Home | History | Annotate | Download | only in SVD
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_JACOBISVD_H
     11 #define EIGEN_JACOBISVD_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 // forward declaration (needed by ICC)
     17 // the empty body is required by MSVC
     18 template<typename MatrixType, int QRPreconditioner,
     19          bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
     20 struct svd_precondition_2x2_block_to_be_real {};
     21 
     22 /*** QR preconditioners (R-SVD)
     23  ***
     24  *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
     25  *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
     26  *** JacobiSVD which by itself is only able to work on square matrices.
     27  ***/
     28 
     29 enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };
     30 
     31 template<typename MatrixType, int QRPreconditioner, int Case>
     32 struct qr_preconditioner_should_do_anything
     33 {
     34   enum { a = MatrixType::RowsAtCompileTime != Dynamic &&
     35              MatrixType::ColsAtCompileTime != Dynamic &&
     36              MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
     37          b = MatrixType::RowsAtCompileTime != Dynamic &&
     38              MatrixType::ColsAtCompileTime != Dynamic &&
     39              MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
     40          ret = !( (QRPreconditioner == NoQRPreconditioner) ||
     41                   (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
     42                   (Case == PreconditionIfMoreRowsThanCols && bool(b)) )
     43   };
     44 };
     45 
     46 template<typename MatrixType, int QRPreconditioner, int Case,
     47          bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret
     48 > struct qr_preconditioner_impl {};
     49 
     50 template<typename MatrixType, int QRPreconditioner, int Case>
     51 class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false>
     52 {
     53 public:
     54   typedef typename MatrixType::Index Index;
     55   void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {}
     56   bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&)
     57   {
     58     return false;
     59   }
     60 };
     61 
     62 /*** preconditioner using FullPivHouseholderQR ***/
     63 
     64 template<typename MatrixType>
     65 class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
     66 {
     67 public:
     68   typedef typename MatrixType::Index Index;
     69   typedef typename MatrixType::Scalar Scalar;
     70   enum
     71   {
     72     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     73     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime
     74   };
     75   typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType;
     76 
     77   void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
     78   {
     79     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
     80     {
     81       m_qr = FullPivHouseholderQR<MatrixType>(svd.rows(), svd.cols());
     82     }
     83     if (svd.m_computeFullU) m_workspace.resize(svd.rows());
     84   }
     85 
     86   bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
     87   {
     88     if(matrix.rows() > matrix.cols())
     89     {
     90       m_qr.compute(matrix);
     91       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
     92       if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
     93       if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
     94       return true;
     95     }
     96     return false;
     97   }
     98 private:
     99   FullPivHouseholderQR<MatrixType> m_qr;
    100   WorkspaceType m_workspace;
    101 };
    102 
    103 template<typename MatrixType>
    104 class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
    105 {
    106 public:
    107   typedef typename MatrixType::Index Index;
    108   typedef typename MatrixType::Scalar Scalar;
    109   enum
    110   {
    111     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    112     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    113     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    114     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    115     Options = MatrixType::Options
    116   };
    117   typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
    118           TransposeTypeWithSameStorageOrder;
    119 
    120   void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
    121   {
    122     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
    123     {
    124       m_qr = FullPivHouseholderQR<TransposeTypeWithSameStorageOrder>(svd.cols(), svd.rows());
    125     }
    126     m_adjoint.resize(svd.cols(), svd.rows());
    127     if (svd.m_computeFullV) m_workspace.resize(svd.cols());
    128   }
    129 
    130   bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
    131   {
    132     if(matrix.cols() > matrix.rows())
    133     {
    134       m_adjoint = matrix.adjoint();
    135       m_qr.compute(m_adjoint);
    136       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
    137       if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
    138       if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
    139       return true;
    140     }
    141     else return false;
    142   }
    143 private:
    144   FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> m_qr;
    145   TransposeTypeWithSameStorageOrder m_adjoint;
    146   typename internal::plain_row_type<MatrixType>::type m_workspace;
    147 };
    148 
    149 /*** preconditioner using ColPivHouseholderQR ***/
    150 
    151 template<typename MatrixType>
    152 class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
    153 {
    154 public:
    155   typedef typename MatrixType::Index Index;
    156 
    157   void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
    158   {
    159     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
    160     {
    161       m_qr = ColPivHouseholderQR<MatrixType>(svd.rows(), svd.cols());
    162     }
    163     if (svd.m_computeFullU) m_workspace.resize(svd.rows());
    164     else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
    165   }
    166 
    167   bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
    168   {
    169     if(matrix.rows() > matrix.cols())
    170     {
    171       m_qr.compute(matrix);
    172       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
    173       if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
    174       else if(svd.m_computeThinU)
    175       {
    176         svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
    177         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
    178       }
    179       if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
    180       return true;
    181     }
    182     return false;
    183   }
    184 
    185 private:
    186   ColPivHouseholderQR<MatrixType> m_qr;
    187   typename internal::plain_col_type<MatrixType>::type m_workspace;
    188 };
    189 
    190 template<typename MatrixType>
    191 class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
    192 {
    193 public:
    194   typedef typename MatrixType::Index Index;
    195   typedef typename MatrixType::Scalar Scalar;
    196   enum
    197   {
    198     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    199     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    200     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    201     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    202     Options = MatrixType::Options
    203   };
    204 
    205   typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
    206           TransposeTypeWithSameStorageOrder;
    207 
    208   void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd)
    209   {
    210     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
    211     {
    212       m_qr = ColPivHouseholderQR<TransposeTypeWithSameStorageOrder>(svd.cols(), svd.rows());
    213     }
    214     if (svd.m_computeFullV) m_workspace.resize(svd.cols());
    215     else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
    216     m_adjoint.resize(svd.cols(), svd.rows());
    217   }
    218 
    219   bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix)
    220   {
    221     if(matrix.cols() > matrix.rows())
    222     {
    223       m_adjoint = matrix.adjoint();
    224       m_qr.compute(m_adjoint);
    225 
    226       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
    227       if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
    228       else if(svd.m_computeThinV)
    229       {
    230         svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
    231         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
    232       }
    233       if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
    234       return true;
    235     }
    236     else return false;
    237   }
    238 
    239 private:
    240   ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> m_qr;
    241   TransposeTypeWithSameStorageOrder m_adjoint;
    242   typename internal::plain_row_type<MatrixType>::type m_workspace;
    243 };
    244 
    245 /*** preconditioner using HouseholderQR ***/
    246 
    247 template<typename MatrixType>
    248 class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true>
    249 {
    250 public:
    251   typedef typename MatrixType::Index Index;
    252 
    253   void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
    254   {
    255     if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
    256     {
    257       m_qr = HouseholderQR<MatrixType>(svd.rows(), svd.cols());
    258     }
    259     if (svd.m_computeFullU) m_workspace.resize(svd.rows());
    260     else if (svd.m_computeThinU) m_workspace.resize(svd.cols());
    261   }
    262 
    263   bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
    264   {
    265     if(matrix.rows() > matrix.cols())
    266     {
    267       m_qr.compute(matrix);
    268       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>();
    269       if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
    270       else if(svd.m_computeThinU)
    271       {
    272         svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
    273         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
    274       }
    275       if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
    276       return true;
    277     }
    278     return false;
    279   }
    280 private:
    281   HouseholderQR<MatrixType> m_qr;
    282   typename internal::plain_col_type<MatrixType>::type m_workspace;
    283 };
    284 
    285 template<typename MatrixType>
    286 class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true>
    287 {
    288 public:
    289   typedef typename MatrixType::Index Index;
    290   typedef typename MatrixType::Scalar Scalar;
    291   enum
    292   {
    293     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    294     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    295     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    296     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    297     Options = MatrixType::Options
    298   };
    299 
    300   typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime>
    301           TransposeTypeWithSameStorageOrder;
    302 
    303   void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd)
    304   {
    305     if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols())
    306     {
    307       m_qr = HouseholderQR<TransposeTypeWithSameStorageOrder>(svd.cols(), svd.rows());
    308     }
    309     if (svd.m_computeFullV) m_workspace.resize(svd.cols());
    310     else if (svd.m_computeThinV) m_workspace.resize(svd.rows());
    311     m_adjoint.resize(svd.cols(), svd.rows());
    312   }
    313 
    314   bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix)
    315   {
    316     if(matrix.cols() > matrix.rows())
    317     {
    318       m_adjoint = matrix.adjoint();
    319       m_qr.compute(m_adjoint);
    320 
    321       svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint();
    322       if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
    323       else if(svd.m_computeThinV)
    324       {
    325         svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
    326         m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
    327       }
    328       if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
    329       return true;
    330     }
    331     else return false;
    332   }
    333 
    334 private:
    335   HouseholderQR<TransposeTypeWithSameStorageOrder> m_qr;
    336   TransposeTypeWithSameStorageOrder m_adjoint;
    337   typename internal::plain_row_type<MatrixType>::type m_workspace;
    338 };
    339 
    340 /*** 2x2 SVD implementation
    341  ***
    342  *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
    343  ***/
    344 
    345 template<typename MatrixType, int QRPreconditioner>
    346 struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false>
    347 {
    348   typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
    349   typedef typename SVD::Index Index;
    350   static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {}
    351 };
    352 
    353 template<typename MatrixType, int QRPreconditioner>
    354 struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
    355 {
    356   typedef JacobiSVD<MatrixType, QRPreconditioner> SVD;
    357   typedef typename MatrixType::Scalar Scalar;
    358   typedef typename MatrixType::RealScalar RealScalar;
    359   typedef typename SVD::Index Index;
    360   static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q)
    361   {
    362     Scalar z;
    363     JacobiRotation<Scalar> rot;
    364     RealScalar n = sqrt(abs2(work_matrix.coeff(p,p)) + abs2(work_matrix.coeff(q,p)));
    365     if(n==0)
    366     {
    367       z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
    368       work_matrix.row(p) *= z;
    369       if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
    370       z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
    371       work_matrix.row(q) *= z;
    372       if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
    373     }
    374     else
    375     {
    376       rot.c() = conj(work_matrix.coeff(p,p)) / n;
    377       rot.s() = work_matrix.coeff(q,p) / n;
    378       work_matrix.applyOnTheLeft(p,q,rot);
    379       if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
    380       if(work_matrix.coeff(p,q) != Scalar(0))
    381       {
    382         Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
    383         work_matrix.col(q) *= z;
    384         if(svd.computeV()) svd.m_matrixV.col(q) *= z;
    385       }
    386       if(work_matrix.coeff(q,q) != Scalar(0))
    387       {
    388         z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
    389         work_matrix.row(q) *= z;
    390         if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
    391       }
    392     }
    393   }
    394 };
    395 
    396 template<typename MatrixType, typename RealScalar, typename Index>
    397 void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
    398                             JacobiRotation<RealScalar> *j_left,
    399                             JacobiRotation<RealScalar> *j_right)
    400 {
    401   Matrix<RealScalar,2,2> m;
    402   m << real(matrix.coeff(p,p)), real(matrix.coeff(p,q)),
    403        real(matrix.coeff(q,p)), real(matrix.coeff(q,q));
    404   JacobiRotation<RealScalar> rot1;
    405   RealScalar t = m.coeff(0,0) + m.coeff(1,1);
    406   RealScalar d = m.coeff(1,0) - m.coeff(0,1);
    407   if(t == RealScalar(0))
    408   {
    409     rot1.c() = RealScalar(0);
    410     rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
    411   }
    412   else
    413   {
    414     RealScalar u = d / t;
    415     rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + abs2(u));
    416     rot1.s() = rot1.c() * u;
    417   }
    418   m.applyOnTheLeft(0,1,rot1);
    419   j_right->makeJacobi(m,0,1);
    420   *j_left  = rot1 * j_right->transpose();
    421 }
    422 
    423 } // end namespace internal
    424 
    425 /** \ingroup SVD_Module
    426   *
    427   *
    428   * \class JacobiSVD
    429   *
    430   * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
    431   *
    432   * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
    433   * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally
    434   *                        for the R-SVD step for non-square matrices. See discussion of possible values below.
    435   *
    436   * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
    437   *   \f[ A = U S V^* \f]
    438   * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
    439   * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
    440   * and right \em singular \em vectors of \a A respectively.
    441   *
    442   * Singular values are always sorted in decreasing order.
    443   *
    444   * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly.
    445   *
    446   * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
    447   * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
    448   * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
    449   * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
    450   *
    451   * Here's an example demonstrating basic usage:
    452   * \include JacobiSVD_basic.cpp
    453   * Output: \verbinclude JacobiSVD_basic.out
    454   *
    455   * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than
    456   * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and
    457   * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms.
    458   * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
    459   *
    460   * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
    461   * terminate in finite (and reasonable) time.
    462   *
    463   * The possible values for QRPreconditioner are:
    464   * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
    465   * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
    466   *     Contrary to other QRs, it doesn't allow computing thin unitaries.
    467   * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR.
    468   *     This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization
    469   *     is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive
    470   *     process is more reliable than the optimized bidiagonal SVD iterations.
    471   * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing
    472   *     JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in
    473   *     faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking
    474   *     if QR preconditioning is needed before applying it anyway.
    475   *
    476   * \sa MatrixBase::jacobiSvd()
    477   */
    478 template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
    479 {
    480   public:
    481 
    482     typedef _MatrixType MatrixType;
    483     typedef typename MatrixType::Scalar Scalar;
    484     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    485     typedef typename MatrixType::Index Index;
    486     enum {
    487       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    488       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    489       DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
    490       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    491       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    492       MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
    493       MatrixOptions = MatrixType::Options
    494     };
    495 
    496     typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
    497                    MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
    498             MatrixUType;
    499     typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
    500                    MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
    501             MatrixVType;
    502     typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
    503     typedef typename internal::plain_row_type<MatrixType>::type RowType;
    504     typedef typename internal::plain_col_type<MatrixType>::type ColType;
    505     typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
    506                    MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
    507             WorkMatrixType;
    508 
    509     /** \brief Default Constructor.
    510       *
    511       * The default constructor is useful in cases in which the user intends to
    512       * perform decompositions via JacobiSVD::compute(const MatrixType&).
    513       */
    514     JacobiSVD()
    515       : m_isInitialized(false),
    516         m_isAllocated(false),
    517         m_computationOptions(0),
    518         m_rows(-1), m_cols(-1)
    519     {}
    520 
    521 
    522     /** \brief Default Constructor with memory preallocation
    523       *
    524       * Like the default constructor but with preallocation of the internal data
    525       * according to the specified problem size.
    526       * \sa JacobiSVD()
    527       */
    528     JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
    529       : m_isInitialized(false),
    530         m_isAllocated(false),
    531         m_computationOptions(0),
    532         m_rows(-1), m_cols(-1)
    533     {
    534       allocate(rows, cols, computationOptions);
    535     }
    536 
    537     /** \brief Constructor performing the decomposition of given matrix.
    538      *
    539      * \param matrix the matrix to decompose
    540      * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
    541      *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
    542      *                           #ComputeFullV, #ComputeThinV.
    543      *
    544      * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
    545      * available with the (non-default) FullPivHouseholderQR preconditioner.
    546      */
    547     JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
    548       : m_isInitialized(false),
    549         m_isAllocated(false),
    550         m_computationOptions(0),
    551         m_rows(-1), m_cols(-1)
    552     {
    553       compute(matrix, computationOptions);
    554     }
    555 
    556     /** \brief Method performing the decomposition of given matrix using custom options.
    557      *
    558      * \param matrix the matrix to decompose
    559      * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
    560      *                           By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU,
    561      *                           #ComputeFullV, #ComputeThinV.
    562      *
    563      * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
    564      * available with the (non-default) FullPivHouseholderQR preconditioner.
    565      */
    566     JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
    567 
    568     /** \brief Method performing the decomposition of given matrix using current options.
    569      *
    570      * \param matrix the matrix to decompose
    571      *
    572      * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
    573      */
    574     JacobiSVD& compute(const MatrixType& matrix)
    575     {
    576       return compute(matrix, m_computationOptions);
    577     }
    578 
    579     /** \returns the \a U matrix.
    580      *
    581      * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
    582      * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU.
    583      *
    584      * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
    585      *
    586      * This method asserts that you asked for \a U to be computed.
    587      */
    588     const MatrixUType& matrixU() const
    589     {
    590       eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
    591       eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?");
    592       return m_matrixU;
    593     }
    594 
    595     /** \returns the \a V matrix.
    596      *
    597      * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
    598      * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV.
    599      *
    600      * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
    601      *
    602      * This method asserts that you asked for \a V to be computed.
    603      */
    604     const MatrixVType& matrixV() const
    605     {
    606       eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
    607       eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?");
    608       return m_matrixV;
    609     }
    610 
    611     /** \returns the vector of singular values.
    612      *
    613      * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
    614      * returned vector has size \a m.  Singular values are always sorted in decreasing order.
    615      */
    616     const SingularValuesType& singularValues() const
    617     {
    618       eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
    619       return m_singularValues;
    620     }
    621 
    622     /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
    623     inline bool computeU() const { return m_computeFullU || m_computeThinU; }
    624     /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
    625     inline bool computeV() const { return m_computeFullV || m_computeThinV; }
    626 
    627     /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
    628       *
    629       * \param b the right-hand-side of the equation to solve.
    630       *
    631       * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
    632       *
    633       * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
    634       * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
    635       */
    636     template<typename Rhs>
    637     inline const internal::solve_retval<JacobiSVD, Rhs>
    638     solve(const MatrixBase<Rhs>& b) const
    639     {
    640       eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
    641       eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
    642       return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived());
    643     }
    644 
    645     /** \returns the number of singular values that are not exactly 0 */
    646     Index nonzeroSingularValues() const
    647     {
    648       eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
    649       return m_nonzeroSingularValues;
    650     }
    651 
    652     inline Index rows() const { return m_rows; }
    653     inline Index cols() const { return m_cols; }
    654 
    655   private:
    656     void allocate(Index rows, Index cols, unsigned int computationOptions);
    657 
    658   protected:
    659     MatrixUType m_matrixU;
    660     MatrixVType m_matrixV;
    661     SingularValuesType m_singularValues;
    662     WorkMatrixType m_workMatrix;
    663     bool m_isInitialized, m_isAllocated;
    664     bool m_computeFullU, m_computeThinU;
    665     bool m_computeFullV, m_computeThinV;
    666     unsigned int m_computationOptions;
    667     Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
    668 
    669     template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
    670     friend struct internal::svd_precondition_2x2_block_to_be_real;
    671     template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything>
    672     friend struct internal::qr_preconditioner_impl;
    673 
    674     internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols;
    675     internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows;
    676 };
    677 
    678 template<typename MatrixType, int QRPreconditioner>
    679 void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions)
    680 {
    681   eigen_assert(rows >= 0 && cols >= 0);
    682 
    683   if (m_isAllocated &&
    684       rows == m_rows &&
    685       cols == m_cols &&
    686       computationOptions == m_computationOptions)
    687   {
    688     return;
    689   }
    690 
    691   m_rows = rows;
    692   m_cols = cols;
    693   m_isInitialized = false;
    694   m_isAllocated = true;
    695   m_computationOptions = computationOptions;
    696   m_computeFullU = (computationOptions & ComputeFullU) != 0;
    697   m_computeThinU = (computationOptions & ComputeThinU) != 0;
    698   m_computeFullV = (computationOptions & ComputeFullV) != 0;
    699   m_computeThinV = (computationOptions & ComputeThinV) != 0;
    700   eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U");
    701   eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V");
    702   eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
    703               "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns.");
    704   if (QRPreconditioner == FullPivHouseholderQRPreconditioner)
    705   {
    706       eigen_assert(!(m_computeThinU || m_computeThinV) &&
    707               "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
    708               "Use the ColPivHouseholderQR preconditioner instead.");
    709   }
    710   m_diagSize = (std::min)(m_rows, m_cols);
    711   m_singularValues.resize(m_diagSize);
    712   m_matrixU.resize(m_rows, m_computeFullU ? m_rows
    713                           : m_computeThinU ? m_diagSize
    714                           : 0);
    715   m_matrixV.resize(m_cols, m_computeFullV ? m_cols
    716                           : m_computeThinV ? m_diagSize
    717                           : 0);
    718   m_workMatrix.resize(m_diagSize, m_diagSize);
    719 
    720   if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this);
    721   if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this);
    722 }
    723 
    724 template<typename MatrixType, int QRPreconditioner>
    725 JacobiSVD<MatrixType, QRPreconditioner>&
    726 JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions)
    727 {
    728   allocate(matrix.rows(), matrix.cols(), computationOptions);
    729 
    730   // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations,
    731   // only worsening the precision of U and V as we accumulate more rotations
    732   const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();
    733 
    734   // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
    735   const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min();
    736 
    737   /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */
    738 
    739   if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix))
    740   {
    741     m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize);
    742     if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows);
    743     if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize);
    744     if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
    745     if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
    746   }
    747 
    748   /*** step 2. The main Jacobi SVD iteration. ***/
    749 
    750   bool finished = false;
    751   while(!finished)
    752   {
    753     finished = true;
    754 
    755     // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix
    756 
    757     for(Index p = 1; p < m_diagSize; ++p)
    758     {
    759       for(Index q = 0; q < p; ++q)
    760       {
    761         // if this 2x2 sub-matrix is not diagonal already...
    762         // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
    763         // keep us iterating forever. Similarly, small denormal numbers are considered zero.
    764         using std::max;
    765         RealScalar threshold = (max)(considerAsZero, precision * (max)(internal::abs(m_workMatrix.coeff(p,p)),
    766                                                                        internal::abs(m_workMatrix.coeff(q,q))));
    767         if((max)(internal::abs(m_workMatrix.coeff(p,q)),internal::abs(m_workMatrix.coeff(q,p))) > threshold)
    768         {
    769           finished = false;
    770 
    771           // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
    772           internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q);
    773           JacobiRotation<RealScalar> j_left, j_right;
    774           internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
    775 
    776           // accumulate resulting Jacobi rotations
    777           m_workMatrix.applyOnTheLeft(p,q,j_left);
    778           if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
    779 
    780           m_workMatrix.applyOnTheRight(p,q,j_right);
    781           if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right);
    782         }
    783       }
    784     }
    785   }
    786 
    787   /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/
    788 
    789   for(Index i = 0; i < m_diagSize; ++i)
    790   {
    791     RealScalar a = internal::abs(m_workMatrix.coeff(i,i));
    792     m_singularValues.coeffRef(i) = a;
    793     if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
    794   }
    795 
    796   /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/
    797 
    798   m_nonzeroSingularValues = m_diagSize;
    799   for(Index i = 0; i < m_diagSize; i++)
    800   {
    801     Index pos;
    802     RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos);
    803     if(maxRemainingSingularValue == RealScalar(0))
    804     {
    805       m_nonzeroSingularValues = i;
    806       break;
    807     }
    808     if(pos)
    809     {
    810       pos += i;
    811       std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
    812       if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
    813       if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
    814     }
    815   }
    816 
    817   m_isInitialized = true;
    818   return *this;
    819 }
    820 
    821 namespace internal {
    822 template<typename _MatrixType, int QRPreconditioner, typename Rhs>
    823 struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
    824   : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
    825 {
    826   typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType;
    827   EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs)
    828 
    829   template<typename Dest> void evalTo(Dest& dst) const
    830   {
    831     eigen_assert(rhs().rows() == dec().rows());
    832 
    833     // A = U S V^*
    834     // So A^{-1} = V S^{-1} U^*
    835 
    836     Index diagSize = (std::min)(dec().rows(), dec().cols());
    837     typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize);
    838 
    839     Index nonzeroSingVals = dec().nonzeroSingularValues();
    840     invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
    841     invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
    842 
    843     dst = dec().matrixV().leftCols(diagSize)
    844         * invertedSingVals.asDiagonal()
    845         * dec().matrixU().leftCols(diagSize).adjoint()
    846         * rhs();
    847   }
    848 };
    849 } // end namespace internal
    850 
    851 /** \svd_module
    852   *
    853   * \return the singular value decomposition of \c *this computed by two-sided
    854   * Jacobi transformations.
    855   *
    856   * \sa class JacobiSVD
    857   */
    858 template<typename Derived>
    859 JacobiSVD<typename MatrixBase<Derived>::PlainObject>
    860 MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const
    861 {
    862   return JacobiSVD<PlainObject>(*this, computationOptions);
    863 }
    864 
    865 } // end namespace Eigen
    866 
    867 #endif // EIGEN_JACOBISVD_H
    868