)) {
    933           // Edge from an inner loop to an outer loop.  Add to the outer loop.
    934           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
    935         } else {
    936           // Edge from two loops with no containment relation.  Because these
    937           // are natural loops, we know that the destination block must be the
    938           // header of its loop (adding a branch into a loop elsewhere would
    939           // create an irreducible loop).
    940           assert(DestLoop->getHeader() == Succ &&
    941                  "Should not create irreducible loops!");
    942           if (MachineLoop *P = DestLoop->getParentLoop())
    943             P->addBasicBlockToLoop(NMBB, MLI->getBase());
    944         }
    945       }
    946     }
    947 
    948   return NMBB;
    949 }
    950 
    951 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
    952 /// neighboring instructions so the bundle won't be broken by removing MI.
    953 static void unbundleSingleMI(MachineInstr *MI) {
    954   // Removing the first instruction in a bundle.
    955   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
    956     MI->unbundleFromSucc();
    957   // Removing the last instruction in a bundle.
    958   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
    959     MI->unbundleFromPred();
    960   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
    961   // are already fine.
    962 }
    963 
    964 MachineBasicBlock::instr_iterator
    965 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
    966   unbundleSingleMI(I);
    967   return Insts.erase(I);
    968 }
    969 
    970 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
    971   unbundleSingleMI(MI);
    972   MI->clearFlag(MachineInstr::BundledPred);
    973   MI->clearFlag(MachineInstr::BundledSucc);
    974   return Insts.remove(MI);
    975 }
    976 
    977 MachineBasicBlock::instr_iterator
    978 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
    979   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
    980          "Cannot insert instruction with bundle flags");
    981   // Set the bundle flags when inserting inside a bundle.
    982   if (I != instr_end() && I->isBundledWithPred()) {
    983     MI->setFlag(MachineInstr::BundledPred);
    984     MI->setFlag(MachineInstr::BundledSucc);
    985   }
    986   return Insts.insert(I, MI);
    987 }
    988 
    989 /// removeFromParent - This method unlinks 'this' from the containing function,
    990 /// and returns it, but does not delete it.
    991 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
    992   assert(getParent() && "Not embedded in a function!");
    993   getParent()->remove(this);
    994   return this;
    995 }
    996 
    997 
    998 /// eraseFromParent - This method unlinks 'this' from the containing function,
    999 /// and deletes it.
   1000 void MachineBasicBlock::eraseFromParent() {
   1001   assert(getParent() && "Not embedded in a function!");
   1002   getParent()->erase(this);
   1003 }
   1004 
   1005 
   1006 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
   1007 /// 'Old', change the code and CFG so that it branches to 'New' instead.
   1008 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
   1009                                                MachineBasicBlock *New) {
   1010   assert(Old != New && "Cannot replace self with self!");
   1011 
   1012   MachineBasicBlock::instr_iterator I = instr_end();
   1013   while (I != instr_begin()) {
   1014     --I;
   1015     if (!I->isTerminator()) break;
   1016 
   1017     // Scan the operands of this machine instruction, replacing any uses of Old
   1018     // with New.
   1019     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
   1020       if (I->getOperand(i).isMBB() &&
   1021           I->getOperand(i).getMBB() == Old)
   1022         I->getOperand(i).setMBB(New);
   1023   }
   1024 
   1025   // Update the successor information.
   1026   replaceSuccessor(Old, New);
   1027 }
   1028 
   1029 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
   1030 /// CFG to be inserted.  If we have proven that MBB can only branch to DestA and
   1031 /// DestB, remove any other MBB successors from the CFG.  DestA and DestB can be
   1032 /// null.
   1033 ///
   1034 /// Besides DestA and DestB, retain other edges leading to LandingPads
   1035 /// (currently there can be only one; we don't check or require that here).
   1036 /// Note it is possible that DestA and/or DestB are LandingPads.
   1037 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
   1038                                              MachineBasicBlock *DestB,
   1039                                              bool isCond) {
   1040   // The values of DestA and DestB frequently come from a call to the
   1041   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
   1042   // values from there.
   1043   //
   1044   // 1. If both DestA and DestB are null, then the block ends with no branches
   1045   //    (it falls through to its successor).
   1046   // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
   1047   //    with only an unconditional branch.
   1048   // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
   1049   //    with a conditional branch that falls through to a successor (DestB).
   1050   // 4. If DestA and DestB is set and isCond is true, then the block ends with a
   1051   //    conditional branch followed by an unconditional branch. DestA is the
   1052   //    'true' destination and DestB is the 'false' destination.
   1053 
   1054   bool Changed = false;
   1055 
   1056   MachineFunction::iterator FallThru =
   1057     llvm::next(MachineFunction::iterator(this));
   1058 
   1059   if (DestA == 0 && DestB == 0) {
   1060     // Block falls through to successor.
   1061     DestA = FallThru;
   1062     DestB = FallThru;
   1063   } else if (DestA != 0 && DestB == 0) {
   1064     if (isCond)
   1065       // Block ends in conditional jump that falls through to successor.
   1066       DestB = FallThru;
   1067   } else {
   1068     assert(DestA && DestB && isCond &&
   1069            "CFG in a bad state. Cannot correct CFG edges");
   1070   }
   1071 
   1072   // Remove superfluous edges. I.e., those which aren't destinations of this
   1073   // basic block, duplicate edges, or landing pads.
   1074   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
   1075   MachineBasicBlock::succ_iterator SI = succ_begin();
   1076   while (SI != succ_end()) {
   1077     const MachineBasicBlock *MBB = *SI;
   1078     if (!SeenMBBs.insert(MBB) ||
   1079         (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
   1080       // This is a superfluous edge, remove it.
   1081       SI = removeSuccessor(SI);
   1082       Changed = true;
   1083     } else {
   1084       ++SI;
   1085     }
   1086   }
   1087 
   1088   return Changed;
   1089 }
   1090 
   1091 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
   1092 /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
   1093 DebugLoc
   1094 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
   1095   DebugLoc DL;
   1096   instr_iterator E = instr_end();
   1097   if (MBBI == E)
   1098     return DL;
   1099 
   1100   // Skip debug declarations, we don't want a DebugLoc from them.
   1101   while (MBBI != E && MBBI->isDebugValue())
   1102     MBBI++;
   1103   if (MBBI != E)
   1104     DL = MBBI->getDebugLoc();
   1105   return DL;
   1106 }
   1107 
   1108 /// getSuccWeight - Return weight of the edge from this block to MBB.
   1109 ///
   1110 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
   1111   if (Weights.empty())
   1112     return 0;
   1113 
   1114   return *getWeightIterator(Succ);
   1115 }
   1116 
   1117 /// getWeightIterator - Return wight iterator corresonding to the I successor
   1118 /// iterator
   1119 MachineBasicBlock::weight_iterator MachineBasicBlock::
   1120 getWeightIterator(MachineBasicBlock::succ_iterator I) {
   1121   assert(Weights.size() == Successors.size() && "Async weight list!");
   1122   size_t index = std::distance(Successors.begin(), I);
   1123   assert(index < Weights.size() && "Not a current successor!");
   1124   return Weights.begin() + index;
   1125 }
   1126 
   1127 /// getWeightIterator - Return wight iterator corresonding to the I successor
   1128 /// iterator
   1129 MachineBasicBlock::const_weight_iterator MachineBasicBlock::
   1130 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
   1131   assert(Weights.size() == Successors.size() && "Async weight list!");
   1132   const size_t index = std::distance(Successors.begin(), I);
   1133   assert(index < Weights.size() && "Not a current successor!");
   1134   return Weights.begin() + index;
   1135 }
   1136 
   1137 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
   1138 /// as of just before "MI".
   1139 ///
   1140 /// Search is localised to a neighborhood of
   1141 /// Neighborhood instructions before (searching for defs or kills) and N
   1142 /// instructions after (searching just for defs) MI.
   1143 MachineBasicBlock::LivenessQueryResult
   1144 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
   1145                                            unsigned Reg, MachineInstr *MI,
   1146                                            unsigned Neighborhood) {
   1147   unsigned N = Neighborhood;
   1148   MachineBasicBlock *MBB = MI->getParent();
   1149 
   1150   // Start by searching backwards from MI, looking for kills, reads or defs.
   1151 
   1152   MachineBasicBlock::iterator I(MI);
   1153   // If this is the first insn in the block, don't search backwards.
   1154   if (I != MBB->begin()) {
   1155     do {
   1156       --I;
   1157 
   1158       MachineOperandIteratorBase::PhysRegInfo Analysis =
   1159         MIOperands(I).analyzePhysReg(Reg, TRI);
   1160 
   1161       if (Analysis.Defines)
   1162         // Outputs happen after inputs so they take precedence if both are
   1163         // present.
   1164         return Analysis.DefinesDead ? LQR_Dead : LQR_Live;
   1165 
   1166       if (Analysis.Kills || Analysis.Clobbers)
   1167         // Register killed, so isn't live.
   1168         return LQR_Dead;
   1169 
   1170       else if (Analysis.ReadsOverlap)
   1171         // Defined or read without a previous kill - live.
   1172         return Analysis.Reads ? LQR_Live : LQR_OverlappingLive;
   1173 
   1174     } while (I != MBB->begin() && --N > 0);
   1175   }
   1176 
   1177   // Did we get to the start of the block?
   1178   if (I == MBB->begin()) {
   1179     // If so, the register's state is definitely defined by the live-in state.
   1180     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
   1181          RAI.isValid(); ++RAI) {
   1182       if (MBB->isLiveIn(*RAI))
   1183         return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
   1184     }
   1185 
   1186     return LQR_Dead;
   1187   }
   1188 
   1189   N = Neighborhood;
   1190 
   1191   // Try searching forwards from MI, looking for reads or defs.
   1192   I = MachineBasicBlock::iterator(MI);
   1193   // If this is the last insn in the block, don't search forwards.
   1194   if (I != MBB->end()) {
   1195     for (++I; I != MBB->end() && N > 0; ++I, --N) {
   1196       MachineOperandIteratorBase::PhysRegInfo Analysis =
   1197         MIOperands(I).analyzePhysReg(Reg, TRI);
   1198 
   1199       if (Analysis.ReadsOverlap)
   1200         // Used, therefore must have been live.
   1201         return (Analysis.Reads) ?
   1202           LQR_Live : LQR_OverlappingLive;
   1203 
   1204       else if (Analysis.Clobbers || Analysis.Defines)
   1205         // Defined (but not read) therefore cannot have been live.
   1206         return LQR_Dead;
   1207     }
   1208   }
   1209 
   1210   // At this point we have no idea of the liveness of the register.
   1211   return LQR_Unknown;
   1212 }
   1213 
   1214 void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB,
   1215                           bool t) {
   1216   OS << "BB#" << MBB->getNumber();
   1217 }
   1218 
   1219