1 /* 2 * Written by Doug Lea with assistance from members of JCP JSR-166 3 * Expert Group and released to the public domain, as explained at 4 * http://creativecommons.org/publicdomain/zero/1.0/ 5 */ 6 7 package java.util.concurrent; 8 9 import java.util.ArrayList; 10 import java.util.Arrays; 11 import java.util.Collection; 12 import java.util.Collections; 13 import java.util.List; 14 import java.util.concurrent.AbstractExecutorService; 15 import java.util.concurrent.Callable; 16 import java.util.concurrent.ExecutorService; 17 import java.util.concurrent.Future; 18 import java.util.concurrent.RejectedExecutionException; 19 import java.util.concurrent.RunnableFuture; 20 import java.util.concurrent.TimeUnit; 21 22 /** 23 * An {@link ExecutorService} for running {@link ForkJoinTask}s. 24 * A {@code ForkJoinPool} provides the entry point for submissions 25 * from non-{@code ForkJoinTask} clients, as well as management and 26 * monitoring operations. 27 * 28 * <p>A {@code ForkJoinPool} differs from other kinds of {@link 29 * ExecutorService} mainly by virtue of employing 30 * <em>work-stealing</em>: all threads in the pool attempt to find and 31 * execute tasks submitted to the pool and/or created by other active 32 * tasks (eventually blocking waiting for work if none exist). This 33 * enables efficient processing when most tasks spawn other subtasks 34 * (as do most {@code ForkJoinTask}s), as well as when many small 35 * tasks are submitted to the pool from external clients. Especially 36 * when setting <em>asyncMode</em> to true in constructors, {@code 37 * ForkJoinPool}s may also be appropriate for use with event-style 38 * tasks that are never joined. 39 * 40 * <p>A static {@link #commonPool()} is available and appropriate for 41 * most applications. The common pool is used by any ForkJoinTask that 42 * is not explicitly submitted to a specified pool. Using the common 43 * pool normally reduces resource usage (its threads are slowly 44 * reclaimed during periods of non-use, and reinstated upon subsequent 45 * use). 46 * 47 * <p>For applications that require separate or custom pools, a {@code 48 * ForkJoinPool} may be constructed with a given target parallelism 49 * level; by default, equal to the number of available processors. The 50 * pool attempts to maintain enough active (or available) threads by 51 * dynamically adding, suspending, or resuming internal worker 52 * threads, even if some tasks are stalled waiting to join 53 * others. However, no such adjustments are guaranteed in the face of 54 * blocked I/O or other unmanaged synchronization. The nested {@link 55 * ManagedBlocker} interface enables extension of the kinds of 56 * synchronization accommodated. 57 * 58 * <p>In addition to execution and lifecycle control methods, this 59 * class provides status check methods (for example 60 * {@link #getStealCount}) that are intended to aid in developing, 61 * tuning, and monitoring fork/join applications. Also, method 62 * {@link #toString} returns indications of pool state in a 63 * convenient form for informal monitoring. 64 * 65 * <p>As is the case with other ExecutorServices, there are three 66 * main task execution methods summarized in the following table. 67 * These are designed to be used primarily by clients not already 68 * engaged in fork/join computations in the current pool. The main 69 * forms of these methods accept instances of {@code ForkJoinTask}, 70 * but overloaded forms also allow mixed execution of plain {@code 71 * Runnable}- or {@code Callable}- based activities as well. However, 72 * tasks that are already executing in a pool should normally instead 73 * use the within-computation forms listed in the table unless using 74 * async event-style tasks that are not usually joined, in which case 75 * there is little difference among choice of methods. 76 * 77 * <table BORDER CELLPADDING=3 CELLSPACING=1> 78 * <tr> 79 * <td></td> 80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td> 81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td> 82 * </tr> 83 * <tr> 84 * <td> <b>Arrange async execution</td> 85 * <td> {@link #execute(ForkJoinTask)}</td> 86 * <td> {@link ForkJoinTask#fork}</td> 87 * </tr> 88 * <tr> 89 * <td> <b>Await and obtain result</td> 90 * <td> {@link #invoke(ForkJoinTask)}</td> 91 * <td> {@link ForkJoinTask#invoke}</td> 92 * </tr> 93 * <tr> 94 * <td> <b>Arrange exec and obtain Future</td> 95 * <td> {@link #submit(ForkJoinTask)}</td> 96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td> 97 * </tr> 98 * </table> 99 * 100 * <p>The common pool is by default constructed with default 101 * parameters, but these may be controlled by setting three {@link 102 * System#getProperty system properties} with prefix {@code 103 * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} -- 104 * an integer greater than zero, {@code threadFactory} -- the class 105 * name of a {@link ForkJoinWorkerThreadFactory}, and {@code 106 * exceptionHandler} -- the class name of a {@link 107 * java.lang.Thread.UncaughtExceptionHandler 108 * Thread.UncaughtExceptionHandler}. Upon any error in establishing 109 * these settings, default parameters are used. 110 * 111 * <p><b>Implementation notes</b>: This implementation restricts the 112 * maximum number of running threads to 32767. Attempts to create 113 * pools with greater than the maximum number result in 114 * {@code IllegalArgumentException}. 115 * 116 * <p>This implementation rejects submitted tasks (that is, by throwing 117 * {@link RejectedExecutionException}) only when the pool is shut down 118 * or internal resources have been exhausted. 119 * 120 * @since 1.7 121 * @hide 122 * @author Doug Lea 123 */ 124 public class ForkJoinPool extends AbstractExecutorService { 125 126 /* 127 * Implementation Overview 128 * 129 * This class and its nested classes provide the main 130 * functionality and control for a set of worker threads: 131 * Submissions from non-FJ threads enter into submission queues. 132 * Workers take these tasks and typically split them into subtasks 133 * that may be stolen by other workers. Preference rules give 134 * first priority to processing tasks from their own queues (LIFO 135 * or FIFO, depending on mode), then to randomized FIFO steals of 136 * tasks in other queues. 137 * 138 * WorkQueues 139 * ========== 140 * 141 * Most operations occur within work-stealing queues (in nested 142 * class WorkQueue). These are special forms of Deques that 143 * support only three of the four possible end-operations -- push, 144 * pop, and poll (aka steal), under the further constraints that 145 * push and pop are called only from the owning thread (or, as 146 * extended here, under a lock), while poll may be called from 147 * other threads. (If you are unfamiliar with them, you probably 148 * want to read Herlihy and Shavit's book "The Art of 149 * Multiprocessor programming", chapter 16 describing these in 150 * more detail before proceeding.) The main work-stealing queue 151 * design is roughly similar to those in the papers "Dynamic 152 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005 153 * (http://research.sun.com/scalable/pubs/index.html) and 154 * "Idempotent work stealing" by Michael, Saraswat, and Vechev, 155 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186). 156 * The main differences ultimately stem from GC requirements that 157 * we null out taken slots as soon as we can, to maintain as small 158 * a footprint as possible even in programs generating huge 159 * numbers of tasks. To accomplish this, we shift the CAS 160 * arbitrating pop vs poll (steal) from being on the indices 161 * ("base" and "top") to the slots themselves. So, both a 162 * successful pop and poll mainly entail a CAS of a slot from 163 * non-null to null. Because we rely on CASes of references, we 164 * do not need tag bits on base or top. They are simple ints as 165 * used in any circular array-based queue (see for example 166 * ArrayDeque). Updates to the indices must still be ordered in a 167 * way that guarantees that top == base means the queue is empty, 168 * but otherwise may err on the side of possibly making the queue 169 * appear nonempty when a push, pop, or poll have not fully 170 * committed. Note that this means that the poll operation, 171 * considered individually, is not wait-free. One thief cannot 172 * successfully continue until another in-progress one (or, if 173 * previously empty, a push) completes. However, in the 174 * aggregate, we ensure at least probabilistic non-blockingness. 175 * If an attempted steal fails, a thief always chooses a different 176 * random victim target to try next. So, in order for one thief to 177 * progress, it suffices for any in-progress poll or new push on 178 * any empty queue to complete. (This is why we normally use 179 * method pollAt and its variants that try once at the apparent 180 * base index, else consider alternative actions, rather than 181 * method poll.) 182 * 183 * This approach also enables support of a user mode in which local 184 * task processing is in FIFO, not LIFO order, simply by using 185 * poll rather than pop. This can be useful in message-passing 186 * frameworks in which tasks are never joined. However neither 187 * mode considers affinities, loads, cache localities, etc, so 188 * rarely provide the best possible performance on a given 189 * machine, but portably provide good throughput by averaging over 190 * these factors. (Further, even if we did try to use such 191 * information, we do not usually have a basis for exploiting it. 192 * For example, some sets of tasks profit from cache affinities, 193 * but others are harmed by cache pollution effects.) 194 * 195 * WorkQueues are also used in a similar way for tasks submitted 196 * to the pool. We cannot mix these tasks in the same queues used 197 * for work-stealing (this would contaminate lifo/fifo 198 * processing). Instead, we randomly associate submission queues 199 * with submitting threads, using a form of hashing. The 200 * ThreadLocal Submitter class contains a value initially used as 201 * a hash code for choosing existing queues, but may be randomly 202 * repositioned upon contention with other submitters. In 203 * essence, submitters act like workers except that they are 204 * restricted to executing local tasks that they submitted (or in 205 * the case of CountedCompleters, others with the same root task). 206 * However, because most shared/external queue operations are more 207 * expensive than internal, and because, at steady state, external 208 * submitters will compete for CPU with workers, ForkJoinTask.join 209 * and related methods disable them from repeatedly helping to 210 * process tasks if all workers are active. Insertion of tasks in 211 * shared mode requires a lock (mainly to protect in the case of 212 * resizing) but we use only a simple spinlock (using bits in 213 * field qlock), because submitters encountering a busy queue move 214 * on to try or create other queues -- they block only when 215 * creating and registering new queues. 216 * 217 * Management 218 * ========== 219 * 220 * The main throughput advantages of work-stealing stem from 221 * decentralized control -- workers mostly take tasks from 222 * themselves or each other. We cannot negate this in the 223 * implementation of other management responsibilities. The main 224 * tactic for avoiding bottlenecks is packing nearly all 225 * essentially atomic control state into two volatile variables 226 * that are by far most often read (not written) as status and 227 * consistency checks. 228 * 229 * Field "ctl" contains 64 bits holding all the information needed 230 * to atomically decide to add, inactivate, enqueue (on an event 231 * queue), dequeue, and/or re-activate workers. To enable this 232 * packing, we restrict maximum parallelism to (1<<15)-1 (which is 233 * far in excess of normal operating range) to allow ids, counts, 234 * and their negations (used for thresholding) to fit into 16bit 235 * fields. 236 * 237 * Field "plock" is a form of sequence lock with a saturating 238 * shutdown bit (similarly for per-queue "qlocks"), mainly 239 * protecting updates to the workQueues array, as well as to 240 * enable shutdown. When used as a lock, it is normally only very 241 * briefly held, so is nearly always available after at most a 242 * brief spin, but we use a monitor-based backup strategy to 243 * block when needed. 244 * 245 * Recording WorkQueues. WorkQueues are recorded in the 246 * "workQueues" array that is created upon first use and expanded 247 * if necessary. Updates to the array while recording new workers 248 * and unrecording terminated ones are protected from each other 249 * by a lock but the array is otherwise concurrently readable, and 250 * accessed directly. To simplify index-based operations, the 251 * array size is always a power of two, and all readers must 252 * tolerate null slots. Worker queues are at odd indices. Shared 253 * (submission) queues are at even indices, up to a maximum of 64 254 * slots, to limit growth even if array needs to expand to add 255 * more workers. Grouping them together in this way simplifies and 256 * speeds up task scanning. 257 * 258 * All worker thread creation is on-demand, triggered by task 259 * submissions, replacement of terminated workers, and/or 260 * compensation for blocked workers. However, all other support 261 * code is set up to work with other policies. To ensure that we 262 * do not hold on to worker references that would prevent GC, ALL 263 * accesses to workQueues are via indices into the workQueues 264 * array (which is one source of some of the messy code 265 * constructions here). In essence, the workQueues array serves as 266 * a weak reference mechanism. Thus for example the wait queue 267 * field of ctl stores indices, not references. Access to the 268 * workQueues in associated methods (for example signalWork) must 269 * both index-check and null-check the IDs. All such accesses 270 * ignore bad IDs by returning out early from what they are doing, 271 * since this can only be associated with termination, in which 272 * case it is OK to give up. All uses of the workQueues array 273 * also check that it is non-null (even if previously 274 * non-null). This allows nulling during termination, which is 275 * currently not necessary, but remains an option for 276 * resource-revocation-based shutdown schemes. It also helps 277 * reduce JIT issuance of uncommon-trap code, which tends to 278 * unnecessarily complicate control flow in some methods. 279 * 280 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot 281 * let workers spin indefinitely scanning for tasks when none can 282 * be found immediately, and we cannot start/resume workers unless 283 * there appear to be tasks available. On the other hand, we must 284 * quickly prod them into action when new tasks are submitted or 285 * generated. In many usages, ramp-up time to activate workers is 286 * the main limiting factor in overall performance (this is 287 * compounded at program start-up by JIT compilation and 288 * allocation). So we try to streamline this as much as possible. 289 * We park/unpark workers after placing in an event wait queue 290 * when they cannot find work. This "queue" is actually a simple 291 * Treiber stack, headed by the "id" field of ctl, plus a 15bit 292 * counter value (that reflects the number of times a worker has 293 * been inactivated) to avoid ABA effects (we need only as many 294 * version numbers as worker threads). Successors are held in 295 * field WorkQueue.nextWait. Queuing deals with several intrinsic 296 * races, mainly that a task-producing thread can miss seeing (and 297 * signalling) another thread that gave up looking for work but 298 * has not yet entered the wait queue. We solve this by requiring 299 * a full sweep of all workers (via repeated calls to method 300 * scan()) both before and after a newly waiting worker is added 301 * to the wait queue. During a rescan, the worker might release 302 * some other queued worker rather than itself, which has the same 303 * net effect. Because enqueued workers may actually be rescanning 304 * rather than waiting, we set and clear the "parker" field of 305 * WorkQueues to reduce unnecessary calls to unpark. (This 306 * requires a secondary recheck to avoid missed signals.) Note 307 * the unusual conventions about Thread.interrupts surrounding 308 * parking and other blocking: Because interrupts are used solely 309 * to alert threads to check termination, which is checked anyway 310 * upon blocking, we clear status (using Thread.interrupted) 311 * before any call to park, so that park does not immediately 312 * return due to status being set via some other unrelated call to 313 * interrupt in user code. 314 * 315 * Signalling. We create or wake up workers only when there 316 * appears to be at least one task they might be able to find and 317 * execute. However, many other threads may notice the same task 318 * and each signal to wake up a thread that might take it. So in 319 * general, pools will be over-signalled. When a submission is 320 * added or another worker adds a task to a queue that has fewer 321 * than two tasks, they signal waiting workers (or trigger 322 * creation of new ones if fewer than the given parallelism level 323 * -- signalWork), and may leave a hint to the unparked worker to 324 * help signal others upon wakeup). These primary signals are 325 * buttressed by others (see method helpSignal) whenever other 326 * threads scan for work or do not have a task to process. On 327 * most platforms, signalling (unpark) overhead time is noticeably 328 * long, and the time between signalling a thread and it actually 329 * making progress can be very noticeably long, so it is worth 330 * offloading these delays from critical paths as much as 331 * possible. 332 * 333 * Trimming workers. To release resources after periods of lack of 334 * use, a worker starting to wait when the pool is quiescent will 335 * time out and terminate if the pool has remained quiescent for a 336 * given period -- a short period if there are more threads than 337 * parallelism, longer as the number of threads decreases. This 338 * will slowly propagate, eventually terminating all workers after 339 * periods of non-use. 340 * 341 * Shutdown and Termination. A call to shutdownNow atomically sets 342 * a plock bit and then (non-atomically) sets each worker's 343 * qlock status, cancels all unprocessed tasks, and wakes up 344 * all waiting workers. Detecting whether termination should 345 * commence after a non-abrupt shutdown() call requires more work 346 * and bookkeeping. We need consensus about quiescence (i.e., that 347 * there is no more work). The active count provides a primary 348 * indication but non-abrupt shutdown still requires a rechecking 349 * scan for any workers that are inactive but not queued. 350 * 351 * Joining Tasks 352 * ============= 353 * 354 * Any of several actions may be taken when one worker is waiting 355 * to join a task stolen (or always held) by another. Because we 356 * are multiplexing many tasks on to a pool of workers, we can't 357 * just let them block (as in Thread.join). We also cannot just 358 * reassign the joiner's run-time stack with another and replace 359 * it later, which would be a form of "continuation", that even if 360 * possible is not necessarily a good idea since we sometimes need 361 * both an unblocked task and its continuation to progress. 362 * Instead we combine two tactics: 363 * 364 * Helping: Arranging for the joiner to execute some task that it 365 * would be running if the steal had not occurred. 366 * 367 * Compensating: Unless there are already enough live threads, 368 * method tryCompensate() may create or re-activate a spare 369 * thread to compensate for blocked joiners until they unblock. 370 * 371 * A third form (implemented in tryRemoveAndExec) amounts to 372 * helping a hypothetical compensator: If we can readily tell that 373 * a possible action of a compensator is to steal and execute the 374 * task being joined, the joining thread can do so directly, 375 * without the need for a compensation thread (although at the 376 * expense of larger run-time stacks, but the tradeoff is 377 * typically worthwhile). 378 * 379 * The ManagedBlocker extension API can't use helping so relies 380 * only on compensation in method awaitBlocker. 381 * 382 * The algorithm in tryHelpStealer entails a form of "linear" 383 * helping: Each worker records (in field currentSteal) the most 384 * recent task it stole from some other worker. Plus, it records 385 * (in field currentJoin) the task it is currently actively 386 * joining. Method tryHelpStealer uses these markers to try to 387 * find a worker to help (i.e., steal back a task from and execute 388 * it) that could hasten completion of the actively joined task. 389 * In essence, the joiner executes a task that would be on its own 390 * local deque had the to-be-joined task not been stolen. This may 391 * be seen as a conservative variant of the approach in Wagner & 392 * Calder "Leapfrogging: a portable technique for implementing 393 * efficient futures" SIGPLAN Notices, 1993 394 * (http://portal.acm.org/citation.cfm?id=155354). It differs in 395 * that: (1) We only maintain dependency links across workers upon 396 * steals, rather than use per-task bookkeeping. This sometimes 397 * requires a linear scan of workQueues array to locate stealers, 398 * but often doesn't because stealers leave hints (that may become 399 * stale/wrong) of where to locate them. It is only a hint 400 * because a worker might have had multiple steals and the hint 401 * records only one of them (usually the most current). Hinting 402 * isolates cost to when it is needed, rather than adding to 403 * per-task overhead. (2) It is "shallow", ignoring nesting and 404 * potentially cyclic mutual steals. (3) It is intentionally 405 * racy: field currentJoin is updated only while actively joining, 406 * which means that we miss links in the chain during long-lived 407 * tasks, GC stalls etc (which is OK since blocking in such cases 408 * is usually a good idea). (4) We bound the number of attempts 409 * to find work (see MAX_HELP) and fall back to suspending the 410 * worker and if necessary replacing it with another. 411 * 412 * Helping actions for CountedCompleters are much simpler: Method 413 * helpComplete can take and execute any task with the same root 414 * as the task being waited on. However, this still entails some 415 * traversal of completer chains, so is less efficient than using 416 * CountedCompleters without explicit joins. 417 * 418 * It is impossible to keep exactly the target parallelism number 419 * of threads running at any given time. Determining the 420 * existence of conservatively safe helping targets, the 421 * availability of already-created spares, and the apparent need 422 * to create new spares are all racy, so we rely on multiple 423 * retries of each. Compensation in the apparent absence of 424 * helping opportunities is challenging to control on JVMs, where 425 * GC and other activities can stall progress of tasks that in 426 * turn stall out many other dependent tasks, without us being 427 * able to determine whether they will ever require compensation. 428 * Even though work-stealing otherwise encounters little 429 * degradation in the presence of more threads than cores, 430 * aggressively adding new threads in such cases entails risk of 431 * unwanted positive feedback control loops in which more threads 432 * cause more dependent stalls (as well as delayed progress of 433 * unblocked threads to the point that we know they are available) 434 * leading to more situations requiring more threads, and so 435 * on. This aspect of control can be seen as an (analytically 436 * intractable) game with an opponent that may choose the worst 437 * (for us) active thread to stall at any time. We take several 438 * precautions to bound losses (and thus bound gains), mainly in 439 * methods tryCompensate and awaitJoin. 440 * 441 * Common Pool 442 * =========== 443 * 444 * The static commonPool always exists after static 445 * initialization. Since it (or any other created pool) need 446 * never be used, we minimize initial construction overhead and 447 * footprint to the setup of about a dozen fields, with no nested 448 * allocation. Most bootstrapping occurs within method 449 * fullExternalPush during the first submission to the pool. 450 * 451 * When external threads submit to the common pool, they can 452 * perform some subtask processing (see externalHelpJoin and 453 * related methods). We do not need to record whether these 454 * submissions are to the common pool -- if not, externalHelpJoin 455 * returns quickly (at the most helping to signal some common pool 456 * workers). These submitters would otherwise be blocked waiting 457 * for completion, so the extra effort (with liberally sprinkled 458 * task status checks) in inapplicable cases amounts to an odd 459 * form of limited spin-wait before blocking in ForkJoinTask.join. 460 * 461 * Style notes 462 * =========== 463 * 464 * There is a lot of representation-level coupling among classes 465 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The 466 * fields of WorkQueue maintain data structures managed by 467 * ForkJoinPool, so are directly accessed. There is little point 468 * trying to reduce this, since any associated future changes in 469 * representations will need to be accompanied by algorithmic 470 * changes anyway. Several methods intrinsically sprawl because 471 * they must accumulate sets of consistent reads of volatiles held 472 * in local variables. Methods signalWork() and scan() are the 473 * main bottlenecks, so are especially heavily 474 * micro-optimized/mangled. There are lots of inline assignments 475 * (of form "while ((local = field) != 0)") which are usually the 476 * simplest way to ensure the required read orderings (which are 477 * sometimes critical). This leads to a "C"-like style of listing 478 * declarations of these locals at the heads of methods or blocks. 479 * There are several occurrences of the unusual "do {} while 480 * (!cas...)" which is the simplest way to force an update of a 481 * CAS'ed variable. There are also other coding oddities (including 482 * several unnecessary-looking hoisted null checks) that help 483 * some methods perform reasonably even when interpreted (not 484 * compiled). 485 * 486 * The order of declarations in this file is: 487 * (1) Static utility functions 488 * (2) Nested (static) classes 489 * (3) Static fields 490 * (4) Fields, along with constants used when unpacking some of them 491 * (5) Internal control methods 492 * (6) Callbacks and other support for ForkJoinTask methods 493 * (7) Exported methods 494 * (8) Static block initializing statics in minimally dependent order 495 */ 496 497 // Static utilities 498 499 /** 500 * If there is a security manager, makes sure caller has 501 * permission to modify threads. 502 */ 503 private static void checkPermission() { 504 SecurityManager security = System.getSecurityManager(); 505 if (security != null) 506 security.checkPermission(modifyThreadPermission); 507 } 508 509 // Nested classes 510 511 /** 512 * Factory for creating new {@link ForkJoinWorkerThread}s. 513 * A {@code ForkJoinWorkerThreadFactory} must be defined and used 514 * for {@code ForkJoinWorkerThread} subclasses that extend base 515 * functionality or initialize threads with different contexts. 516 */ 517 public static interface ForkJoinWorkerThreadFactory { 518 /** 519 * Returns a new worker thread operating in the given pool. 520 * 521 * @param pool the pool this thread works in 522 * @throws NullPointerException if the pool is null 523 */ 524 public ForkJoinWorkerThread newThread(ForkJoinPool pool); 525 } 526 527 /** 528 * Default ForkJoinWorkerThreadFactory implementation; creates a 529 * new ForkJoinWorkerThread. 530 */ 531 static final class DefaultForkJoinWorkerThreadFactory 532 implements ForkJoinWorkerThreadFactory { 533 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) { 534 return new ForkJoinWorkerThread(pool); 535 } 536 } 537 538 /** 539 * Per-thread records for threads that submit to pools. Currently 540 * holds only pseudo-random seed / index that is used to choose 541 * submission queues in method externalPush. In the future, this may 542 * also incorporate a means to implement different task rejection 543 * and resubmission policies. 544 * 545 * Seeds for submitters and workers/workQueues work in basically 546 * the same way but are initialized and updated using slightly 547 * different mechanics. Both are initialized using the same 548 * approach as in class ThreadLocal, where successive values are 549 * unlikely to collide with previous values. Seeds are then 550 * randomly modified upon collisions using xorshifts, which 551 * requires a non-zero seed. 552 */ 553 static final class Submitter { 554 int seed; 555 Submitter(int s) { seed = s; } 556 } 557 558 /** 559 * Class for artificial tasks that are used to replace the target 560 * of local joins if they are removed from an interior queue slot 561 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to 562 * actually do anything beyond having a unique identity. 563 */ 564 static final class EmptyTask extends ForkJoinTask<Void> { 565 private static final long serialVersionUID = -7721805057305804111L; 566 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done 567 public final Void getRawResult() { return null; } 568 public final void setRawResult(Void x) {} 569 public final boolean exec() { return true; } 570 } 571 572 /** 573 * Queues supporting work-stealing as well as external task 574 * submission. See above for main rationale and algorithms. 575 * Implementation relies heavily on "Unsafe" intrinsics 576 * and selective use of "volatile": 577 * 578 * Field "base" is the index (mod array.length) of the least valid 579 * queue slot, which is always the next position to steal (poll) 580 * from if nonempty. Reads and writes require volatile orderings 581 * but not CAS, because updates are only performed after slot 582 * CASes. 583 * 584 * Field "top" is the index (mod array.length) of the next queue 585 * slot to push to or pop from. It is written only by owner thread 586 * for push, or under lock for external/shared push, and accessed 587 * by other threads only after reading (volatile) base. Both top 588 * and base are allowed to wrap around on overflow, but (top - 589 * base) (or more commonly -(base - top) to force volatile read of 590 * base before top) still estimates size. The lock ("qlock") is 591 * forced to -1 on termination, causing all further lock attempts 592 * to fail. (Note: we don't need CAS for termination state because 593 * upon pool shutdown, all shared-queues will stop being used 594 * anyway.) Nearly all lock bodies are set up so that exceptions 595 * within lock bodies are "impossible" (modulo JVM errors that 596 * would cause failure anyway.) 597 * 598 * The array slots are read and written using the emulation of 599 * volatiles/atomics provided by Unsafe. Insertions must in 600 * general use putOrderedObject as a form of releasing store to 601 * ensure that all writes to the task object are ordered before 602 * its publication in the queue. All removals entail a CAS to 603 * null. The array is always a power of two. To ensure safety of 604 * Unsafe array operations, all accesses perform explicit null 605 * checks and implicit bounds checks via power-of-two masking. 606 * 607 * In addition to basic queuing support, this class contains 608 * fields described elsewhere to control execution. It turns out 609 * to work better memory-layout-wise to include them in this class 610 * rather than a separate class. 611 * 612 * Performance on most platforms is very sensitive to placement of 613 * instances of both WorkQueues and their arrays -- we absolutely 614 * do not want multiple WorkQueue instances or multiple queue 615 * arrays sharing cache lines. (It would be best for queue objects 616 * and their arrays to share, but there is nothing available to 617 * help arrange that). Unfortunately, because they are recorded 618 * in a common array, WorkQueue instances are often moved to be 619 * adjacent by garbage collectors. To reduce impact, we use field 620 * padding that works OK on common platforms; this effectively 621 * trades off slightly slower average field access for the sake of 622 * avoiding really bad worst-case access. (Until better JVM 623 * support is in place, this padding is dependent on transient 624 * properties of JVM field layout rules.) We also take care in 625 * allocating, sizing and resizing the array. Non-shared queue 626 * arrays are initialized by workers before use. Others are 627 * allocated on first use. 628 */ 629 static final class WorkQueue { 630 /** 631 * Capacity of work-stealing queue array upon initialization. 632 * Must be a power of two; at least 4, but should be larger to 633 * reduce or eliminate cacheline sharing among queues. 634 * Currently, it is much larger, as a partial workaround for 635 * the fact that JVMs often place arrays in locations that 636 * share GC bookkeeping (especially cardmarks) such that 637 * per-write accesses encounter serious memory contention. 638 */ 639 static final int INITIAL_QUEUE_CAPACITY = 1 << 13; 640 641 /** 642 * Maximum size for queue arrays. Must be a power of two less 643 * than or equal to 1 << (31 - width of array entry) to ensure 644 * lack of wraparound of index calculations, but defined to a 645 * value a bit less than this to help users trap runaway 646 * programs before saturating systems. 647 */ 648 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M 649 650 // Heuristic padding to ameliorate unfortunate memory placements 651 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06; 652 653 int seed; // for random scanning; initialize nonzero 654 volatile int eventCount; // encoded inactivation count; < 0 if inactive 655 int nextWait; // encoded record of next event waiter 656 int hint; // steal or signal hint (index) 657 int poolIndex; // index of this queue in pool (or 0) 658 final int mode; // 0: lifo, > 0: fifo, < 0: shared 659 int nsteals; // number of steals 660 volatile int qlock; // 1: locked, -1: terminate; else 0 661 volatile int base; // index of next slot for poll 662 int top; // index of next slot for push 663 ForkJoinTask<?>[] array; // the elements (initially unallocated) 664 final ForkJoinPool pool; // the containing pool (may be null) 665 final ForkJoinWorkerThread owner; // owning thread or null if shared 666 volatile Thread parker; // == owner during call to park; else null 667 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin 668 ForkJoinTask<?> currentSteal; // current non-local task being executed 669 670 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17; 671 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d; 672 673 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode, 674 int seed) { 675 this.pool = pool; 676 this.owner = owner; 677 this.mode = mode; 678 this.seed = seed; 679 // Place indices in the center of array (that is not yet allocated) 680 base = top = INITIAL_QUEUE_CAPACITY >>> 1; 681 } 682 683 /** 684 * Returns the approximate number of tasks in the queue. 685 */ 686 final int queueSize() { 687 int n = base - top; // non-owner callers must read base first 688 return (n >= 0) ? 0 : -n; // ignore transient negative 689 } 690 691 /** 692 * Provides a more accurate estimate of whether this queue has 693 * any tasks than does queueSize, by checking whether a 694 * near-empty queue has at least one unclaimed task. 695 */ 696 final boolean isEmpty() { 697 ForkJoinTask<?>[] a; int m, s; 698 int n = base - (s = top); 699 return (n >= 0 || 700 (n == -1 && 701 ((a = array) == null || 702 (m = a.length - 1) < 0 || 703 U.getObject 704 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null))); 705 } 706 707 /** 708 * Pushes a task. Call only by owner in unshared queues. (The 709 * shared-queue version is embedded in method externalPush.) 710 * 711 * @param task the task. Caller must ensure non-null. 712 * @throws RejectedExecutionException if array cannot be resized 713 */ 714 final void push(ForkJoinTask<?> task) { 715 ForkJoinTask<?>[] a; ForkJoinPool p; 716 int s = top, m, n; 717 if ((a = array) != null) { // ignore if queue removed 718 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE; 719 U.putOrderedObject(a, j, task); 720 if ((n = (top = s + 1) - base) <= 2) { 721 if ((p = pool) != null) 722 p.signalWork(this); 723 } 724 else if (n >= m) 725 growArray(); 726 } 727 } 728 729 /** 730 * Initializes or doubles the capacity of array. Call either 731 * by owner or with lock held -- it is OK for base, but not 732 * top, to move while resizings are in progress. 733 */ 734 final ForkJoinTask<?>[] growArray() { 735 ForkJoinTask<?>[] oldA = array; 736 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY; 737 if (size > MAXIMUM_QUEUE_CAPACITY) 738 throw new RejectedExecutionException("Queue capacity exceeded"); 739 int oldMask, t, b; 740 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size]; 741 if (oldA != null && (oldMask = oldA.length - 1) >= 0 && 742 (t = top) - (b = base) > 0) { 743 int mask = size - 1; 744 do { 745 ForkJoinTask<?> x; 746 int oldj = ((b & oldMask) << ASHIFT) + ABASE; 747 int j = ((b & mask) << ASHIFT) + ABASE; 748 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj); 749 if (x != null && 750 U.compareAndSwapObject(oldA, oldj, x, null)) 751 U.putObjectVolatile(a, j, x); 752 } while (++b != t); 753 } 754 return a; 755 } 756 757 /** 758 * Takes next task, if one exists, in LIFO order. Call only 759 * by owner in unshared queues. 760 */ 761 final ForkJoinTask<?> pop() { 762 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m; 763 if ((a = array) != null && (m = a.length - 1) >= 0) { 764 for (int s; (s = top - 1) - base >= 0;) { 765 long j = ((m & s) << ASHIFT) + ABASE; 766 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null) 767 break; 768 if (U.compareAndSwapObject(a, j, t, null)) { 769 top = s; 770 return t; 771 } 772 } 773 } 774 return null; 775 } 776 777 /** 778 * Takes a task in FIFO order if b is base of queue and a task 779 * can be claimed without contention. Specialized versions 780 * appear in ForkJoinPool methods scan and tryHelpStealer. 781 */ 782 final ForkJoinTask<?> pollAt(int b) { 783 ForkJoinTask<?> t; ForkJoinTask<?>[] a; 784 if ((a = array) != null) { 785 int j = (((a.length - 1) & b) << ASHIFT) + ABASE; 786 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null && 787 base == b && 788 U.compareAndSwapObject(a, j, t, null)) { 789 base = b + 1; 790 return t; 791 } 792 } 793 return null; 794 } 795 796 /** 797 * Takes next task, if one exists, in FIFO order. 798 */ 799 final ForkJoinTask<?> poll() { 800 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t; 801 while ((b = base) - top < 0 && (a = array) != null) { 802 int j = (((a.length - 1) & b) << ASHIFT) + ABASE; 803 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j); 804 if (t != null) { 805 if (base == b && 806 U.compareAndSwapObject(a, j, t, null)) { 807 base = b + 1; 808 return t; 809 } 810 } 811 else if (base == b) { 812 if (b + 1 == top) 813 break; 814 Thread.yield(); // wait for lagging update (very rare) 815 } 816 } 817 return null; 818 } 819 820 /** 821 * Takes next task, if one exists, in order specified by mode. 822 */ 823 final ForkJoinTask<?> nextLocalTask() { 824 return mode == 0 ? pop() : poll(); 825 } 826 827 /** 828 * Returns next task, if one exists, in order specified by mode. 829 */ 830 final ForkJoinTask<?> peek() { 831 ForkJoinTask<?>[] a = array; int m; 832 if (a == null || (m = a.length - 1) < 0) 833 return null; 834 int i = mode == 0 ? top - 1 : base; 835 int j = ((i & m) << ASHIFT) + ABASE; 836 return (ForkJoinTask<?>)U.getObjectVolatile(a, j); 837 } 838 839 /** 840 * Pops the given task only if it is at the current top. 841 * (A shared version is available only via FJP.tryExternalUnpush) 842 */ 843 final boolean tryUnpush(ForkJoinTask<?> t) { 844 ForkJoinTask<?>[] a; int s; 845 if ((a = array) != null && (s = top) != base && 846 U.compareAndSwapObject 847 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) { 848 top = s; 849 return true; 850 } 851 return false; 852 } 853 854 /** 855 * Removes and cancels all known tasks, ignoring any exceptions. 856 */ 857 final void cancelAll() { 858 ForkJoinTask.cancelIgnoringExceptions(currentJoin); 859 ForkJoinTask.cancelIgnoringExceptions(currentSteal); 860 for (ForkJoinTask<?> t; (t = poll()) != null; ) 861 ForkJoinTask.cancelIgnoringExceptions(t); 862 } 863 864 /** 865 * Computes next value for random probes. Scans don't require 866 * a very high quality generator, but also not a crummy one. 867 * Marsaglia xor-shift is cheap and works well enough. Note: 868 * This is manually inlined in its usages in ForkJoinPool to 869 * avoid writes inside busy scan loops. 870 */ 871 final int nextSeed() { 872 int r = seed; 873 r ^= r << 13; 874 r ^= r >>> 17; 875 return seed = r ^= r << 5; 876 } 877 878 // Specialized execution methods 879 880 /** 881 * Pops and runs tasks until empty. 882 */ 883 private void popAndExecAll() { 884 // A bit faster than repeated pop calls 885 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t; 886 while ((a = array) != null && (m = a.length - 1) >= 0 && 887 (s = top - 1) - base >= 0 && 888 (t = ((ForkJoinTask<?>) 889 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE))) 890 != null) { 891 if (U.compareAndSwapObject(a, j, t, null)) { 892 top = s; 893 t.doExec(); 894 } 895 } 896 } 897 898 /** 899 * Polls and runs tasks until empty. 900 */ 901 private void pollAndExecAll() { 902 for (ForkJoinTask<?> t; (t = poll()) != null;) 903 t.doExec(); 904 } 905 906 /** 907 * If present, removes from queue and executes the given task, 908 * or any other cancelled task. Returns (true) on any CAS 909 * or consistency check failure so caller can retry. 910 * 911 * @return false if no progress can be made, else true 912 */ 913 final boolean tryRemoveAndExec(ForkJoinTask<?> task) { 914 boolean stat = true, removed = false, empty = true; 915 ForkJoinTask<?>[] a; int m, s, b, n; 916 if ((a = array) != null && (m = a.length - 1) >= 0 && 917 (n = (s = top) - (b = base)) > 0) { 918 for (ForkJoinTask<?> t;;) { // traverse from s to b 919 int j = ((--s & m) << ASHIFT) + ABASE; 920 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j); 921 if (t == null) // inconsistent length 922 break; 923 else if (t == task) { 924 if (s + 1 == top) { // pop 925 if (!U.compareAndSwapObject(a, j, task, null)) 926 break; 927 top = s; 928 removed = true; 929 } 930 else if (base == b) // replace with proxy 931 removed = U.compareAndSwapObject(a, j, task, 932 new EmptyTask()); 933 break; 934 } 935 else if (t.status >= 0) 936 empty = false; 937 else if (s + 1 == top) { // pop and throw away 938 if (U.compareAndSwapObject(a, j, t, null)) 939 top = s; 940 break; 941 } 942 if (--n == 0) { 943 if (!empty && base == b) 944 stat = false; 945 break; 946 } 947 } 948 } 949 if (removed) 950 task.doExec(); 951 return stat; 952 } 953 954 /** 955 * Polls for and executes the given task or any other task in 956 * its CountedCompleter computation. 957 */ 958 final boolean pollAndExecCC(ForkJoinTask<?> root) { 959 ForkJoinTask<?>[] a; int b; Object o; 960 outer: while ((b = base) - top < 0 && (a = array) != null) { 961 long j = (((a.length - 1) & b) << ASHIFT) + ABASE; 962 if ((o = U.getObject(a, j)) == null || 963 !(o instanceof CountedCompleter)) 964 break; 965 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) { 966 if (r == root) { 967 if (base == b && 968 U.compareAndSwapObject(a, j, t, null)) { 969 base = b + 1; 970 t.doExec(); 971 return true; 972 } 973 else 974 break; // restart 975 } 976 if ((r = r.completer) == null) 977 break outer; // not part of root computation 978 } 979 } 980 return false; 981 } 982 983 /** 984 * Executes a top-level task and any local tasks remaining 985 * after execution. 986 */ 987 final void runTask(ForkJoinTask<?> t) { 988 if (t != null) { 989 (currentSteal = t).doExec(); 990 currentSteal = null; 991 ++nsteals; 992 if (base - top < 0) { // process remaining local tasks 993 if (mode == 0) 994 popAndExecAll(); 995 else 996 pollAndExecAll(); 997 } 998 } 999 } 1000 1001 /** 1002 * Executes a non-top-level (stolen) task. 1003 */ 1004 final void runSubtask(ForkJoinTask<?> t) { 1005 if (t != null) { 1006 ForkJoinTask<?> ps = currentSteal; 1007 (currentSteal = t).doExec(); 1008 currentSteal = ps; 1009 } 1010 } 1011 1012 /** 1013 * Returns true if owned and not known to be blocked. 1014 */ 1015 final boolean isApparentlyUnblocked() { 1016 Thread wt; Thread.State s; 1017 return (eventCount >= 0 && 1018 (wt = owner) != null && 1019 (s = wt.getState()) != Thread.State.BLOCKED && 1020 s != Thread.State.WAITING && 1021 s != Thread.State.TIMED_WAITING); 1022 } 1023 1024 // Unsafe mechanics 1025 private static final sun.misc.Unsafe U; 1026 private static final long QLOCK; 1027 private static final int ABASE; 1028 private static final int ASHIFT; 1029 static { 1030 try { 1031 U = sun.misc.Unsafe.getUnsafe(); 1032 Class<?> k = WorkQueue.class; 1033 Class<?> ak = ForkJoinTask[].class; 1034 QLOCK = U.objectFieldOffset 1035 (k.getDeclaredField("qlock")); 1036 ABASE = U.arrayBaseOffset(ak); 1037 int scale = U.arrayIndexScale(ak); 1038 if ((scale & (scale - 1)) != 0) 1039 throw new Error("data type scale not a power of two"); 1040 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); 1041 } catch (Exception e) { 1042 throw new Error(e); 1043 } 1044 } 1045 } 1046 1047 // static fields (initialized in static initializer below) 1048 1049 /** 1050 * Creates a new ForkJoinWorkerThread. This factory is used unless 1051 * overridden in ForkJoinPool constructors. 1052 */ 1053 public static final ForkJoinWorkerThreadFactory 1054 defaultForkJoinWorkerThreadFactory; 1055 1056 /** 1057 * Per-thread submission bookkeeping. Shared across all pools 1058 * to reduce ThreadLocal pollution and because random motion 1059 * to avoid contention in one pool is likely to hold for others. 1060 * Lazily initialized on first submission (but null-checked 1061 * in other contexts to avoid unnecessary initialization). 1062 */ 1063 static final ThreadLocal<Submitter> submitters; 1064 1065 /** 1066 * Permission required for callers of methods that may start or 1067 * kill threads. 1068 */ 1069 private static final RuntimePermission modifyThreadPermission; 1070 1071 /** 1072 * Common (static) pool. Non-null for public use unless a static 1073 * construction exception, but internal usages null-check on use 1074 * to paranoically avoid potential initialization circularities 1075 * as well as to simplify generated code. 1076 */ 1077 static final ForkJoinPool commonPool; 1078 1079 /** 1080 * Common pool parallelism. Must equal commonPool.parallelism. 1081 */ 1082 static final int commonPoolParallelism; 1083 1084 /** 1085 * Sequence number for creating workerNamePrefix. 1086 */ 1087 private static int poolNumberSequence; 1088 1089 /** 1090 * Returns the next sequence number. We don't expect this to 1091 * ever contend, so use simple builtin sync. 1092 */ 1093 private static final synchronized int nextPoolId() { 1094 return ++poolNumberSequence; 1095 } 1096 1097 // static constants 1098 1099 /** 1100 * Initial timeout value (in nanoseconds) for the thread 1101 * triggering quiescence to park waiting for new work. On timeout, 1102 * the thread will instead try to shrink the number of 1103 * workers. The value should be large enough to avoid overly 1104 * aggressive shrinkage during most transient stalls (long GCs 1105 * etc). 1106 */ 1107 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec 1108 1109 /** 1110 * Timeout value when there are more threads than parallelism level 1111 */ 1112 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L; 1113 1114 /** 1115 * Tolerance for idle timeouts, to cope with timer undershoots 1116 */ 1117 private static final long TIMEOUT_SLOP = 2000000L; // 20ms 1118 1119 /** 1120 * The maximum stolen->joining link depth allowed in method 1121 * tryHelpStealer. Must be a power of two. Depths for legitimate 1122 * chains are unbounded, but we use a fixed constant to avoid 1123 * (otherwise unchecked) cycles and to bound staleness of 1124 * traversal parameters at the expense of sometimes blocking when 1125 * we could be helping. 1126 */ 1127 private static final int MAX_HELP = 64; 1128 1129 /** 1130 * Increment for seed generators. See class ThreadLocal for 1131 * explanation. 1132 */ 1133 private static final int SEED_INCREMENT = 0x61c88647; 1134 1135 /* 1136 * Bits and masks for control variables 1137 * 1138 * Field ctl is a long packed with: 1139 * AC: Number of active running workers minus target parallelism (16 bits) 1140 * TC: Number of total workers minus target parallelism (16 bits) 1141 * ST: true if pool is terminating (1 bit) 1142 * EC: the wait count of top waiting thread (15 bits) 1143 * ID: poolIndex of top of Treiber stack of waiters (16 bits) 1144 * 1145 * When convenient, we can extract the upper 32 bits of counts and 1146 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e = 1147 * (int)ctl. The ec field is never accessed alone, but always 1148 * together with id and st. The offsets of counts by the target 1149 * parallelism and the positionings of fields makes it possible to 1150 * perform the most common checks via sign tests of fields: When 1151 * ac is negative, there are not enough active workers, when tc is 1152 * negative, there are not enough total workers, and when e is 1153 * negative, the pool is terminating. To deal with these possibly 1154 * negative fields, we use casts in and out of "short" and/or 1155 * signed shifts to maintain signedness. 1156 * 1157 * When a thread is queued (inactivated), its eventCount field is 1158 * set negative, which is the only way to tell if a worker is 1159 * prevented from executing tasks, even though it must continue to 1160 * scan for them to avoid queuing races. Note however that 1161 * eventCount updates lag releases so usage requires care. 1162 * 1163 * Field plock is an int packed with: 1164 * SHUTDOWN: true if shutdown is enabled (1 bit) 1165 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits) 1166 * SIGNAL: set when threads may be waiting on the lock (1 bit) 1167 * 1168 * The sequence number enables simple consistency checks: 1169 * Staleness of read-only operations on the workQueues array can 1170 * be checked by comparing plock before vs after the reads. 1171 */ 1172 1173 // bit positions/shifts for fields 1174 private static final int AC_SHIFT = 48; 1175 private static final int TC_SHIFT = 32; 1176 private static final int ST_SHIFT = 31; 1177 private static final int EC_SHIFT = 16; 1178 1179 // bounds 1180 private static final int SMASK = 0xffff; // short bits 1181 private static final int MAX_CAP = 0x7fff; // max #workers - 1 1182 private static final int EVENMASK = 0xfffe; // even short bits 1183 private static final int SQMASK = 0x007e; // max 64 (even) slots 1184 private static final int SHORT_SIGN = 1 << 15; 1185 private static final int INT_SIGN = 1 << 31; 1186 1187 // masks 1188 private static final long STOP_BIT = 0x0001L << ST_SHIFT; 1189 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT; 1190 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT; 1191 1192 // units for incrementing and decrementing 1193 private static final long TC_UNIT = 1L << TC_SHIFT; 1194 private static final long AC_UNIT = 1L << AC_SHIFT; 1195 1196 // masks and units for dealing with u = (int)(ctl >>> 32) 1197 private static final int UAC_SHIFT = AC_SHIFT - 32; 1198 private static final int UTC_SHIFT = TC_SHIFT - 32; 1199 private static final int UAC_MASK = SMASK << UAC_SHIFT; 1200 private static final int UTC_MASK = SMASK << UTC_SHIFT; 1201 private static final int UAC_UNIT = 1 << UAC_SHIFT; 1202 private static final int UTC_UNIT = 1 << UTC_SHIFT; 1203 1204 // masks and units for dealing with e = (int)ctl 1205 private static final int E_MASK = 0x7fffffff; // no STOP_BIT 1206 private static final int E_SEQ = 1 << EC_SHIFT; 1207 1208 // plock bits 1209 private static final int SHUTDOWN = 1 << 31; 1210 private static final int PL_LOCK = 2; 1211 private static final int PL_SIGNAL = 1; 1212 private static final int PL_SPINS = 1 << 8; 1213 1214 // access mode for WorkQueue 1215 static final int LIFO_QUEUE = 0; 1216 static final int FIFO_QUEUE = 1; 1217 static final int SHARED_QUEUE = -1; 1218 1219 // bounds for #steps in scan loop -- must be power 2 minus 1 1220 private static final int MIN_SCAN = 0x1ff; // cover estimation slop 1221 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers 1222 1223 // Instance fields 1224 1225 /* 1226 * Field layout of this class tends to matter more than one would 1227 * like. Runtime layout order is only loosely related to 1228 * declaration order and may differ across JVMs, but the following 1229 * empirically works OK on current JVMs. 1230 */ 1231 1232 // Heuristic padding to ameliorate unfortunate memory placements 1233 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06; 1234 1235 volatile long stealCount; // collects worker counts 1236 volatile long ctl; // main pool control 1237 volatile int plock; // shutdown status and seqLock 1238 volatile int indexSeed; // worker/submitter index seed 1239 final int config; // mode and parallelism level 1240 WorkQueue[] workQueues; // main registry 1241 final ForkJoinWorkerThreadFactory factory; 1242 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH 1243 final String workerNamePrefix; // to create worker name string 1244 1245 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17; 1246 volatile Object pad18, pad19, pad1a, pad1b; 1247 1248 /** 1249 * Acquires the plock lock to protect worker array and related 1250 * updates. This method is called only if an initial CAS on plock 1251 * fails. This acts as a spinlock for normal cases, but falls back 1252 * to builtin monitor to block when (rarely) needed. This would be 1253 * a terrible idea for a highly contended lock, but works fine as 1254 * a more conservative alternative to a pure spinlock. 1255 */ 1256 private int acquirePlock() { 1257 int spins = PL_SPINS, r = 0, ps, nps; 1258 for (;;) { 1259 if (((ps = plock) & PL_LOCK) == 0 && 1260 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK)) 1261 return nps; 1262 else if (r == 0) { // randomize spins if possible 1263 Thread t = Thread.currentThread(); WorkQueue w; Submitter z; 1264 if ((t instanceof ForkJoinWorkerThread) && 1265 (w = ((ForkJoinWorkerThread)t).workQueue) != null) 1266 r = w.seed; 1267 else if ((z = submitters.get()) != null) 1268 r = z.seed; 1269 else 1270 r = 1; 1271 } 1272 else if (spins >= 0) { 1273 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift 1274 if (r >= 0) 1275 --spins; 1276 } 1277 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) { 1278 synchronized (this) { 1279 if ((plock & PL_SIGNAL) != 0) { 1280 try { 1281 wait(); 1282 } catch (InterruptedException ie) { 1283 try { 1284 Thread.currentThread().interrupt(); 1285 } catch (SecurityException ignore) { 1286 } 1287 } 1288 } 1289 else 1290 notifyAll(); 1291 } 1292 } 1293 } 1294 } 1295 1296 /** 1297 * Unlocks and signals any thread waiting for plock. Called only 1298 * when CAS of seq value for unlock fails. 1299 */ 1300 private void releasePlock(int ps) { 1301 plock = ps; 1302 synchronized (this) { notifyAll(); } 1303 } 1304 1305 /** 1306 * Performs secondary initialization, called when plock is zero. 1307 * Creates workQueue array and sets plock to a valid value. The 1308 * lock body must be exception-free (so no try/finally) so we 1309 * optimistically allocate new array outside the lock and throw 1310 * away if (very rarely) not needed. (A similar tactic is used in 1311 * fullExternalPush.) Because the plock seq value can eventually 1312 * wrap around zero, this method harmlessly fails to reinitialize 1313 * if workQueues exists, while still advancing plock. 1314 * 1315 * Additionally tries to create the first worker. 1316 */ 1317 private void initWorkers() { 1318 WorkQueue[] ws, nws; int ps; 1319 int p = config & SMASK; // find power of two table size 1320 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots 1321 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; 1322 n = (n + 1) << 1; 1323 if ((ws = workQueues) == null || ws.length == 0) 1324 nws = new WorkQueue[n]; 1325 else 1326 nws = null; 1327 if (((ps = plock) & PL_LOCK) != 0 || 1328 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) 1329 ps = acquirePlock(); 1330 if (((ws = workQueues) == null || ws.length == 0) && nws != null) 1331 workQueues = nws; 1332 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN); 1333 if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) 1334 releasePlock(nps); 1335 tryAddWorker(); 1336 } 1337 1338 /** 1339 * Tries to create and start one worker if fewer than target 1340 * parallelism level exist. Adjusts counts etc on failure. 1341 */ 1342 private void tryAddWorker() { 1343 long c; int u; 1344 while ((u = (int)((c = ctl) >>> 32)) < 0 && 1345 (u & SHORT_SIGN) != 0 && (int)c == 0) { 1346 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) | 1347 ((u + UAC_UNIT) & UAC_MASK)) << 32; 1348 if (U.compareAndSwapLong(this, CTL, c, nc)) { 1349 ForkJoinWorkerThreadFactory fac; 1350 Throwable ex = null; 1351 ForkJoinWorkerThread wt = null; 1352 try { 1353 if ((fac = factory) != null && 1354 (wt = fac.newThread(this)) != null) { 1355 wt.start(); 1356 break; 1357 } 1358 } catch (Throwable e) { 1359 ex = e; 1360 } 1361 deregisterWorker(wt, ex); 1362 break; 1363 } 1364 } 1365 } 1366 1367 // Registering and deregistering workers 1368 1369 /** 1370 * Callback from ForkJoinWorkerThread to establish and record its 1371 * WorkQueue. To avoid scanning bias due to packing entries in 1372 * front of the workQueues array, we treat the array as a simple 1373 * power-of-two hash table using per-thread seed as hash, 1374 * expanding as needed. 1375 * 1376 * @param wt the worker thread 1377 * @return the worker's queue 1378 */ 1379 final WorkQueue registerWorker(ForkJoinWorkerThread wt) { 1380 Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps; 1381 wt.setDaemon(true); 1382 if ((handler = ueh) != null) 1383 wt.setUncaughtExceptionHandler(handler); 1384 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed, 1385 s += SEED_INCREMENT) || 1386 s == 0); // skip 0 1387 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s); 1388 if (((ps = plock) & PL_LOCK) != 0 || 1389 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) 1390 ps = acquirePlock(); 1391 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN); 1392 try { 1393 if ((ws = workQueues) != null) { // skip if shutting down 1394 int n = ws.length, m = n - 1; 1395 int r = (s << 1) | 1; // use odd-numbered indices 1396 if (ws[r &= m] != null) { // collision 1397 int probes = 0; // step by approx half size 1398 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2; 1399 while (ws[r = (r + step) & m] != null) { 1400 if (++probes >= n) { 1401 workQueues = ws = Arrays.copyOf(ws, n <<= 1); 1402 m = n - 1; 1403 probes = 0; 1404 } 1405 } 1406 } 1407 w.eventCount = w.poolIndex = r; // volatile write orders 1408 ws[r] = w; 1409 } 1410 } finally { 1411 if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) 1412 releasePlock(nps); 1413 } 1414 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex))); 1415 return w; 1416 } 1417 1418 /** 1419 * Final callback from terminating worker, as well as upon failure 1420 * to construct or start a worker. Removes record of worker from 1421 * array, and adjusts counts. If pool is shutting down, tries to 1422 * complete termination. 1423 * 1424 * @param wt the worker thread or null if construction failed 1425 * @param ex the exception causing failure, or null if none 1426 */ 1427 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) { 1428 WorkQueue w = null; 1429 if (wt != null && (w = wt.workQueue) != null) { 1430 int ps; 1431 w.qlock = -1; // ensure set 1432 long ns = w.nsteals, sc; // collect steal count 1433 do {} while (!U.compareAndSwapLong(this, STEALCOUNT, 1434 sc = stealCount, sc + ns)); 1435 if (((ps = plock) & PL_LOCK) != 0 || 1436 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) 1437 ps = acquirePlock(); 1438 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN); 1439 try { 1440 int idx = w.poolIndex; 1441 WorkQueue[] ws = workQueues; 1442 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w) 1443 ws[idx] = null; 1444 } finally { 1445 if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) 1446 releasePlock(nps); 1447 } 1448 } 1449 1450 long c; // adjust ctl counts 1451 do {} while (!U.compareAndSwapLong 1452 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) | 1453 ((c - TC_UNIT) & TC_MASK) | 1454 (c & ~(AC_MASK|TC_MASK))))); 1455 1456 if (!tryTerminate(false, false) && w != null && w.array != null) { 1457 w.cancelAll(); // cancel remaining tasks 1458 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e; 1459 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) { 1460 if (e > 0) { // activate or create replacement 1461 if ((ws = workQueues) == null || 1462 (i = e & SMASK) >= ws.length || 1463 (v = ws[i]) != null) 1464 break; 1465 long nc = (((long)(v.nextWait & E_MASK)) | 1466 ((long)(u + UAC_UNIT) << 32)); 1467 if (v.eventCount != (e | INT_SIGN)) 1468 break; 1469 if (U.compareAndSwapLong(this, CTL, c, nc)) { 1470 v.eventCount = (e + E_SEQ) & E_MASK; 1471 if ((p = v.parker) != null) 1472 U.unpark(p); 1473 break; 1474 } 1475 } 1476 else { 1477 if ((short)u < 0) 1478 tryAddWorker(); 1479 break; 1480 } 1481 } 1482 } 1483 if (ex == null) // help clean refs on way out 1484 ForkJoinTask.helpExpungeStaleExceptions(); 1485 else // rethrow 1486 ForkJoinTask.rethrow(ex); 1487 } 1488 1489 // Submissions 1490 1491 /** 1492 * Unless shutting down, adds the given task to a submission queue 1493 * at submitter's current queue index (modulo submission 1494 * range). Only the most common path is directly handled in this 1495 * method. All others are relayed to fullExternalPush. 1496 * 1497 * @param task the task. Caller must ensure non-null. 1498 */ 1499 final void externalPush(ForkJoinTask<?> task) { 1500 WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a; 1501 if ((z = submitters.get()) != null && plock > 0 && 1502 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 && 1503 (q = ws[m & z.seed & SQMASK]) != null && 1504 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock 1505 int b = q.base, s = q.top, n, an; 1506 if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) { 1507 int j = (((an - 1) & s) << ASHIFT) + ABASE; 1508 U.putOrderedObject(a, j, task); 1509 q.top = s + 1; // push on to deque 1510 q.qlock = 0; 1511 if (n <= 2) 1512 signalWork(q); 1513 return; 1514 } 1515 q.qlock = 0; 1516 } 1517 fullExternalPush(task); 1518 } 1519 1520 /** 1521 * Full version of externalPush. This method is called, among 1522 * other times, upon the first submission of the first task to the 1523 * pool, so must perform secondary initialization (via 1524 * initWorkers). It also detects first submission by an external 1525 * thread by looking up its ThreadLocal, and creates a new shared 1526 * queue if the one at index if empty or contended. The plock lock 1527 * body must be exception-free (so no try/finally) so we 1528 * optimistically allocate new queues outside the lock and throw 1529 * them away if (very rarely) not needed. 1530 */ 1531 private void fullExternalPush(ForkJoinTask<?> task) { 1532 int r = 0; // random index seed 1533 for (Submitter z = submitters.get();;) { 1534 WorkQueue[] ws; WorkQueue q; int ps, m, k; 1535 if (z == null) { 1536 if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed, 1537 r += SEED_INCREMENT) && r != 0) 1538 submitters.set(z = new Submitter(r)); 1539 } 1540 else if (r == 0) { // move to a different index 1541 r = z.seed; 1542 r ^= r << 13; // same xorshift as WorkQueues 1543 r ^= r >>> 17; 1544 z.seed = r ^ (r << 5); 1545 } 1546 else if ((ps = plock) < 0) 1547 throw new RejectedExecutionException(); 1548 else if (ps == 0 || (ws = workQueues) == null || 1549 (m = ws.length - 1) < 0) 1550 initWorkers(); 1551 else if ((q = ws[k = r & m & SQMASK]) != null) { 1552 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) { 1553 ForkJoinTask<?>[] a = q.array; 1554 int s = q.top; 1555 boolean submitted = false; 1556 try { // locked version of push 1557 if ((a != null && a.length > s + 1 - q.base) || 1558 (a = q.growArray()) != null) { // must presize 1559 int j = (((a.length - 1) & s) << ASHIFT) + ABASE; 1560 U.putOrderedObject(a, j, task); 1561 q.top = s + 1; 1562 submitted = true; 1563 } 1564 } finally { 1565 q.qlock = 0; // unlock 1566 } 1567 if (submitted) { 1568 signalWork(q); 1569 return; 1570 } 1571 } 1572 r = 0; // move on failure 1573 } 1574 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue 1575 q = new WorkQueue(this, null, SHARED_QUEUE, r); 1576 if (((ps = plock) & PL_LOCK) != 0 || 1577 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) 1578 ps = acquirePlock(); 1579 if ((ws = workQueues) != null && k < ws.length && ws[k] == null) 1580 ws[k] = q; 1581 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN); 1582 if (!U.compareAndSwapInt(this, PLOCK, ps, nps)) 1583 releasePlock(nps); 1584 } 1585 else 1586 r = 0; // try elsewhere while lock held 1587 } 1588 } 1589 1590 // Maintaining ctl counts 1591 1592 /** 1593 * Increments active count; mainly called upon return from blocking. 1594 */ 1595 final void incrementActiveCount() { 1596 long c; 1597 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT)); 1598 } 1599 1600 /** 1601 * Tries to create or activate a worker if too few are active. 1602 * 1603 * @param q the (non-null) queue holding tasks to be signalled 1604 */ 1605 final void signalWork(WorkQueue q) { 1606 int hint = q.poolIndex; 1607 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p; 1608 while ((u = (int)((c = ctl) >>> 32)) < 0) { 1609 if ((e = (int)c) > 0) { 1610 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) && 1611 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) { 1612 long nc = (((long)(w.nextWait & E_MASK)) | 1613 ((long)(u + UAC_UNIT) << 32)); 1614 if (U.compareAndSwapLong(this, CTL, c, nc)) { 1615 w.hint = hint; 1616 w.eventCount = (e + E_SEQ) & E_MASK; 1617 if ((p = w.parker) != null) 1618 U.unpark(p); 1619 break; 1620 } 1621 if (q.top - q.base <= 0) 1622 break; 1623 } 1624 else 1625 break; 1626 } 1627 else { 1628 if ((short)u < 0) 1629 tryAddWorker(); 1630 break; 1631 } 1632 } 1633 } 1634 1635 // Scanning for tasks 1636 1637 /** 1638 * Top-level runloop for workers, called by ForkJoinWorkerThread.run. 1639 */ 1640 final void runWorker(WorkQueue w) { 1641 w.growArray(); // allocate queue 1642 do { w.runTask(scan(w)); } while (w.qlock >= 0); 1643 } 1644 1645 /** 1646 * Scans for and, if found, returns one task, else possibly 1647 * inactivates the worker. This method operates on single reads of 1648 * volatile state and is designed to be re-invoked continuously, 1649 * in part because it returns upon detecting inconsistencies, 1650 * contention, or state changes that indicate possible success on 1651 * re-invocation. 1652 * 1653 * The scan searches for tasks across queues (starting at a random 1654 * index, and relying on registerWorker to irregularly scatter 1655 * them within array to avoid bias), checking each at least twice. 1656 * The scan terminates upon either finding a non-empty queue, or 1657 * completing the sweep. If the worker is not inactivated, it 1658 * takes and returns a task from this queue. Otherwise, if not 1659 * activated, it signals workers (that may include itself) and 1660 * returns so caller can retry. Also returns for true if the 1661 * worker array may have changed during an empty scan. On failure 1662 * to find a task, we take one of the following actions, after 1663 * which the caller will retry calling this method unless 1664 * terminated. 1665 * 1666 * * If pool is terminating, terminate the worker. 1667 * 1668 * * If not already enqueued, try to inactivate and enqueue the 1669 * worker on wait queue. Or, if inactivating has caused the pool 1670 * to be quiescent, relay to idleAwaitWork to possibly shrink 1671 * pool. 1672 * 1673 * * If already enqueued and none of the above apply, possibly 1674 * park awaiting signal, else lingering to help scan and signal. 1675 * 1676 * * If a non-empty queue discovered or left as a hint, 1677 * help wake up other workers before return. 1678 * 1679 * @param w the worker (via its WorkQueue) 1680 * @return a task or null if none found 1681 */ 1682 private final ForkJoinTask<?> scan(WorkQueue w) { 1683 WorkQueue[] ws; int m; 1684 int ps = plock; // read plock before ws 1685 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) { 1686 int ec = w.eventCount; // ec is negative if inactive 1687 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5; 1688 w.hint = -1; // update seed and clear hint 1689 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN; 1690 do { 1691 WorkQueue q; ForkJoinTask<?>[] a; int b; 1692 if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 && 1693 (a = q.array) != null) { // probably nonempty 1694 int i = (((a.length - 1) & b) << ASHIFT) + ABASE; 1695 ForkJoinTask<?> t = (ForkJoinTask<?>) 1696 U.getObjectVolatile(a, i); 1697 if (q.base == b && ec >= 0 && t != null && 1698 U.compareAndSwapObject(a, i, t, null)) { 1699 if ((q.base = b + 1) - q.top < 0) 1700 signalWork(q); 1701 return t; // taken 1702 } 1703 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) { 1704 w.hint = (r + j) & m; // help signal below 1705 break; // cannot take 1706 } 1707 } 1708 } while (--j >= 0); 1709 1710 int h, e, ns; long c, sc; WorkQueue q; 1711 if ((ns = w.nsteals) != 0) { 1712 if (U.compareAndSwapLong(this, STEALCOUNT, 1713 sc = stealCount, sc + ns)) 1714 w.nsteals = 0; // collect steals and rescan 1715 } 1716 else if (plock != ps) // consistency check 1717 ; // skip 1718 else if ((e = (int)(c = ctl)) < 0) 1719 w.qlock = -1; // pool is terminating 1720 else { 1721 if ((h = w.hint) < 0) { 1722 if (ec >= 0) { // try to enqueue/inactivate 1723 long nc = (((long)ec | 1724 ((c - AC_UNIT) & (AC_MASK|TC_MASK)))); 1725 w.nextWait = e; // link and mark inactive 1726 w.eventCount = ec | INT_SIGN; 1727 if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc)) 1728 w.eventCount = ec; // unmark on CAS failure 1729 else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK)) 1730 idleAwaitWork(w, nc, c); 1731 } 1732 else if (w.eventCount < 0 && !tryTerminate(false, false) && 1733 ctl == c) { // block 1734 Thread wt = Thread.currentThread(); 1735 Thread.interrupted(); // clear status 1736 U.putObject(wt, PARKBLOCKER, this); 1737 w.parker = wt; // emulate LockSupport.park 1738 if (w.eventCount < 0) // recheck 1739 U.park(false, 0L); 1740 w.parker = null; 1741 U.putObject(wt, PARKBLOCKER, null); 1742 } 1743 } 1744 if ((h >= 0 || (h = w.hint) >= 0) && 1745 (ws = workQueues) != null && h < ws.length && 1746 (q = ws[h]) != null) { // signal others before retry 1747 WorkQueue v; Thread p; int u, i, s; 1748 for (int n = (config & SMASK) >>> 1;;) { 1749 int idleCount = (w.eventCount < 0) ? 0 : -1; 1750 if (((s = idleCount - q.base + q.top) <= n && 1751 (n = s) <= 0) || 1752 (u = (int)((c = ctl) >>> 32)) >= 0 || 1753 (e = (int)c) <= 0 || m < (i = e & SMASK) || 1754 (v = ws[i]) == null) 1755 break; 1756 long nc = (((long)(v.nextWait & E_MASK)) | 1757 ((long)(u + UAC_UNIT) << 32)); 1758 if (v.eventCount != (e | INT_SIGN) || 1759 !U.compareAndSwapLong(this, CTL, c, nc)) 1760 break; 1761 v.hint = h; 1762 v.eventCount = (e + E_SEQ) & E_MASK; 1763 if ((p = v.parker) != null) 1764 U.unpark(p); 1765 if (--n <= 0) 1766 break; 1767 } 1768 } 1769 } 1770 } 1771 return null; 1772 } 1773 1774 /** 1775 * If inactivating worker w has caused the pool to become 1776 * quiescent, checks for pool termination, and, so long as this is 1777 * not the only worker, waits for event for up to a given 1778 * duration. On timeout, if ctl has not changed, terminates the 1779 * worker, which will in turn wake up another worker to possibly 1780 * repeat this process. 1781 * 1782 * @param w the calling worker 1783 * @param currentCtl the ctl value triggering possible quiescence 1784 * @param prevCtl the ctl value to restore if thread is terminated 1785 */ 1786 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) { 1787 if (w != null && w.eventCount < 0 && 1788 !tryTerminate(false, false) && (int)prevCtl != 0) { 1789 int dc = -(short)(currentCtl >>> TC_SHIFT); 1790 long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT; 1791 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP; 1792 Thread wt = Thread.currentThread(); 1793 while (ctl == currentCtl) { 1794 Thread.interrupted(); // timed variant of version in scan() 1795 U.putObject(wt, PARKBLOCKER, this); 1796 w.parker = wt; 1797 if (ctl == currentCtl) 1798 U.park(false, parkTime); 1799 w.parker = null; 1800 U.putObject(wt, PARKBLOCKER, null); 1801 if (ctl != currentCtl) 1802 break; 1803 if (deadline - System.nanoTime() <= 0L && 1804 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) { 1805 w.eventCount = (w.eventCount + E_SEQ) | E_MASK; 1806 w.qlock = -1; // shrink 1807 break; 1808 } 1809 } 1810 } 1811 } 1812 1813 /** 1814 * Scans through queues looking for work while joining a task; if 1815 * any present, signals. May return early if more signalling is 1816 * detectably unneeded. 1817 * 1818 * @param task return early if done 1819 * @param origin an index to start scan 1820 */ 1821 private void helpSignal(ForkJoinTask<?> task, int origin) { 1822 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s; 1823 if (task != null && task.status >= 0 && 1824 (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 && 1825 (ws = workQueues) != null && (m = ws.length - 1) >= 0) { 1826 outer: for (int k = origin, j = m; j >= 0; --j) { 1827 WorkQueue q = ws[k++ & m]; 1828 for (int n = m;;) { // limit to at most m signals 1829 if (task.status < 0) 1830 break outer; 1831 if (q == null || 1832 ((s = -q.base + q.top) <= n && (n = s) <= 0)) 1833 break; 1834 if ((u = (int)((c = ctl) >>> 32)) >= 0 || 1835 (e = (int)c) <= 0 || m < (i = e & SMASK) || 1836 (w = ws[i]) == null) 1837 break outer; 1838 long nc = (((long)(w.nextWait & E_MASK)) | 1839 ((long)(u + UAC_UNIT) << 32)); 1840 if (w.eventCount != (e | INT_SIGN)) 1841 break outer; 1842 if (U.compareAndSwapLong(this, CTL, c, nc)) { 1843 w.eventCount = (e + E_SEQ) & E_MASK; 1844 if ((p = w.parker) != null) 1845 U.unpark(p); 1846 if (--n <= 0) 1847 break; 1848 } 1849 } 1850 } 1851 } 1852 } 1853 1854 /** 1855 * Tries to locate and execute tasks for a stealer of the given 1856 * task, or in turn one of its stealers, Traces currentSteal -> 1857 * currentJoin links looking for a thread working on a descendant 1858 * of the given task and with a non-empty queue to steal back and 1859 * execute tasks from. The first call to this method upon a 1860 * waiting join will often entail scanning/search, (which is OK 1861 * because the joiner has nothing better to do), but this method 1862 * leaves hints in workers to speed up subsequent calls. The 1863 * implementation is very branchy to cope with potential 1864 * inconsistencies or loops encountering chains that are stale, 1865 * unknown, or so long that they are likely cyclic. 1866 * 1867 * @param joiner the joining worker 1868 * @param task the task to join 1869 * @return 0 if no progress can be made, negative if task 1870 * known complete, else positive 1871 */ 1872 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) { 1873 int stat = 0, steps = 0; // bound to avoid cycles 1874 if (joiner != null && task != null) { // hoist null checks 1875 restart: for (;;) { 1876 ForkJoinTask<?> subtask = task; // current target 1877 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask 1878 WorkQueue[] ws; int m, s, h; 1879 if ((s = task.status) < 0) { 1880 stat = s; 1881 break restart; 1882 } 1883 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0) 1884 break restart; // shutting down 1885 if ((v = ws[h = (j.hint | 1) & m]) == null || 1886 v.currentSteal != subtask) { 1887 for (int origin = h;;) { // find stealer 1888 if (((h = (h + 2) & m) & 15) == 1 && 1889 (subtask.status < 0 || j.currentJoin != subtask)) 1890 continue restart; // occasional staleness check 1891 if ((v = ws[h]) != null && 1892 v.currentSteal == subtask) { 1893 j.hint = h; // save hint 1894 break; 1895 } 1896 if (h == origin) 1897 break restart; // cannot find stealer 1898 } 1899 } 1900 for (;;) { // help stealer or descend to its stealer 1901 ForkJoinTask[] a; int b; 1902 if (subtask.status < 0) // surround probes with 1903 continue restart; // consistency checks 1904 if ((b = v.base) - v.top < 0 && (a = v.array) != null) { 1905 int i = (((a.length - 1) & b) << ASHIFT) + ABASE; 1906 ForkJoinTask<?> t = 1907 (ForkJoinTask<?>)U.getObjectVolatile(a, i); 1908 if (subtask.status < 0 || j.currentJoin != subtask || 1909 v.currentSteal != subtask) 1910 continue restart; // stale 1911 stat = 1; // apparent progress 1912 if (t != null && v.base == b && 1913 U.compareAndSwapObject(a, i, t, null)) { 1914 v.base = b + 1; // help stealer 1915 joiner.runSubtask(t); 1916 } 1917 else if (v.base == b && ++steps == MAX_HELP) 1918 break restart; // v apparently stalled 1919 } 1920 else { // empty -- try to descend 1921 ForkJoinTask<?> next = v.currentJoin; 1922 if (subtask.status < 0 || j.currentJoin != subtask || 1923 v.currentSteal != subtask) 1924 continue restart; // stale 1925 else if (next == null || ++steps == MAX_HELP) 1926 break restart; // dead-end or maybe cyclic 1927 else { 1928 subtask = next; 1929 j = v; 1930 break; 1931 } 1932 } 1933 } 1934 } 1935 } 1936 } 1937 return stat; 1938 } 1939 1940 /** 1941 * Analog of tryHelpStealer for CountedCompleters. Tries to steal 1942 * and run tasks within the target's computation. 1943 * 1944 * @param task the task to join 1945 * @param mode if shared, exit upon completing any task 1946 * if all workers are active 1947 */ 1948 private int helpComplete(ForkJoinTask<?> task, int mode) { 1949 WorkQueue[] ws; WorkQueue q; int m, n, s, u; 1950 if (task != null && (ws = workQueues) != null && 1951 (m = ws.length - 1) >= 0) { 1952 for (int j = 1, origin = j;;) { 1953 if ((s = task.status) < 0) 1954 return s; 1955 if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) { 1956 origin = j; 1957 if (mode == SHARED_QUEUE && 1958 ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)) 1959 break; 1960 } 1961 else if ((j = (j + 2) & m) == origin) 1962 break; 1963 } 1964 } 1965 return 0; 1966 } 1967 1968 /** 1969 * Tries to decrement active count (sometimes implicitly) and 1970 * possibly release or create a compensating worker in preparation 1971 * for blocking. Fails on contention or termination. Otherwise, 1972 * adds a new thread if no idle workers are available and pool 1973 * may become starved. 1974 */ 1975 final boolean tryCompensate() { 1976 int pc = config & SMASK, e, i, tc; long c; 1977 WorkQueue[] ws; WorkQueue w; Thread p; 1978 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) { 1979 if (e != 0 && (i = e & SMASK) < ws.length && 1980 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) { 1981 long nc = ((long)(w.nextWait & E_MASK) | 1982 (c & (AC_MASK|TC_MASK))); 1983 if (U.compareAndSwapLong(this, CTL, c, nc)) { 1984 w.eventCount = (e + E_SEQ) & E_MASK; 1985 if ((p = w.parker) != null) 1986 U.unpark(p); 1987 return true; // replace with idle worker 1988 } 1989 } 1990 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 && 1991 (int)(c >> AC_SHIFT) + pc > 1) { 1992 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK); 1993 if (U.compareAndSwapLong(this, CTL, c, nc)) 1994 return true; // no compensation 1995 } 1996 else if (tc + pc < MAX_CAP) { 1997 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); 1998 if (U.compareAndSwapLong(this, CTL, c, nc)) { 1999 ForkJoinWorkerThreadFactory fac; 2000 Throwable ex = null; 2001 ForkJoinWorkerThread wt = null; 2002 try { 2003 if ((fac = factory) != null && 2004 (wt = fac.newThread(this)) != null) { 2005 wt.start(); 2006 return true; 2007 } 2008 } catch (Throwable rex) { 2009 ex = rex; 2010 } 2011 deregisterWorker(wt, ex); // clean up and return false 2012 } 2013 } 2014 } 2015 return false; 2016 } 2017 2018 /** 2019 * Helps and/or blocks until the given task is done. 2020 * 2021 * @param joiner the joining worker 2022 * @param task the task 2023 * @return task status on exit 2024 */ 2025 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) { 2026 int s = 0; 2027 if (joiner != null && task != null && (s = task.status) >= 0) { 2028 ForkJoinTask<?> prevJoin = joiner.currentJoin; 2029 joiner.currentJoin = task; 2030 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() && 2031 joiner.tryRemoveAndExec(task)); // process local tasks 2032 if (s >= 0 && (s = task.status) >= 0) { 2033 helpSignal(task, joiner.poolIndex); 2034 if ((s = task.status) >= 0 && 2035 (task instanceof CountedCompleter)) 2036 s = helpComplete(task, LIFO_QUEUE); 2037 } 2038 while (s >= 0 && (s = task.status) >= 0) { 2039 if ((!joiner.isEmpty() || // try helping 2040 (s = tryHelpStealer(joiner, task)) == 0) && 2041 (s = task.status) >= 0) { 2042 helpSignal(task, joiner.poolIndex); 2043 if ((s = task.status) >= 0 && tryCompensate()) { 2044 if (task.trySetSignal() && (s = task.status) >= 0) { 2045 synchronized (task) { 2046 if (task.status >= 0) { 2047 try { // see ForkJoinTask 2048 task.wait(); // for explanation 2049 } catch (InterruptedException ie) { 2050 } 2051 } 2052 else 2053 task.notifyAll(); 2054 } 2055 } 2056 long c; // re-activate 2057 do {} while (!U.compareAndSwapLong 2058 (this, CTL, c = ctl, c + AC_UNIT)); 2059 } 2060 } 2061 } 2062 joiner.currentJoin = prevJoin; 2063 } 2064 return s; 2065 } 2066 2067 /** 2068 * Stripped-down variant of awaitJoin used by timed joins. Tries 2069 * to help join only while there is continuous progress. (Caller 2070 * will then enter a timed wait.) 2071 * 2072 * @param joiner the joining worker 2073 * @param task the task 2074 */ 2075 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) { 2076 int s; 2077 if (joiner != null && task != null && (s = task.status) >= 0) { 2078 ForkJoinTask<?> prevJoin = joiner.currentJoin; 2079 joiner.currentJoin = task; 2080 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() && 2081 joiner.tryRemoveAndExec(task)); 2082 if (s >= 0 && (s = task.status) >= 0) { 2083 helpSignal(task, joiner.poolIndex); 2084 if ((s = task.status) >= 0 && 2085 (task instanceof CountedCompleter)) 2086 s = helpComplete(task, LIFO_QUEUE); 2087 } 2088 if (s >= 0 && joiner.isEmpty()) { 2089 do {} while (task.status >= 0 && 2090 tryHelpStealer(joiner, task) > 0); 2091 } 2092 joiner.currentJoin = prevJoin; 2093 } 2094 } 2095 2096 /** 2097 * Returns a (probably) non-empty steal queue, if one is found 2098 * during a random, then cyclic scan, else null. This method must 2099 * be retried by caller if, by the time it tries to use the queue, 2100 * it is empty. 2101 * @param r a (random) seed for scanning 2102 */ 2103 private WorkQueue findNonEmptyStealQueue(int r) { 2104 for (WorkQueue[] ws;;) { 2105 int ps = plock, m, n; 2106 if ((ws = workQueues) == null || (m = ws.length - 1) < 1) 2107 return null; 2108 for (int j = (m + 1) << 2; ;) { 2109 WorkQueue q = ws[(((r + j) << 1) | 1) & m]; 2110 if (q != null && (n = q.base - q.top) < 0) { 2111 if (n < -1) 2112 signalWork(q); 2113 return q; 2114 } 2115 else if (--j < 0) { 2116 if (plock == ps) 2117 return null; 2118 break; 2119 } 2120 } 2121 } 2122 } 2123 2124 /** 2125 * Runs tasks until {@code isQuiescent()}. We piggyback on 2126 * active count ctl maintenance, but rather than blocking 2127 * when tasks cannot be found, we rescan until all others cannot 2128 * find tasks either. 2129 */ 2130 final void helpQuiescePool(WorkQueue w) { 2131 for (boolean active = true;;) { 2132 ForkJoinTask<?> localTask; // exhaust local queue 2133 while ((localTask = w.nextLocalTask()) != null) 2134 localTask.doExec(); 2135 // Similar to loop in scan(), but ignoring submissions 2136 WorkQueue q = findNonEmptyStealQueue(w.nextSeed()); 2137 if (q != null) { 2138 ForkJoinTask<?> t; int b; 2139 if (!active) { // re-establish active count 2140 long c; 2141 active = true; 2142 do {} while (!U.compareAndSwapLong 2143 (this, CTL, c = ctl, c + AC_UNIT)); 2144 } 2145 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) 2146 w.runSubtask(t); 2147 } 2148 else { 2149 long c; 2150 if (active) { // decrement active count without queuing 2151 active = false; 2152 do {} while (!U.compareAndSwapLong 2153 (this, CTL, c = ctl, c -= AC_UNIT)); 2154 } 2155 else 2156 c = ctl; // re-increment on exit 2157 if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) { 2158 do {} while (!U.compareAndSwapLong 2159 (this, CTL, c = ctl, c + AC_UNIT)); 2160 break; 2161 } 2162 } 2163 } 2164 } 2165 2166 /** 2167 * Gets and removes a local or stolen task for the given worker. 2168 * 2169 * @return a task, if available 2170 */ 2171 final ForkJoinTask<?> nextTaskFor(WorkQueue w) { 2172 for (ForkJoinTask<?> t;;) { 2173 WorkQueue q; int b; 2174 if ((t = w.nextLocalTask()) != null) 2175 return t; 2176 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null) 2177 return null; 2178 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) 2179 return t; 2180 } 2181 } 2182 2183 /** 2184 * Returns a cheap heuristic guide for task partitioning when 2185 * programmers, frameworks, tools, or languages have little or no 2186 * idea about task granularity. In essence by offering this 2187 * method, we ask users only about tradeoffs in overhead vs 2188 * expected throughput and its variance, rather than how finely to 2189 * partition tasks. 2190 * 2191 * In a steady state strict (tree-structured) computation, each 2192 * thread makes available for stealing enough tasks for other 2193 * threads to remain active. Inductively, if all threads play by 2194 * the same rules, each thread should make available only a 2195 * constant number of tasks. 2196 * 2197 * The minimum useful constant is just 1. But using a value of 1 2198 * would require immediate replenishment upon each steal to 2199 * maintain enough tasks, which is infeasible. Further, 2200 * partitionings/granularities of offered tasks should minimize 2201 * steal rates, which in general means that threads nearer the top 2202 * of computation tree should generate more than those nearer the 2203 * bottom. In perfect steady state, each thread is at 2204 * approximately the same level of computation tree. However, 2205 * producing extra tasks amortizes the uncertainty of progress and 2206 * diffusion assumptions. 2207 * 2208 * So, users will want to use values larger (but not much larger) 2209 * than 1 to both smooth over transient shortages and hedge 2210 * against uneven progress; as traded off against the cost of 2211 * extra task overhead. We leave the user to pick a threshold 2212 * value to compare with the results of this call to guide 2213 * decisions, but recommend values such as 3. 2214 * 2215 * When all threads are active, it is on average OK to estimate 2216 * surplus strictly locally. In steady-state, if one thread is 2217 * maintaining say 2 surplus tasks, then so are others. So we can 2218 * just use estimated queue length. However, this strategy alone 2219 * leads to serious mis-estimates in some non-steady-state 2220 * conditions (ramp-up, ramp-down, other stalls). We can detect 2221 * many of these by further considering the number of "idle" 2222 * threads, that are known to have zero queued tasks, so 2223 * compensate by a factor of (#idle/#active) threads. 2224 * 2225 * Note: The approximation of #busy workers as #active workers is 2226 * not very good under current signalling scheme, and should be 2227 * improved. 2228 */ 2229 static int getSurplusQueuedTaskCount() { 2230 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q; 2231 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) { 2232 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK; 2233 int n = (q = wt.workQueue).top - q.base; 2234 int a = (int)(pool.ctl >> AC_SHIFT) + p; 2235 return n - (a > (p >>>= 1) ? 0 : 2236 a > (p >>>= 1) ? 1 : 2237 a > (p >>>= 1) ? 2 : 2238 a > (p >>>= 1) ? 4 : 2239 8); 2240 } 2241 return 0; 2242 } 2243 2244 // Termination 2245 2246 /** 2247 * Possibly initiates and/or completes termination. The caller 2248 * triggering termination runs three passes through workQueues: 2249 * (0) Setting termination status, followed by wakeups of queued 2250 * workers; (1) cancelling all tasks; (2) interrupting lagging 2251 * threads (likely in external tasks, but possibly also blocked in 2252 * joins). Each pass repeats previous steps because of potential 2253 * lagging thread creation. 2254 * 2255 * @param now if true, unconditionally terminate, else only 2256 * if no work and no active workers 2257 * @param enable if true, enable shutdown when next possible 2258 * @return true if now terminating or terminated 2259 */ 2260 private boolean tryTerminate(boolean now, boolean enable) { 2261 if (this == commonPool) // cannot shut down 2262 return false; 2263 for (long c;;) { 2264 if (((c = ctl) & STOP_BIT) != 0) { // already terminating 2265 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) { 2266 synchronized (this) { 2267 notifyAll(); // signal when 0 workers 2268 } 2269 } 2270 return true; 2271 } 2272 if (plock >= 0) { // not yet enabled 2273 int ps; 2274 if (!enable) 2275 return false; 2276 if (((ps = plock) & PL_LOCK) != 0 || 2277 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK)) 2278 ps = acquirePlock(); 2279 if (!U.compareAndSwapInt(this, PLOCK, ps, SHUTDOWN)) 2280 releasePlock(SHUTDOWN); 2281 } 2282 if (!now) { // check if idle & no tasks 2283 if ((int)(c >> AC_SHIFT) != -(config & SMASK) || 2284 hasQueuedSubmissions()) 2285 return false; 2286 // Check for unqueued inactive workers. One pass suffices. 2287 WorkQueue[] ws = workQueues; WorkQueue w; 2288 if (ws != null) { 2289 for (int i = 1; i < ws.length; i += 2) { 2290 if ((w = ws[i]) != null && w.eventCount >= 0) 2291 return false; 2292 } 2293 } 2294 } 2295 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) { 2296 for (int pass = 0; pass < 3; ++pass) { 2297 WorkQueue[] ws = workQueues; 2298 if (ws != null) { 2299 WorkQueue w; Thread wt; 2300 int n = ws.length; 2301 for (int i = 0; i < n; ++i) { 2302 if ((w = ws[i]) != null) { 2303 w.qlock = -1; 2304 if (pass > 0) { 2305 w.cancelAll(); 2306 if (pass > 1 && (wt = w.owner) != null) { 2307 if (!wt.isInterrupted()) { 2308 try { 2309 wt.interrupt(); 2310 } catch (SecurityException ignore) { 2311 } 2312 } 2313 U.unpark(wt); 2314 } 2315 } 2316 } 2317 } 2318 // Wake up workers parked on event queue 2319 int i, e; long cc; Thread p; 2320 while ((e = (int)(cc = ctl) & E_MASK) != 0 && 2321 (i = e & SMASK) < n && 2322 (w = ws[i]) != null) { 2323 long nc = ((long)(w.nextWait & E_MASK) | 2324 ((cc + AC_UNIT) & AC_MASK) | 2325 (cc & (TC_MASK|STOP_BIT))); 2326 if (w.eventCount == (e | INT_SIGN) && 2327 U.compareAndSwapLong(this, CTL, cc, nc)) { 2328 w.eventCount = (e + E_SEQ) & E_MASK; 2329 w.qlock = -1; 2330 if ((p = w.parker) != null) 2331 U.unpark(p); 2332 } 2333 } 2334 } 2335 } 2336 } 2337 } 2338 } 2339 2340 // external operations on common pool 2341 2342 /** 2343 * Returns common pool queue for a thread that has submitted at 2344 * least one task. 2345 */ 2346 static WorkQueue commonSubmitterQueue() { 2347 ForkJoinPool p; WorkQueue[] ws; int m; Submitter z; 2348 return ((z = submitters.get()) != null && 2349 (p = commonPool) != null && 2350 (ws = p.workQueues) != null && 2351 (m = ws.length - 1) >= 0) ? 2352 ws[m & z.seed & SQMASK] : null; 2353 } 2354 2355 /** 2356 * Tries to pop the given task from submitter's queue in common pool. 2357 */ 2358 static boolean tryExternalUnpush(ForkJoinTask<?> t) { 2359 ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z; 2360 ForkJoinTask<?>[] a; int m, s; 2361 if (t != null && 2362 (z = submitters.get()) != null && 2363 (p = commonPool) != null && 2364 (ws = p.workQueues) != null && 2365 (m = ws.length - 1) >= 0 && 2366 (q = ws[m & z.seed & SQMASK]) != null && 2367 (s = q.top) != q.base && 2368 (a = q.array) != null) { 2369 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE; 2370 if (U.getObject(a, j) == t && 2371 U.compareAndSwapInt(q, QLOCK, 0, 1)) { 2372 if (q.array == a && q.top == s && // recheck 2373 U.compareAndSwapObject(a, j, t, null)) { 2374 q.top = s - 1; 2375 q.qlock = 0; 2376 return true; 2377 } 2378 q.qlock = 0; 2379 } 2380 } 2381 return false; 2382 } 2383 2384 /** 2385 * Tries to pop and run local tasks within the same computation 2386 * as the given root. On failure, tries to help complete from 2387 * other queues via helpComplete. 2388 */ 2389 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) { 2390 ForkJoinTask<?>[] a; int m; 2391 if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 && 2392 root != null && root.status >= 0) { 2393 for (;;) { 2394 int s, u; Object o; CountedCompleter<?> task = null; 2395 if ((s = q.top) - q.base > 0) { 2396 long j = ((m & (s - 1)) << ASHIFT) + ABASE; 2397 if ((o = U.getObject(a, j)) != null && 2398 (o instanceof CountedCompleter)) { 2399 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t; 2400 do { 2401 if (r == root) { 2402 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) { 2403 if (q.array == a && q.top == s && 2404 U.compareAndSwapObject(a, j, t, null)) { 2405 q.top = s - 1; 2406 task = t; 2407 } 2408 q.qlock = 0; 2409 } 2410 break; 2411 } 2412 } while ((r = r.completer) != null); 2413 } 2414 } 2415 if (task != null) 2416 task.doExec(); 2417 if (root.status < 0 || 2418 (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0) 2419 break; 2420 if (task == null) { 2421 helpSignal(root, q.poolIndex); 2422 if (root.status >= 0) 2423 helpComplete(root, SHARED_QUEUE); 2424 break; 2425 } 2426 } 2427 } 2428 } 2429 2430 /** 2431 * Tries to help execute or signal availability of the given task 2432 * from submitter's queue in common pool. 2433 */ 2434 static void externalHelpJoin(ForkJoinTask<?> t) { 2435 // Some hard-to-avoid overlap with tryExternalUnpush 2436 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z; 2437 ForkJoinTask<?>[] a; int m, s, n; 2438 if (t != null && 2439 (z = submitters.get()) != null && 2440 (p = commonPool) != null && 2441 (ws = p.workQueues) != null && 2442 (m = ws.length - 1) >= 0 && 2443 (q = ws[m & z.seed & SQMASK]) != null && 2444 (a = q.array) != null) { 2445 int am = a.length - 1; 2446 if ((s = q.top) != q.base) { 2447 long j = ((am & (s - 1)) << ASHIFT) + ABASE; 2448 if (U.getObject(a, j) == t && 2449 U.compareAndSwapInt(q, QLOCK, 0, 1)) { 2450 if (q.array == a && q.top == s && 2451 U.compareAndSwapObject(a, j, t, null)) { 2452 q.top = s - 1; 2453 q.qlock = 0; 2454 t.doExec(); 2455 } 2456 else 2457 q.qlock = 0; 2458 } 2459 } 2460 if (t.status >= 0) { 2461 if (t instanceof CountedCompleter) 2462 p.externalHelpComplete(q, t); 2463 else 2464 p.helpSignal(t, q.poolIndex); 2465 } 2466 } 2467 } 2468 2469 /** 2470 * Restricted version of helpQuiescePool for external callers 2471 */ 2472 static void externalHelpQuiescePool() { 2473 ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b; 2474 if ((p = commonPool) != null && 2475 (q = p.findNonEmptyStealQueue(1)) != null && 2476 (b = q.base) - q.top < 0 && 2477 (t = q.pollAt(b)) != null) 2478 t.doExec(); 2479 } 2480 2481 // Exported methods 2482 2483 // Constructors 2484 2485 /** 2486 * Creates a {@code ForkJoinPool} with parallelism equal to {@link 2487 * java.lang.Runtime#availableProcessors}, using the {@linkplain 2488 * #defaultForkJoinWorkerThreadFactory default thread factory}, 2489 * no UncaughtExceptionHandler, and non-async LIFO processing mode. 2490 */ 2491 public ForkJoinPool() { 2492 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()), 2493 defaultForkJoinWorkerThreadFactory, null, false); 2494 } 2495 2496 /** 2497 * Creates a {@code ForkJoinPool} with the indicated parallelism 2498 * level, the {@linkplain 2499 * #defaultForkJoinWorkerThreadFactory default thread factory}, 2500 * no UncaughtExceptionHandler, and non-async LIFO processing mode. 2501 * 2502 * @param parallelism the parallelism level 2503 * @throws IllegalArgumentException if parallelism less than or 2504 * equal to zero, or greater than implementation limit 2505 */ 2506 public ForkJoinPool(int parallelism) { 2507 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false); 2508 } 2509 2510 /** 2511 * Creates a {@code ForkJoinPool} with the given parameters. 2512 * 2513 * @param parallelism the parallelism level. For default value, 2514 * use {@link java.lang.Runtime#availableProcessors}. 2515 * @param factory the factory for creating new threads. For default value, 2516 * use {@link #defaultForkJoinWorkerThreadFactory}. 2517 * @param handler the handler for internal worker threads that 2518 * terminate due to unrecoverable errors encountered while executing 2519 * tasks. For default value, use {@code null}. 2520 * @param asyncMode if true, 2521 * establishes local first-in-first-out scheduling mode for forked 2522 * tasks that are never joined. This mode may be more appropriate 2523 * than default locally stack-based mode in applications in which 2524 * worker threads only process event-style asynchronous tasks. 2525 * For default value, use {@code false}. 2526 * @throws IllegalArgumentException if parallelism less than or 2527 * equal to zero, or greater than implementation limit 2528 * @throws NullPointerException if the factory is null 2529 */ 2530 public ForkJoinPool(int parallelism, 2531 ForkJoinWorkerThreadFactory factory, 2532 Thread.UncaughtExceptionHandler handler, 2533 boolean asyncMode) { 2534 checkPermission(); 2535 if (factory == null) 2536 throw new NullPointerException(); 2537 if (parallelism <= 0 || parallelism > MAX_CAP) 2538 throw new IllegalArgumentException(); 2539 this.factory = factory; 2540 this.ueh = handler; 2541 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0); 2542 long np = (long)(-parallelism); // offset ctl counts 2543 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK); 2544 int pn = nextPoolId(); 2545 StringBuilder sb = new StringBuilder("ForkJoinPool-"); 2546 sb.append(Integer.toString(pn)); 2547 sb.append("-worker-"); 2548 this.workerNamePrefix = sb.toString(); 2549 } 2550 2551 /** 2552 * Constructor for common pool, suitable only for static initialization. 2553 * Basically the same as above, but uses smallest possible initial footprint. 2554 */ 2555 ForkJoinPool(int parallelism, long ctl, 2556 ForkJoinWorkerThreadFactory factory, 2557 Thread.UncaughtExceptionHandler handler) { 2558 this.config = parallelism; 2559 this.ctl = ctl; 2560 this.factory = factory; 2561 this.ueh = handler; 2562 this.workerNamePrefix = "ForkJoinPool.commonPool-worker-"; 2563 } 2564 2565 /** 2566 * Returns the common pool instance. 2567 * 2568 * @return the common pool instance 2569 * @since 1.8 2570 * @hide 2571 */ 2572 public static ForkJoinPool commonPool() { 2573 // assert commonPool != null : "static init error"; 2574 return commonPool; 2575 } 2576 2577 // Execution methods 2578 2579 /** 2580 * Performs the given task, returning its result upon completion. 2581 * If the computation encounters an unchecked Exception or Error, 2582 * it is rethrown as the outcome of this invocation. Rethrown 2583 * exceptions behave in the same way as regular exceptions, but, 2584 * when possible, contain stack traces (as displayed for example 2585 * using {@code ex.printStackTrace()}) of both the current thread 2586 * as well as the thread actually encountering the exception; 2587 * minimally only the latter. 2588 * 2589 * @param task the task 2590 * @return the task's result 2591 * @throws NullPointerException if the task is null 2592 * @throws RejectedExecutionException if the task cannot be 2593 * scheduled for execution 2594 */ 2595 public <T> T invoke(ForkJoinTask<T> task) { 2596 if (task == null) 2597 throw new NullPointerException(); 2598 externalPush(task); 2599 return task.join(); 2600 } 2601 2602 /** 2603 * Arranges for (asynchronous) execution of the given task. 2604 * 2605 * @param task the task 2606 * @throws NullPointerException if the task is null 2607 * @throws RejectedExecutionException if the task cannot be 2608 * scheduled for execution 2609 */ 2610 public void execute(ForkJoinTask<?> task) { 2611 if (task == null) 2612 throw new NullPointerException(); 2613 externalPush(task); 2614 } 2615 2616 // AbstractExecutorService methods 2617 2618 /** 2619 * @throws NullPointerException if the task is null 2620 * @throws RejectedExecutionException if the task cannot be 2621 * scheduled for execution 2622 */ 2623 public void execute(Runnable task) { 2624 if (task == null) 2625 throw new NullPointerException(); 2626 ForkJoinTask<?> job; 2627 if (task instanceof ForkJoinTask<?>) // avoid re-wrap 2628 job = (ForkJoinTask<?>) task; 2629 else 2630 job = new ForkJoinTask.AdaptedRunnableAction(task); 2631 externalPush(job); 2632 } 2633 2634 /** 2635 * Submits a ForkJoinTask for execution. 2636 * 2637 * @param task the task to submit 2638 * @return the task 2639 * @throws NullPointerException if the task is null 2640 * @throws RejectedExecutionException if the task cannot be 2641 * scheduled for execution 2642 */ 2643 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) { 2644 if (task == null) 2645 throw new NullPointerException(); 2646 externalPush(task); 2647 return task; 2648 } 2649 2650 /** 2651 * @throws NullPointerException if the task is null 2652 * @throws RejectedExecutionException if the task cannot be 2653 * scheduled for execution 2654 */ 2655 public <T> ForkJoinTask<T> submit(Callable<T> task) { 2656 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task); 2657 externalPush(job); 2658 return job; 2659 } 2660 2661 /** 2662 * @throws NullPointerException if the task is null 2663 * @throws RejectedExecutionException if the task cannot be 2664 * scheduled for execution 2665 */ 2666 public <T> ForkJoinTask<T> submit(Runnable task, T result) { 2667 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result); 2668 externalPush(job); 2669 return job; 2670 } 2671 2672 /** 2673 * @throws NullPointerException if the task is null 2674 * @throws RejectedExecutionException if the task cannot be 2675 * scheduled for execution 2676 */ 2677 public ForkJoinTask<?> submit(Runnable task) { 2678 if (task == null) 2679 throw new NullPointerException(); 2680 ForkJoinTask<?> job; 2681 if (task instanceof ForkJoinTask<?>) // avoid re-wrap 2682 job = (ForkJoinTask<?>) task; 2683 else 2684 job = new ForkJoinTask.AdaptedRunnableAction(task); 2685 externalPush(job); 2686 return job; 2687 } 2688 2689 /** 2690 * @throws NullPointerException {@inheritDoc} 2691 * @throws RejectedExecutionException {@inheritDoc} 2692 */ 2693 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) { 2694 // In previous versions of this class, this method constructed 2695 // a task to run ForkJoinTask.invokeAll, but now external 2696 // invocation of multiple tasks is at least as efficient. 2697 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size()); 2698 2699 boolean done = false; 2700 try { 2701 for (Callable<T> t : tasks) { 2702 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t); 2703 futures.add(f); 2704 externalPush(f); 2705 } 2706 for (int i = 0, size = futures.size(); i < size; i++) 2707 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin(); 2708 done = true; 2709 return futures; 2710 } finally { 2711 if (!done) 2712 for (int i = 0, size = futures.size(); i < size; i++) 2713 futures.get(i).cancel(false); 2714 } 2715 } 2716 2717 /** 2718 * Returns the factory used for constructing new workers. 2719 * 2720 * @return the factory used for constructing new workers 2721 */ 2722 public ForkJoinWorkerThreadFactory getFactory() { 2723 return factory; 2724 } 2725 2726 /** 2727 * Returns the handler for internal worker threads that terminate 2728 * due to unrecoverable errors encountered while executing tasks. 2729 * 2730 * @return the handler, or {@code null} if none 2731 */ 2732 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() { 2733 return ueh; 2734 } 2735 2736 /** 2737 * Returns the targeted parallelism level of this pool. 2738 * 2739 * @return the targeted parallelism level of this pool 2740 */ 2741 public int getParallelism() { 2742 return config & SMASK; 2743 } 2744 2745 /** 2746 * Returns the targeted parallelism level of the common pool. 2747 * 2748 * @return the targeted parallelism level of the common pool 2749 * @since 1.8 2750 * @hide 2751 */ 2752 public static int getCommonPoolParallelism() { 2753 return commonPoolParallelism; 2754 } 2755 2756 /** 2757 * Returns the number of worker threads that have started but not 2758 * yet terminated. The result returned by this method may differ 2759 * from {@link #getParallelism} when threads are created to 2760 * maintain parallelism when others are cooperatively blocked. 2761 * 2762 * @return the number of worker threads 2763 */ 2764 public int getPoolSize() { 2765 return (config & SMASK) + (short)(ctl >>> TC_SHIFT); 2766 } 2767 2768 /** 2769 * Returns {@code true} if this pool uses local first-in-first-out 2770 * scheduling mode for forked tasks that are never joined. 2771 * 2772 * @return {@code true} if this pool uses async mode 2773 */ 2774 public boolean getAsyncMode() { 2775 return (config >>> 16) == FIFO_QUEUE; 2776 } 2777 2778 /** 2779 * Returns an estimate of the number of worker threads that are 2780 * not blocked waiting to join tasks or for other managed 2781 * synchronization. This method may overestimate the 2782 * number of running threads. 2783 * 2784 * @return the number of worker threads 2785 */ 2786 public int getRunningThreadCount() { 2787 int rc = 0; 2788 WorkQueue[] ws; WorkQueue w; 2789 if ((ws = workQueues) != null) { 2790 for (int i = 1; i < ws.length; i += 2) { 2791 if ((w = ws[i]) != null && w.isApparentlyUnblocked()) 2792 ++rc; 2793 } 2794 } 2795 return rc; 2796 } 2797 2798 /** 2799 * Returns an estimate of the number of threads that are currently 2800 * stealing or executing tasks. This method may overestimate the 2801 * number of active threads. 2802 * 2803 * @return the number of active threads 2804 */ 2805 public int getActiveThreadCount() { 2806 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT); 2807 return (r <= 0) ? 0 : r; // suppress momentarily negative values 2808 } 2809 2810 /** 2811 * Returns {@code true} if all worker threads are currently idle. 2812 * An idle worker is one that cannot obtain a task to execute 2813 * because none are available to steal from other threads, and 2814 * there are no pending submissions to the pool. This method is 2815 * conservative; it might not return {@code true} immediately upon 2816 * idleness of all threads, but will eventually become true if 2817 * threads remain inactive. 2818 * 2819 * @return {@code true} if all threads are currently idle 2820 */ 2821 public boolean isQuiescent() { 2822 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0; 2823 } 2824 2825 /** 2826 * Returns an estimate of the total number of tasks stolen from 2827 * one thread's work queue by another. The reported value 2828 * underestimates the actual total number of steals when the pool 2829 * is not quiescent. This value may be useful for monitoring and 2830 * tuning fork/join programs: in general, steal counts should be 2831 * high enough to keep threads busy, but low enough to avoid 2832 * overhead and contention across threads. 2833 * 2834 * @return the number of steals 2835 */ 2836 public long getStealCount() { 2837 long count = stealCount; 2838 WorkQueue[] ws; WorkQueue w; 2839 if ((ws = workQueues) != null) { 2840 for (int i = 1; i < ws.length; i += 2) { 2841 if ((w = ws[i]) != null) 2842 count += w.nsteals; 2843 } 2844 } 2845 return count; 2846 } 2847 2848 /** 2849 * Returns an estimate of the total number of tasks currently held 2850 * in queues by worker threads (but not including tasks submitted 2851 * to the pool that have not begun executing). This value is only 2852 * an approximation, obtained by iterating across all threads in 2853 * the pool. This method may be useful for tuning task 2854 * granularities. 2855 * 2856 * @return the number of queued tasks 2857 */ 2858 public long getQueuedTaskCount() { 2859 long count = 0; 2860 WorkQueue[] ws; WorkQueue w; 2861 if ((ws = workQueues) != null) { 2862 for (int i = 1; i < ws.length; i += 2) { 2863 if ((w = ws[i]) != null) 2864 count += w.queueSize(); 2865 } 2866 } 2867 return count; 2868 } 2869 2870 /** 2871 * Returns an estimate of the number of tasks submitted to this 2872 * pool that have not yet begun executing. This method may take 2873 * time proportional to the number of submissions. 2874 * 2875 * @return the number of queued submissions 2876 */ 2877 public int getQueuedSubmissionCount() { 2878 int count = 0; 2879 WorkQueue[] ws; WorkQueue w; 2880 if ((ws = workQueues) != null) { 2881 for (int i = 0; i < ws.length; i += 2) { 2882 if ((w = ws[i]) != null) 2883 count += w.queueSize(); 2884 } 2885 } 2886 return count; 2887 } 2888 2889 /** 2890 * Returns {@code true} if there are any tasks submitted to this 2891 * pool that have not yet begun executing. 2892 * 2893 * @return {@code true} if there are any queued submissions 2894 */ 2895 public boolean hasQueuedSubmissions() { 2896 WorkQueue[] ws; WorkQueue w; 2897 if ((ws = workQueues) != null) { 2898 for (int i = 0; i < ws.length; i += 2) { 2899 if ((w = ws[i]) != null && !w.isEmpty()) 2900 return true; 2901 } 2902 } 2903 return false; 2904 } 2905 2906 /** 2907 * Removes and returns the next unexecuted submission if one is 2908 * available. This method may be useful in extensions to this 2909 * class that re-assign work in systems with multiple pools. 2910 * 2911 * @return the next submission, or {@code null} if none 2912 */ 2913 protected ForkJoinTask<?> pollSubmission() { 2914 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t; 2915 if ((ws = workQueues) != null) { 2916 for (int i = 0; i < ws.length; i += 2) { 2917 if ((w = ws[i]) != null && (t = w.poll()) != null) 2918 return t; 2919 } 2920 } 2921 return null; 2922 } 2923 2924 /** 2925 * Removes all available unexecuted submitted and forked tasks 2926 * from scheduling queues and adds them to the given collection, 2927 * without altering their execution status. These may include 2928 * artificially generated or wrapped tasks. This method is 2929 * designed to be invoked only when the pool is known to be 2930 * quiescent. Invocations at other times may not remove all 2931 * tasks. A failure encountered while attempting to add elements 2932 * to collection {@code c} may result in elements being in 2933 * neither, either or both collections when the associated 2934 * exception is thrown. The behavior of this operation is 2935 * undefined if the specified collection is modified while the 2936 * operation is in progress. 2937 * 2938 * @param c the collection to transfer elements into 2939 * @return the number of elements transferred 2940 */ 2941 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) { 2942 int count = 0; 2943 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t; 2944 if ((ws = workQueues) != null) { 2945 for (int i = 0; i < ws.length; ++i) { 2946 if ((w = ws[i]) != null) { 2947 while ((t = w.poll()) != null) { 2948 c.add(t); 2949 ++count; 2950 } 2951 } 2952 } 2953 } 2954 return count; 2955 } 2956 2957 /** 2958 * Returns a string identifying this pool, as well as its state, 2959 * including indications of run state, parallelism level, and 2960 * worker and task counts. 2961 * 2962 * @return a string identifying this pool, as well as its state 2963 */ 2964 public String toString() { 2965 // Use a single pass through workQueues to collect counts 2966 long qt = 0L, qs = 0L; int rc = 0; 2967 long st = stealCount; 2968 long c = ctl; 2969 WorkQueue[] ws; WorkQueue w; 2970 if ((ws = workQueues) != null) { 2971 for (int i = 0; i < ws.length; ++i) { 2972 if ((w = ws[i]) != null) { 2973 int size = w.queueSize(); 2974 if ((i & 1) == 0) 2975 qs += size; 2976 else { 2977 qt += size; 2978 st += w.nsteals; 2979 if (w.isApparentlyUnblocked()) 2980 ++rc; 2981 } 2982 } 2983 } 2984 } 2985 int pc = (config & SMASK); 2986 int tc = pc + (short)(c >>> TC_SHIFT); 2987 int ac = pc + (int)(c >> AC_SHIFT); 2988 if (ac < 0) // ignore transient negative 2989 ac = 0; 2990 String level; 2991 if ((c & STOP_BIT) != 0) 2992 level = (tc == 0) ? "Terminated" : "Terminating"; 2993 else 2994 level = plock < 0 ? "Shutting down" : "Running"; 2995 return super.toString() + 2996 "[" + level + 2997 ", parallelism = " + pc + 2998 ", size = " + tc + 2999 ", active = " + ac + 3000 ", running = " + rc + 3001 ", steals = " + st + 3002 ", tasks = " + qt + 3003 ", submissions = " + qs + 3004 "]"; 3005 } 3006 3007 /** 3008 * Possibly initiates an orderly shutdown in which previously 3009 * submitted tasks are executed, but no new tasks will be 3010 * accepted. Invocation has no effect on execution state if this 3011 * is the {@link #commonPool()}, and no additional effect if 3012 * already shut down. Tasks that are in the process of being 3013 * submitted concurrently during the course of this method may or 3014 * may not be rejected. 3015 * 3016 * @throws SecurityException if a security manager exists and 3017 * the caller is not permitted to modify threads 3018 * because it does not hold {@link 3019 * java.lang.RuntimePermission}{@code ("modifyThread")} 3020 */ 3021 public void shutdown() { 3022 checkPermission(); 3023 tryTerminate(false, true); 3024 } 3025 3026 /** 3027 * Possibly attempts to cancel and/or stop all tasks, and reject 3028 * all subsequently submitted tasks. Invocation has no effect on 3029 * execution state if this is the {@link #commonPool()}, and no 3030 * additional effect if already shut down. Otherwise, tasks that 3031 * are in the process of being submitted or executed concurrently 3032 * during the course of this method may or may not be 3033 * rejected. This method cancels both existing and unexecuted 3034 * tasks, in order to permit termination in the presence of task 3035 * dependencies. So the method always returns an empty list 3036 * (unlike the case for some other Executors). 3037 * 3038 * @return an empty list 3039 */ 3040 public List<Runnable> shutdownNow() { 3041 checkPermission(); 3042 tryTerminate(true, true); 3043 return Collections.emptyList(); 3044 } 3045 3046 /** 3047 * Returns {@code true} if all tasks have completed following shut down. 3048 * 3049 * @return {@code true} if all tasks have completed following shut down 3050 */ 3051 public boolean isTerminated() { 3052 long c = ctl; 3053 return ((c & STOP_BIT) != 0L && 3054 (short)(c >>> TC_SHIFT) == -(config & SMASK)); 3055 } 3056 3057 /** 3058 * Returns {@code true} if the process of termination has 3059 * commenced but not yet completed. This method may be useful for 3060 * debugging. A return of {@code true} reported a sufficient 3061 * period after shutdown may indicate that submitted tasks have 3062 * ignored or suppressed interruption, or are waiting for I/O, 3063 * causing this executor not to properly terminate. (See the 3064 * advisory notes for class {@link ForkJoinTask} stating that 3065 * tasks should not normally entail blocking operations. But if 3066 * they do, they must abort them on interrupt.) 3067 * 3068 * @return {@code true} if terminating but not yet terminated 3069 */ 3070 public boolean isTerminating() { 3071 long c = ctl; 3072 return ((c & STOP_BIT) != 0L && 3073 (short)(c >>> TC_SHIFT) != -(config & SMASK)); 3074 } 3075 3076 /** 3077 * Returns {@code true} if this pool has been shut down. 3078 * 3079 * @return {@code true} if this pool has been shut down 3080 */ 3081 public boolean isShutdown() { 3082 return plock < 0; 3083 } 3084 3085 /** 3086 * Blocks until all tasks have completed execution after a 3087 * shutdown request, or the timeout occurs, or the current thread 3088 * is interrupted, whichever happens first. Note that the {@link 3089 * #commonPool()} never terminates until program shutdown so 3090 * this method will always time out. 3091 * 3092 * @param timeout the maximum time to wait 3093 * @param unit the time unit of the timeout argument 3094 * @return {@code true} if this executor terminated and 3095 * {@code false} if the timeout elapsed before termination 3096 * @throws InterruptedException if interrupted while waiting 3097 */ 3098 public boolean awaitTermination(long timeout, TimeUnit unit) 3099 throws InterruptedException { 3100 long nanos = unit.toNanos(timeout); 3101 if (isTerminated()) 3102 return true; 3103 if (nanos <= 0L) 3104 return false; 3105 long deadline = System.nanoTime() + nanos; 3106 synchronized (this) { 3107 for (;;) { 3108 if (isTerminated()) 3109 return true; 3110 if (nanos <= 0L) 3111 return false; 3112 long millis = TimeUnit.NANOSECONDS.toMillis(nanos); 3113 wait(millis > 0L ? millis : 1L); 3114 nanos = deadline - System.nanoTime(); 3115 } 3116 } 3117 } 3118 3119 /** 3120 * Interface for extending managed parallelism for tasks running 3121 * in {@link ForkJoinPool}s. 3122 * 3123 * <p>A {@code ManagedBlocker} provides two methods. Method 3124 * {@code isReleasable} must return {@code true} if blocking is 3125 * not necessary. Method {@code block} blocks the current thread 3126 * if necessary (perhaps internally invoking {@code isReleasable} 3127 * before actually blocking). These actions are performed by any 3128 * thread invoking {@link ForkJoinPool#managedBlock}. The 3129 * unusual methods in this API accommodate synchronizers that may, 3130 * but don't usually, block for long periods. Similarly, they 3131 * allow more efficient internal handling of cases in which 3132 * additional workers may be, but usually are not, needed to 3133 * ensure sufficient parallelism. Toward this end, 3134 * implementations of method {@code isReleasable} must be amenable 3135 * to repeated invocation. 3136 * 3137 * <p>For example, here is a ManagedBlocker based on a 3138 * ReentrantLock: 3139 * <pre> {@code 3140 * class ManagedLocker implements ManagedBlocker { 3141 * final ReentrantLock lock; 3142 * boolean hasLock = false; 3143 * ManagedLocker(ReentrantLock lock) { this.lock = lock; } 3144 * public boolean block() { 3145 * if (!hasLock) 3146 * lock.lock(); 3147 * return true; 3148 * } 3149 * public boolean isReleasable() { 3150 * return hasLock || (hasLock = lock.tryLock()); 3151 * } 3152 * }}</pre> 3153 * 3154 * <p>Here is a class that possibly blocks waiting for an 3155 * item on a given queue: 3156 * <pre> {@code 3157 * class QueueTaker<E> implements ManagedBlocker { 3158 * final BlockingQueue<E> queue; 3159 * volatile E item = null; 3160 * QueueTaker(BlockingQueue<E> q) { this.queue = q; } 3161 * public boolean block() throws InterruptedException { 3162 * if (item == null) 3163 * item = queue.take(); 3164 * return true; 3165 * } 3166 * public boolean isReleasable() { 3167 * return item != null || (item = queue.poll()) != null; 3168 * } 3169 * public E getItem() { // call after pool.managedBlock completes 3170 * return item; 3171 * } 3172 * }}</pre> 3173 */ 3174 public static interface ManagedBlocker { 3175 /** 3176 * Possibly blocks the current thread, for example waiting for 3177 * a lock or condition. 3178 * 3179 * @return {@code true} if no additional blocking is necessary 3180 * (i.e., if isReleasable would return true) 3181 * @throws InterruptedException if interrupted while waiting 3182 * (the method is not required to do so, but is allowed to) 3183 */ 3184 boolean block() throws InterruptedException; 3185 3186 /** 3187 * Returns {@code true} if blocking is unnecessary. 3188 */ 3189 boolean isReleasable(); 3190 } 3191 3192 /** 3193 * Blocks in accord with the given blocker. If the current thread 3194 * is a {@link ForkJoinWorkerThread}, this method possibly 3195 * arranges for a spare thread to be activated if necessary to 3196 * ensure sufficient parallelism while the current thread is blocked. 3197 * 3198 * <p>If the caller is not a {@link ForkJoinTask}, this method is 3199 * behaviorally equivalent to 3200 * <pre> {@code 3201 * while (!blocker.isReleasable()) 3202 * if (blocker.block()) 3203 * return; 3204 * }</pre> 3205 * 3206 * If the caller is a {@code ForkJoinTask}, then the pool may 3207 * first be expanded to ensure parallelism, and later adjusted. 3208 * 3209 * @param blocker the blocker 3210 * @throws InterruptedException if blocker.block did so 3211 */ 3212 public static void managedBlock(ManagedBlocker blocker) 3213 throws InterruptedException { 3214 Thread t = Thread.currentThread(); 3215 if (t instanceof ForkJoinWorkerThread) { 3216 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool; 3217 while (!blocker.isReleasable()) { // variant of helpSignal 3218 WorkQueue[] ws; WorkQueue q; int m, u; 3219 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) { 3220 for (int i = 0; i <= m; ++i) { 3221 if (blocker.isReleasable()) 3222 return; 3223 if ((q = ws[i]) != null && q.base - q.top < 0) { 3224 p.signalWork(q); 3225 if ((u = (int)(p.ctl >>> 32)) >= 0 || 3226 (u >> UAC_SHIFT) >= 0) 3227 break; 3228 } 3229 } 3230 } 3231 if (p.tryCompensate()) { 3232 try { 3233 do {} while (!blocker.isReleasable() && 3234 !blocker.block()); 3235 } finally { 3236 p.incrementActiveCount(); 3237 } 3238 break; 3239 } 3240 } 3241 } 3242 else { 3243 do {} while (!blocker.isReleasable() && 3244 !blocker.block()); 3245 } 3246 } 3247 3248 // AbstractExecutorService overrides. These rely on undocumented 3249 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also 3250 // implement RunnableFuture. 3251 3252 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { 3253 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value); 3254 } 3255 3256 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { 3257 return new ForkJoinTask.AdaptedCallable<T>(callable); 3258 } 3259 3260 // Unsafe mechanics 3261 private static final sun.misc.Unsafe U; 3262 private static final long CTL; 3263 private static final long PARKBLOCKER; 3264 private static final int ABASE; 3265 private static final int ASHIFT; 3266 private static final long STEALCOUNT; 3267 private static final long PLOCK; 3268 private static final long INDEXSEED; 3269 private static final long QLOCK; 3270 3271 static { 3272 // initialize field offsets for CAS etc 3273 try { 3274 U = sun.misc.Unsafe.getUnsafe(); 3275 Class<?> k = ForkJoinPool.class; 3276 CTL = U.objectFieldOffset 3277 (k.getDeclaredField("ctl")); 3278 STEALCOUNT = U.objectFieldOffset 3279 (k.getDeclaredField("stealCount")); 3280 PLOCK = U.objectFieldOffset 3281 (k.getDeclaredField("plock")); 3282 INDEXSEED = U.objectFieldOffset 3283 (k.getDeclaredField("indexSeed")); 3284 Class<?> tk = Thread.class; 3285 PARKBLOCKER = U.objectFieldOffset 3286 (tk.getDeclaredField("parkBlocker")); 3287 Class<?> wk = WorkQueue.class; 3288 QLOCK = U.objectFieldOffset 3289 (wk.getDeclaredField("qlock")); 3290 Class<?> ak = ForkJoinTask[].class; 3291 ABASE = U.arrayBaseOffset(ak); 3292 int scale = U.arrayIndexScale(ak); 3293 if ((scale & (scale - 1)) != 0) 3294 throw new Error("data type scale not a power of two"); 3295 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale); 3296 } catch (Exception e) { 3297 throw new Error(e); 3298 } 3299 3300 submitters = new ThreadLocal<Submitter>(); 3301 ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory = 3302 new DefaultForkJoinWorkerThreadFactory(); 3303 modifyThreadPermission = new RuntimePermission("modifyThread"); 3304 3305 /* 3306 * Establish common pool parameters. For extra caution, 3307 * computations to set up common pool state are here; the 3308 * constructor just assigns these values to fields. 3309 */ 3310 3311 int par = 0; 3312 Thread.UncaughtExceptionHandler handler = null; 3313 try { // TBD: limit or report ignored exceptions? 3314 String pp = System.getProperty 3315 ("java.util.concurrent.ForkJoinPool.common.parallelism"); 3316 String hp = System.getProperty 3317 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler"); 3318 String fp = System.getProperty 3319 ("java.util.concurrent.ForkJoinPool.common.threadFactory"); 3320 if (fp != null) 3321 fac = ((ForkJoinWorkerThreadFactory)ClassLoader. 3322 getSystemClassLoader().loadClass(fp).newInstance()); 3323 if (hp != null) 3324 handler = ((Thread.UncaughtExceptionHandler)ClassLoader. 3325 getSystemClassLoader().loadClass(hp).newInstance()); 3326 if (pp != null) 3327 par = Integer.parseInt(pp); 3328 } catch (Exception ignore) { 3329 } 3330 3331 if (par <= 0) 3332 par = Runtime.getRuntime().availableProcessors(); 3333 if (par > MAX_CAP) 3334 par = MAX_CAP; 3335 commonPoolParallelism = par; 3336 long np = (long)(-par); // precompute initial ctl value 3337 long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK); 3338 3339 commonPool = new ForkJoinPool(par, ct, fac, handler); 3340 } 3341 3342 } 3343