Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TreeTransform.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTMutationListener.h"
     19 #include "clang/AST/CXXInheritance.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/DeclTemplate.h"
     22 #include "clang/AST/EvaluatedExprVisitor.h"
     23 #include "clang/AST/Expr.h"
     24 #include "clang/AST/ExprCXX.h"
     25 #include "clang/AST/ExprObjC.h"
     26 #include "clang/AST/RecursiveASTVisitor.h"
     27 #include "clang/AST/TypeLoc.h"
     28 #include "clang/Basic/PartialDiagnostic.h"
     29 #include "clang/Basic/SourceManager.h"
     30 #include "clang/Basic/TargetInfo.h"
     31 #include "clang/Lex/LiteralSupport.h"
     32 #include "clang/Lex/Preprocessor.h"
     33 #include "clang/Sema/AnalysisBasedWarnings.h"
     34 #include "clang/Sema/DeclSpec.h"
     35 #include "clang/Sema/DelayedDiagnostic.h"
     36 #include "clang/Sema/Designator.h"
     37 #include "clang/Sema/Initialization.h"
     38 #include "clang/Sema/Lookup.h"
     39 #include "clang/Sema/ParsedTemplate.h"
     40 #include "clang/Sema/Scope.h"
     41 #include "clang/Sema/ScopeInfo.h"
     42 #include "clang/Sema/SemaFixItUtils.h"
     43 #include "clang/Sema/Template.h"
     44 using namespace clang;
     45 using namespace sema;
     46 
     47 /// \brief Determine whether the use of this declaration is valid, without
     48 /// emitting diagnostics.
     49 bool Sema::CanUseDecl(NamedDecl *D) {
     50   // See if this is an auto-typed variable whose initializer we are parsing.
     51   if (ParsingInitForAutoVars.count(D))
     52     return false;
     53 
     54   // See if this is a deleted function.
     55   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     56     if (FD->isDeleted())
     57       return false;
     58 
     59     // If the function has a deduced return type, and we can't deduce it,
     60     // then we can't use it either.
     61     if (getLangOpts().CPlusPlus1y && FD->getResultType()->isUndeducedType() &&
     62         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/false))
     63       return false;
     64   }
     65 
     66   // See if this function is unavailable.
     67   if (D->getAvailability() == AR_Unavailable &&
     68       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
     69     return false;
     70 
     71   return true;
     72 }
     73 
     74 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
     75   // Warn if this is used but marked unused.
     76   if (D->hasAttr<UnusedAttr>()) {
     77     const Decl *DC = cast<Decl>(S.getCurObjCLexicalContext());
     78     if (!DC->hasAttr<UnusedAttr>())
     79       S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
     80   }
     81 }
     82 
     83 static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
     84                               NamedDecl *D, SourceLocation Loc,
     85                               const ObjCInterfaceDecl *UnknownObjCClass) {
     86   // See if this declaration is unavailable or deprecated.
     87   std::string Message;
     88   AvailabilityResult Result = D->getAvailability(&Message);
     89   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
     90     if (Result == AR_Available) {
     91       const DeclContext *DC = ECD->getDeclContext();
     92       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
     93         Result = TheEnumDecl->getAvailability(&Message);
     94     }
     95 
     96   const ObjCPropertyDecl *ObjCPDecl = 0;
     97   if (Result == AR_Deprecated || Result == AR_Unavailable) {
     98     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
     99       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
    100         AvailabilityResult PDeclResult = PD->getAvailability(0);
    101         if (PDeclResult == Result)
    102           ObjCPDecl = PD;
    103       }
    104     }
    105   }
    106 
    107   switch (Result) {
    108     case AR_Available:
    109     case AR_NotYetIntroduced:
    110       break;
    111 
    112     case AR_Deprecated:
    113       S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass, ObjCPDecl);
    114       break;
    115 
    116     case AR_Unavailable:
    117       if (S.getCurContextAvailability() != AR_Unavailable) {
    118         if (Message.empty()) {
    119           if (!UnknownObjCClass) {
    120             S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
    121             if (ObjCPDecl)
    122               S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
    123                 << ObjCPDecl->getDeclName() << 1;
    124           }
    125           else
    126             S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
    127               << D->getDeclName();
    128         }
    129         else
    130           S.Diag(Loc, diag::err_unavailable_message)
    131             << D->getDeclName() << Message;
    132         S.Diag(D->getLocation(), diag::note_unavailable_here)
    133                   << isa<FunctionDecl>(D) << false;
    134         if (ObjCPDecl)
    135           S.Diag(ObjCPDecl->getLocation(), diag::note_property_attribute)
    136           << ObjCPDecl->getDeclName() << 1;
    137       }
    138       break;
    139     }
    140     return Result;
    141 }
    142 
    143 /// \brief Emit a note explaining that this function is deleted.
    144 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
    145   assert(Decl->isDeleted());
    146 
    147   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
    148 
    149   if (Method && Method->isDeleted() && Method->isDefaulted()) {
    150     // If the method was explicitly defaulted, point at that declaration.
    151     if (!Method->isImplicit())
    152       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
    153 
    154     // Try to diagnose why this special member function was implicitly
    155     // deleted. This might fail, if that reason no longer applies.
    156     CXXSpecialMember CSM = getSpecialMember(Method);
    157     if (CSM != CXXInvalid)
    158       ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
    159 
    160     return;
    161   }
    162 
    163   if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
    164     if (CXXConstructorDecl *BaseCD =
    165             const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
    166       Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
    167       if (BaseCD->isDeleted()) {
    168         NoteDeletedFunction(BaseCD);
    169       } else {
    170         // FIXME: An explanation of why exactly it can't be inherited
    171         // would be nice.
    172         Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
    173       }
    174       return;
    175     }
    176   }
    177 
    178   Diag(Decl->getLocation(), diag::note_unavailable_here)
    179     << 1 << true;
    180 }
    181 
    182 /// \brief Determine whether a FunctionDecl was ever declared with an
    183 /// explicit storage class.
    184 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
    185   for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
    186                                      E = D->redecls_end();
    187        I != E; ++I) {
    188     if (I->getStorageClass() != SC_None)
    189       return true;
    190   }
    191   return false;
    192 }
    193 
    194 /// \brief Check whether we're in an extern inline function and referring to a
    195 /// variable or function with internal linkage (C11 6.7.4p3).
    196 ///
    197 /// This is only a warning because we used to silently accept this code, but
    198 /// in many cases it will not behave correctly. This is not enabled in C++ mode
    199 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
    200 /// and so while there may still be user mistakes, most of the time we can't
    201 /// prove that there are errors.
    202 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
    203                                                       const NamedDecl *D,
    204                                                       SourceLocation Loc) {
    205   // This is disabled under C++; there are too many ways for this to fire in
    206   // contexts where the warning is a false positive, or where it is technically
    207   // correct but benign.
    208   if (S.getLangOpts().CPlusPlus)
    209     return;
    210 
    211   // Check if this is an inlined function or method.
    212   FunctionDecl *Current = S.getCurFunctionDecl();
    213   if (!Current)
    214     return;
    215   if (!Current->isInlined())
    216     return;
    217   if (!Current->isExternallyVisible())
    218     return;
    219 
    220   // Check if the decl has internal linkage.
    221   if (D->getFormalLinkage() != InternalLinkage)
    222     return;
    223 
    224   // Downgrade from ExtWarn to Extension if
    225   //  (1) the supposedly external inline function is in the main file,
    226   //      and probably won't be included anywhere else.
    227   //  (2) the thing we're referencing is a pure function.
    228   //  (3) the thing we're referencing is another inline function.
    229   // This last can give us false negatives, but it's better than warning on
    230   // wrappers for simple C library functions.
    231   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
    232   bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
    233   if (!DowngradeWarning && UsedFn)
    234     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
    235 
    236   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
    237                                : diag::warn_internal_in_extern_inline)
    238     << /*IsVar=*/!UsedFn << D;
    239 
    240   S.MaybeSuggestAddingStaticToDecl(Current);
    241 
    242   S.Diag(D->getCanonicalDecl()->getLocation(),
    243          diag::note_internal_decl_declared_here)
    244     << D;
    245 }
    246 
    247 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
    248   const FunctionDecl *First = Cur->getFirstDeclaration();
    249 
    250   // Suggest "static" on the function, if possible.
    251   if (!hasAnyExplicitStorageClass(First)) {
    252     SourceLocation DeclBegin = First->getSourceRange().getBegin();
    253     Diag(DeclBegin, diag::note_convert_inline_to_static)
    254       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
    255   }
    256 }
    257 
    258 /// \brief Determine whether the use of this declaration is valid, and
    259 /// emit any corresponding diagnostics.
    260 ///
    261 /// This routine diagnoses various problems with referencing
    262 /// declarations that can occur when using a declaration. For example,
    263 /// it might warn if a deprecated or unavailable declaration is being
    264 /// used, or produce an error (and return true) if a C++0x deleted
    265 /// function is being used.
    266 ///
    267 /// \returns true if there was an error (this declaration cannot be
    268 /// referenced), false otherwise.
    269 ///
    270 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
    271                              const ObjCInterfaceDecl *UnknownObjCClass) {
    272   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
    273     // If there were any diagnostics suppressed by template argument deduction,
    274     // emit them now.
    275     SuppressedDiagnosticsMap::iterator
    276       Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
    277     if (Pos != SuppressedDiagnostics.end()) {
    278       SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
    279       for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
    280         Diag(Suppressed[I].first, Suppressed[I].second);
    281 
    282       // Clear out the list of suppressed diagnostics, so that we don't emit
    283       // them again for this specialization. However, we don't obsolete this
    284       // entry from the table, because we want to avoid ever emitting these
    285       // diagnostics again.
    286       Suppressed.clear();
    287     }
    288   }
    289 
    290   // See if this is an auto-typed variable whose initializer we are parsing.
    291   if (ParsingInitForAutoVars.count(D)) {
    292     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
    293       << D->getDeclName();
    294     return true;
    295   }
    296 
    297   // See if this is a deleted function.
    298   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    299     if (FD->isDeleted()) {
    300       Diag(Loc, diag::err_deleted_function_use);
    301       NoteDeletedFunction(FD);
    302       return true;
    303     }
    304 
    305     // If the function has a deduced return type, and we can't deduce it,
    306     // then we can't use it either.
    307     if (getLangOpts().CPlusPlus1y && FD->getResultType()->isUndeducedType() &&
    308         DeduceReturnType(FD, Loc))
    309       return true;
    310   }
    311   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
    312 
    313   DiagnoseUnusedOfDecl(*this, D, Loc);
    314 
    315   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
    316 
    317   return false;
    318 }
    319 
    320 /// \brief Retrieve the message suffix that should be added to a
    321 /// diagnostic complaining about the given function being deleted or
    322 /// unavailable.
    323 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
    324   std::string Message;
    325   if (FD->getAvailability(&Message))
    326     return ": " + Message;
    327 
    328   return std::string();
    329 }
    330 
    331 /// DiagnoseSentinelCalls - This routine checks whether a call or
    332 /// message-send is to a declaration with the sentinel attribute, and
    333 /// if so, it checks that the requirements of the sentinel are
    334 /// satisfied.
    335 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
    336                                  ArrayRef<Expr *> Args) {
    337   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
    338   if (!attr)
    339     return;
    340 
    341   // The number of formal parameters of the declaration.
    342   unsigned numFormalParams;
    343 
    344   // The kind of declaration.  This is also an index into a %select in
    345   // the diagnostic.
    346   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
    347 
    348   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    349     numFormalParams = MD->param_size();
    350     calleeType = CT_Method;
    351   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    352     numFormalParams = FD->param_size();
    353     calleeType = CT_Function;
    354   } else if (isa<VarDecl>(D)) {
    355     QualType type = cast<ValueDecl>(D)->getType();
    356     const FunctionType *fn = 0;
    357     if (const PointerType *ptr = type->getAs<PointerType>()) {
    358       fn = ptr->getPointeeType()->getAs<FunctionType>();
    359       if (!fn) return;
    360       calleeType = CT_Function;
    361     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
    362       fn = ptr->getPointeeType()->castAs<FunctionType>();
    363       calleeType = CT_Block;
    364     } else {
    365       return;
    366     }
    367 
    368     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
    369       numFormalParams = proto->getNumArgs();
    370     } else {
    371       numFormalParams = 0;
    372     }
    373   } else {
    374     return;
    375   }
    376 
    377   // "nullPos" is the number of formal parameters at the end which
    378   // effectively count as part of the variadic arguments.  This is
    379   // useful if you would prefer to not have *any* formal parameters,
    380   // but the language forces you to have at least one.
    381   unsigned nullPos = attr->getNullPos();
    382   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
    383   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
    384 
    385   // The number of arguments which should follow the sentinel.
    386   unsigned numArgsAfterSentinel = attr->getSentinel();
    387 
    388   // If there aren't enough arguments for all the formal parameters,
    389   // the sentinel, and the args after the sentinel, complain.
    390   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
    391     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    392     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    393     return;
    394   }
    395 
    396   // Otherwise, find the sentinel expression.
    397   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
    398   if (!sentinelExpr) return;
    399   if (sentinelExpr->isValueDependent()) return;
    400   if (Context.isSentinelNullExpr(sentinelExpr)) return;
    401 
    402   // Pick a reasonable string to insert.  Optimistically use 'nil' or
    403   // 'NULL' if those are actually defined in the context.  Only use
    404   // 'nil' for ObjC methods, where it's much more likely that the
    405   // variadic arguments form a list of object pointers.
    406   SourceLocation MissingNilLoc
    407     = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
    408   std::string NullValue;
    409   if (calleeType == CT_Method &&
    410       PP.getIdentifierInfo("nil")->hasMacroDefinition())
    411     NullValue = "nil";
    412   else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
    413     NullValue = "NULL";
    414   else
    415     NullValue = "(void*) 0";
    416 
    417   if (MissingNilLoc.isInvalid())
    418     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
    419   else
    420     Diag(MissingNilLoc, diag::warn_missing_sentinel)
    421       << int(calleeType)
    422       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
    423   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    424 }
    425 
    426 SourceRange Sema::getExprRange(Expr *E) const {
    427   return E ? E->getSourceRange() : SourceRange();
    428 }
    429 
    430 //===----------------------------------------------------------------------===//
    431 //  Standard Promotions and Conversions
    432 //===----------------------------------------------------------------------===//
    433 
    434 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
    435 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
    436   // Handle any placeholder expressions which made it here.
    437   if (E->getType()->isPlaceholderType()) {
    438     ExprResult result = CheckPlaceholderExpr(E);
    439     if (result.isInvalid()) return ExprError();
    440     E = result.take();
    441   }
    442 
    443   QualType Ty = E->getType();
    444   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
    445 
    446   if (Ty->isFunctionType())
    447     E = ImpCastExprToType(E, Context.getPointerType(Ty),
    448                           CK_FunctionToPointerDecay).take();
    449   else if (Ty->isArrayType()) {
    450     // In C90 mode, arrays only promote to pointers if the array expression is
    451     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    452     // type 'array of type' is converted to an expression that has type 'pointer
    453     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    454     // that has type 'array of type' ...".  The relevant change is "an lvalue"
    455     // (C90) to "an expression" (C99).
    456     //
    457     // C++ 4.2p1:
    458     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    459     // T" can be converted to an rvalue of type "pointer to T".
    460     //
    461     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
    462       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
    463                             CK_ArrayToPointerDecay).take();
    464   }
    465   return Owned(E);
    466 }
    467 
    468 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
    469   // Check to see if we are dereferencing a null pointer.  If so,
    470   // and if not volatile-qualified, this is undefined behavior that the
    471   // optimizer will delete, so warn about it.  People sometimes try to use this
    472   // to get a deterministic trap and are surprised by clang's behavior.  This
    473   // only handles the pattern "*null", which is a very syntactic check.
    474   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
    475     if (UO->getOpcode() == UO_Deref &&
    476         UO->getSubExpr()->IgnoreParenCasts()->
    477           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
    478         !UO->getType().isVolatileQualified()) {
    479     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    480                           S.PDiag(diag::warn_indirection_through_null)
    481                             << UO->getSubExpr()->getSourceRange());
    482     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    483                         S.PDiag(diag::note_indirection_through_null));
    484   }
    485 }
    486 
    487 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
    488                                     SourceLocation AssignLoc,
    489                                     const Expr* RHS) {
    490   const ObjCIvarDecl *IV = OIRE->getDecl();
    491   if (!IV)
    492     return;
    493 
    494   DeclarationName MemberName = IV->getDeclName();
    495   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    496   if (!Member || !Member->isStr("isa"))
    497     return;
    498 
    499   const Expr *Base = OIRE->getBase();
    500   QualType BaseType = Base->getType();
    501   if (OIRE->isArrow())
    502     BaseType = BaseType->getPointeeType();
    503   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
    504     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
    505       ObjCInterfaceDecl *ClassDeclared = 0;
    506       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
    507       if (!ClassDeclared->getSuperClass()
    508           && (*ClassDeclared->ivar_begin()) == IV) {
    509         if (RHS) {
    510           NamedDecl *ObjectSetClass =
    511             S.LookupSingleName(S.TUScope,
    512                                &S.Context.Idents.get("object_setClass"),
    513                                SourceLocation(), S.LookupOrdinaryName);
    514           if (ObjectSetClass) {
    515             SourceLocation RHSLocEnd = S.PP.getLocForEndOfToken(RHS->getLocEnd());
    516             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
    517             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
    518             FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
    519                                                      AssignLoc), ",") <<
    520             FixItHint::CreateInsertion(RHSLocEnd, ")");
    521           }
    522           else
    523             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
    524         } else {
    525           NamedDecl *ObjectGetClass =
    526             S.LookupSingleName(S.TUScope,
    527                                &S.Context.Idents.get("object_getClass"),
    528                                SourceLocation(), S.LookupOrdinaryName);
    529           if (ObjectGetClass)
    530             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
    531             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
    532             FixItHint::CreateReplacement(
    533                                          SourceRange(OIRE->getOpLoc(),
    534                                                      OIRE->getLocEnd()), ")");
    535           else
    536             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
    537         }
    538         S.Diag(IV->getLocation(), diag::note_ivar_decl);
    539       }
    540     }
    541 }
    542 
    543 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
    544   // Handle any placeholder expressions which made it here.
    545   if (E->getType()->isPlaceholderType()) {
    546     ExprResult result = CheckPlaceholderExpr(E);
    547     if (result.isInvalid()) return ExprError();
    548     E = result.take();
    549   }
    550 
    551   // C++ [conv.lval]p1:
    552   //   A glvalue of a non-function, non-array type T can be
    553   //   converted to a prvalue.
    554   if (!E->isGLValue()) return Owned(E);
    555 
    556   QualType T = E->getType();
    557   assert(!T.isNull() && "r-value conversion on typeless expression?");
    558 
    559   // We don't want to throw lvalue-to-rvalue casts on top of
    560   // expressions of certain types in C++.
    561   if (getLangOpts().CPlusPlus &&
    562       (E->getType() == Context.OverloadTy ||
    563        T->isDependentType() ||
    564        T->isRecordType()))
    565     return Owned(E);
    566 
    567   // The C standard is actually really unclear on this point, and
    568   // DR106 tells us what the result should be but not why.  It's
    569   // generally best to say that void types just doesn't undergo
    570   // lvalue-to-rvalue at all.  Note that expressions of unqualified
    571   // 'void' type are never l-values, but qualified void can be.
    572   if (T->isVoidType())
    573     return Owned(E);
    574 
    575   // OpenCL usually rejects direct accesses to values of 'half' type.
    576   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
    577       T->isHalfType()) {
    578     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
    579       << 0 << T;
    580     return ExprError();
    581   }
    582 
    583   CheckForNullPointerDereference(*this, E);
    584   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
    585     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
    586                                      &Context.Idents.get("object_getClass"),
    587                                      SourceLocation(), LookupOrdinaryName);
    588     if (ObjectGetClass)
    589       Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
    590         FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
    591         FixItHint::CreateReplacement(
    592                     SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
    593     else
    594       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
    595   }
    596   else if (const ObjCIvarRefExpr *OIRE =
    597             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
    598     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/0);
    599 
    600   // C++ [conv.lval]p1:
    601   //   [...] If T is a non-class type, the type of the prvalue is the
    602   //   cv-unqualified version of T. Otherwise, the type of the
    603   //   rvalue is T.
    604   //
    605   // C99 6.3.2.1p2:
    606   //   If the lvalue has qualified type, the value has the unqualified
    607   //   version of the type of the lvalue; otherwise, the value has the
    608   //   type of the lvalue.
    609   if (T.hasQualifiers())
    610     T = T.getUnqualifiedType();
    611 
    612   UpdateMarkingForLValueToRValue(E);
    613 
    614   // Loading a __weak object implicitly retains the value, so we need a cleanup to
    615   // balance that.
    616   if (getLangOpts().ObjCAutoRefCount &&
    617       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
    618     ExprNeedsCleanups = true;
    619 
    620   ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
    621                                                   E, 0, VK_RValue));
    622 
    623   // C11 6.3.2.1p2:
    624   //   ... if the lvalue has atomic type, the value has the non-atomic version
    625   //   of the type of the lvalue ...
    626   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
    627     T = Atomic->getValueType().getUnqualifiedType();
    628     Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
    629                                          Res.get(), 0, VK_RValue));
    630   }
    631 
    632   return Res;
    633 }
    634 
    635 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
    636   ExprResult Res = DefaultFunctionArrayConversion(E);
    637   if (Res.isInvalid())
    638     return ExprError();
    639   Res = DefaultLvalueConversion(Res.take());
    640   if (Res.isInvalid())
    641     return ExprError();
    642   return Res;
    643 }
    644 
    645 
    646 /// UsualUnaryConversions - Performs various conversions that are common to most
    647 /// operators (C99 6.3). The conversions of array and function types are
    648 /// sometimes suppressed. For example, the array->pointer conversion doesn't
    649 /// apply if the array is an argument to the sizeof or address (&) operators.
    650 /// In these instances, this routine should *not* be called.
    651 ExprResult Sema::UsualUnaryConversions(Expr *E) {
    652   // First, convert to an r-value.
    653   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
    654   if (Res.isInvalid())
    655     return ExprError();
    656   E = Res.take();
    657 
    658   QualType Ty = E->getType();
    659   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
    660 
    661   // Half FP have to be promoted to float unless it is natively supported
    662   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
    663     return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
    664 
    665   // Try to perform integral promotions if the object has a theoretically
    666   // promotable type.
    667   if (Ty->isIntegralOrUnscopedEnumerationType()) {
    668     // C99 6.3.1.1p2:
    669     //
    670     //   The following may be used in an expression wherever an int or
    671     //   unsigned int may be used:
    672     //     - an object or expression with an integer type whose integer
    673     //       conversion rank is less than or equal to the rank of int
    674     //       and unsigned int.
    675     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
    676     //
    677     //   If an int can represent all values of the original type, the
    678     //   value is converted to an int; otherwise, it is converted to an
    679     //   unsigned int. These are called the integer promotions. All
    680     //   other types are unchanged by the integer promotions.
    681 
    682     QualType PTy = Context.isPromotableBitField(E);
    683     if (!PTy.isNull()) {
    684       E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
    685       return Owned(E);
    686     }
    687     if (Ty->isPromotableIntegerType()) {
    688       QualType PT = Context.getPromotedIntegerType(Ty);
    689       E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
    690       return Owned(E);
    691     }
    692   }
    693   return Owned(E);
    694 }
    695 
    696 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
    697 /// do not have a prototype. Arguments that have type float or __fp16
    698 /// are promoted to double. All other argument types are converted by
    699 /// UsualUnaryConversions().
    700 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
    701   QualType Ty = E->getType();
    702   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
    703 
    704   ExprResult Res = UsualUnaryConversions(E);
    705   if (Res.isInvalid())
    706     return ExprError();
    707   E = Res.take();
    708 
    709   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
    710   // double.
    711   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
    712   if (BTy && (BTy->getKind() == BuiltinType::Half ||
    713               BTy->getKind() == BuiltinType::Float))
    714     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
    715 
    716   // C++ performs lvalue-to-rvalue conversion as a default argument
    717   // promotion, even on class types, but note:
    718   //   C++11 [conv.lval]p2:
    719   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
    720   //     operand or a subexpression thereof the value contained in the
    721   //     referenced object is not accessed. Otherwise, if the glvalue
    722   //     has a class type, the conversion copy-initializes a temporary
    723   //     of type T from the glvalue and the result of the conversion
    724   //     is a prvalue for the temporary.
    725   // FIXME: add some way to gate this entire thing for correctness in
    726   // potentially potentially evaluated contexts.
    727   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
    728     ExprResult Temp = PerformCopyInitialization(
    729                        InitializedEntity::InitializeTemporary(E->getType()),
    730                                                 E->getExprLoc(),
    731                                                 Owned(E));
    732     if (Temp.isInvalid())
    733       return ExprError();
    734     E = Temp.get();
    735   }
    736 
    737   return Owned(E);
    738 }
    739 
    740 /// Determine the degree of POD-ness for an expression.
    741 /// Incomplete types are considered POD, since this check can be performed
    742 /// when we're in an unevaluated context.
    743 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
    744   if (Ty->isIncompleteType()) {
    745     // C++11 [expr.call]p7:
    746     //   After these conversions, if the argument does not have arithmetic,
    747     //   enumeration, pointer, pointer to member, or class type, the program
    748     //   is ill-formed.
    749     //
    750     // Since we've already performed array-to-pointer and function-to-pointer
    751     // decay, the only such type in C++ is cv void. This also handles
    752     // initializer lists as variadic arguments.
    753     if (Ty->isVoidType())
    754       return VAK_Invalid;
    755 
    756     if (Ty->isObjCObjectType())
    757       return VAK_Invalid;
    758     return VAK_Valid;
    759   }
    760 
    761   if (Ty.isCXX98PODType(Context))
    762     return VAK_Valid;
    763 
    764   // C++11 [expr.call]p7:
    765   //   Passing a potentially-evaluated argument of class type (Clause 9)
    766   //   having a non-trivial copy constructor, a non-trivial move constructor,
    767   //   or a non-trivial destructor, with no corresponding parameter,
    768   //   is conditionally-supported with implementation-defined semantics.
    769   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
    770     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
    771       if (!Record->hasNonTrivialCopyConstructor() &&
    772           !Record->hasNonTrivialMoveConstructor() &&
    773           !Record->hasNonTrivialDestructor())
    774         return VAK_ValidInCXX11;
    775 
    776   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
    777     return VAK_Valid;
    778 
    779   if (Ty->isObjCObjectType())
    780     return VAK_Invalid;
    781 
    782   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
    783   // permitted to reject them. We should consider doing so.
    784   return VAK_Undefined;
    785 }
    786 
    787 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
    788   // Don't allow one to pass an Objective-C interface to a vararg.
    789   const QualType &Ty = E->getType();
    790   VarArgKind VAK = isValidVarArgType(Ty);
    791 
    792   // Complain about passing non-POD types through varargs.
    793   switch (VAK) {
    794   case VAK_Valid:
    795     break;
    796 
    797   case VAK_ValidInCXX11:
    798     DiagRuntimeBehavior(
    799         E->getLocStart(), 0,
    800         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
    801           << E->getType() << CT);
    802     break;
    803 
    804   case VAK_Undefined:
    805     DiagRuntimeBehavior(
    806         E->getLocStart(), 0,
    807         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
    808           << getLangOpts().CPlusPlus11 << Ty << CT);
    809     break;
    810 
    811   case VAK_Invalid:
    812     if (Ty->isObjCObjectType())
    813       DiagRuntimeBehavior(
    814           E->getLocStart(), 0,
    815           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
    816             << Ty << CT);
    817     else
    818       Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
    819         << isa<InitListExpr>(E) << Ty << CT;
    820     break;
    821   }
    822 }
    823 
    824 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
    825 /// will create a trap if the resulting type is not a POD type.
    826 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
    827                                                   FunctionDecl *FDecl) {
    828   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
    829     // Strip the unbridged-cast placeholder expression off, if applicable.
    830     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
    831         (CT == VariadicMethod ||
    832          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
    833       E = stripARCUnbridgedCast(E);
    834 
    835     // Otherwise, do normal placeholder checking.
    836     } else {
    837       ExprResult ExprRes = CheckPlaceholderExpr(E);
    838       if (ExprRes.isInvalid())
    839         return ExprError();
    840       E = ExprRes.take();
    841     }
    842   }
    843 
    844   ExprResult ExprRes = DefaultArgumentPromotion(E);
    845   if (ExprRes.isInvalid())
    846     return ExprError();
    847   E = ExprRes.take();
    848 
    849   // Diagnostics regarding non-POD argument types are
    850   // emitted along with format string checking in Sema::CheckFunctionCall().
    851   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
    852     // Turn this into a trap.
    853     CXXScopeSpec SS;
    854     SourceLocation TemplateKWLoc;
    855     UnqualifiedId Name;
    856     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
    857                        E->getLocStart());
    858     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
    859                                           Name, true, false);
    860     if (TrapFn.isInvalid())
    861       return ExprError();
    862 
    863     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
    864                                     E->getLocStart(), None,
    865                                     E->getLocEnd());
    866     if (Call.isInvalid())
    867       return ExprError();
    868 
    869     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
    870                                   Call.get(), E);
    871     if (Comma.isInvalid())
    872       return ExprError();
    873     return Comma.get();
    874   }
    875 
    876   if (!getLangOpts().CPlusPlus &&
    877       RequireCompleteType(E->getExprLoc(), E->getType(),
    878                           diag::err_call_incomplete_argument))
    879     return ExprError();
    880 
    881   return Owned(E);
    882 }
    883 
    884 /// \brief Converts an integer to complex float type.  Helper function of
    885 /// UsualArithmeticConversions()
    886 ///
    887 /// \return false if the integer expression is an integer type and is
    888 /// successfully converted to the complex type.
    889 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
    890                                                   ExprResult &ComplexExpr,
    891                                                   QualType IntTy,
    892                                                   QualType ComplexTy,
    893                                                   bool SkipCast) {
    894   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
    895   if (SkipCast) return false;
    896   if (IntTy->isIntegerType()) {
    897     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
    898     IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
    899     IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
    900                                   CK_FloatingRealToComplex);
    901   } else {
    902     assert(IntTy->isComplexIntegerType());
    903     IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
    904                                   CK_IntegralComplexToFloatingComplex);
    905   }
    906   return false;
    907 }
    908 
    909 /// \brief Takes two complex float types and converts them to the same type.
    910 /// Helper function of UsualArithmeticConversions()
    911 static QualType
    912 handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
    913                                             ExprResult &RHS, QualType LHSType,
    914                                             QualType RHSType,
    915                                             bool IsCompAssign) {
    916   int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
    917 
    918   if (order < 0) {
    919     // _Complex float -> _Complex double
    920     if (!IsCompAssign)
    921       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
    922     return RHSType;
    923   }
    924   if (order > 0)
    925     // _Complex float -> _Complex double
    926     RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
    927   return LHSType;
    928 }
    929 
    930 /// \brief Converts otherExpr to complex float and promotes complexExpr if
    931 /// necessary.  Helper function of UsualArithmeticConversions()
    932 static QualType handleOtherComplexFloatConversion(Sema &S,
    933                                                   ExprResult &ComplexExpr,
    934                                                   ExprResult &OtherExpr,
    935                                                   QualType ComplexTy,
    936                                                   QualType OtherTy,
    937                                                   bool ConvertComplexExpr,
    938                                                   bool ConvertOtherExpr) {
    939   int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
    940 
    941   // If just the complexExpr is complex, the otherExpr needs to be converted,
    942   // and the complexExpr might need to be promoted.
    943   if (order > 0) { // complexExpr is wider
    944     // float -> _Complex double
    945     if (ConvertOtherExpr) {
    946       QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
    947       OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
    948       OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
    949                                       CK_FloatingRealToComplex);
    950     }
    951     return ComplexTy;
    952   }
    953 
    954   // otherTy is at least as wide.  Find its corresponding complex type.
    955   QualType result = (order == 0 ? ComplexTy :
    956                                   S.Context.getComplexType(OtherTy));
    957 
    958   // double -> _Complex double
    959   if (ConvertOtherExpr)
    960     OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
    961                                     CK_FloatingRealToComplex);
    962 
    963   // _Complex float -> _Complex double
    964   if (ConvertComplexExpr && order < 0)
    965     ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
    966                                       CK_FloatingComplexCast);
    967 
    968   return result;
    969 }
    970 
    971 /// \brief Handle arithmetic conversion with complex types.  Helper function of
    972 /// UsualArithmeticConversions()
    973 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
    974                                              ExprResult &RHS, QualType LHSType,
    975                                              QualType RHSType,
    976                                              bool IsCompAssign) {
    977   // if we have an integer operand, the result is the complex type.
    978   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
    979                                              /*skipCast*/false))
    980     return LHSType;
    981   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
    982                                              /*skipCast*/IsCompAssign))
    983     return RHSType;
    984 
    985   // This handles complex/complex, complex/float, or float/complex.
    986   // When both operands are complex, the shorter operand is converted to the
    987   // type of the longer, and that is the type of the result. This corresponds
    988   // to what is done when combining two real floating-point operands.
    989   // The fun begins when size promotion occur across type domains.
    990   // From H&S 6.3.4: When one operand is complex and the other is a real
    991   // floating-point type, the less precise type is converted, within it's
    992   // real or complex domain, to the precision of the other type. For example,
    993   // when combining a "long double" with a "double _Complex", the
    994   // "double _Complex" is promoted to "long double _Complex".
    995 
    996   bool LHSComplexFloat = LHSType->isComplexType();
    997   bool RHSComplexFloat = RHSType->isComplexType();
    998 
    999   // If both are complex, just cast to the more precise type.
   1000   if (LHSComplexFloat && RHSComplexFloat)
   1001     return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
   1002                                                        LHSType, RHSType,
   1003                                                        IsCompAssign);
   1004 
   1005   // If only one operand is complex, promote it if necessary and convert the
   1006   // other operand to complex.
   1007   if (LHSComplexFloat)
   1008     return handleOtherComplexFloatConversion(
   1009         S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
   1010         /*convertOtherExpr*/ true);
   1011 
   1012   assert(RHSComplexFloat);
   1013   return handleOtherComplexFloatConversion(
   1014       S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
   1015       /*convertOtherExpr*/ !IsCompAssign);
   1016 }
   1017 
   1018 /// \brief Hande arithmetic conversion from integer to float.  Helper function
   1019 /// of UsualArithmeticConversions()
   1020 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
   1021                                            ExprResult &IntExpr,
   1022                                            QualType FloatTy, QualType IntTy,
   1023                                            bool ConvertFloat, bool ConvertInt) {
   1024   if (IntTy->isIntegerType()) {
   1025     if (ConvertInt)
   1026       // Convert intExpr to the lhs floating point type.
   1027       IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
   1028                                     CK_IntegralToFloating);
   1029     return FloatTy;
   1030   }
   1031 
   1032   // Convert both sides to the appropriate complex float.
   1033   assert(IntTy->isComplexIntegerType());
   1034   QualType result = S.Context.getComplexType(FloatTy);
   1035 
   1036   // _Complex int -> _Complex float
   1037   if (ConvertInt)
   1038     IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
   1039                                   CK_IntegralComplexToFloatingComplex);
   1040 
   1041   // float -> _Complex float
   1042   if (ConvertFloat)
   1043     FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
   1044                                     CK_FloatingRealToComplex);
   1045 
   1046   return result;
   1047 }
   1048 
   1049 /// \brief Handle arithmethic conversion with floating point types.  Helper
   1050 /// function of UsualArithmeticConversions()
   1051 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
   1052                                       ExprResult &RHS, QualType LHSType,
   1053                                       QualType RHSType, bool IsCompAssign) {
   1054   bool LHSFloat = LHSType->isRealFloatingType();
   1055   bool RHSFloat = RHSType->isRealFloatingType();
   1056 
   1057   // If we have two real floating types, convert the smaller operand
   1058   // to the bigger result.
   1059   if (LHSFloat && RHSFloat) {
   1060     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1061     if (order > 0) {
   1062       RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
   1063       return LHSType;
   1064     }
   1065 
   1066     assert(order < 0 && "illegal float comparison");
   1067     if (!IsCompAssign)
   1068       LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
   1069     return RHSType;
   1070   }
   1071 
   1072   if (LHSFloat)
   1073     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1074                                       /*convertFloat=*/!IsCompAssign,
   1075                                       /*convertInt=*/ true);
   1076   assert(RHSFloat);
   1077   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1078                                     /*convertInt=*/ true,
   1079                                     /*convertFloat=*/!IsCompAssign);
   1080 }
   1081 
   1082 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
   1083 
   1084 namespace {
   1085 /// These helper callbacks are placed in an anonymous namespace to
   1086 /// permit their use as function template parameters.
   1087 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
   1088   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
   1089 }
   1090 
   1091 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
   1092   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
   1093                              CK_IntegralComplexCast);
   1094 }
   1095 }
   1096 
   1097 /// \brief Handle integer arithmetic conversions.  Helper function of
   1098 /// UsualArithmeticConversions()
   1099 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
   1100 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
   1101                                         ExprResult &RHS, QualType LHSType,
   1102                                         QualType RHSType, bool IsCompAssign) {
   1103   // The rules for this case are in C99 6.3.1.8
   1104   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
   1105   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
   1106   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
   1107   if (LHSSigned == RHSSigned) {
   1108     // Same signedness; use the higher-ranked type
   1109     if (order >= 0) {
   1110       RHS = (*doRHSCast)(S, RHS.take(), LHSType);
   1111       return LHSType;
   1112     } else if (!IsCompAssign)
   1113       LHS = (*doLHSCast)(S, LHS.take(), RHSType);
   1114     return RHSType;
   1115   } else if (order != (LHSSigned ? 1 : -1)) {
   1116     // The unsigned type has greater than or equal rank to the
   1117     // signed type, so use the unsigned type
   1118     if (RHSSigned) {
   1119       RHS = (*doRHSCast)(S, RHS.take(), LHSType);
   1120       return LHSType;
   1121     } else if (!IsCompAssign)
   1122       LHS = (*doLHSCast)(S, LHS.take(), RHSType);
   1123     return RHSType;
   1124   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
   1125     // The two types are different widths; if we are here, that
   1126     // means the signed type is larger than the unsigned type, so
   1127     // use the signed type.
   1128     if (LHSSigned) {
   1129       RHS = (*doRHSCast)(S, RHS.take(), LHSType);
   1130       return LHSType;
   1131     } else if (!IsCompAssign)
   1132       LHS = (*doLHSCast)(S, LHS.take(), RHSType);
   1133     return RHSType;
   1134   } else {
   1135     // The signed type is higher-ranked than the unsigned type,
   1136     // but isn't actually any bigger (like unsigned int and long
   1137     // on most 32-bit systems).  Use the unsigned type corresponding
   1138     // to the signed type.
   1139     QualType result =
   1140       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
   1141     RHS = (*doRHSCast)(S, RHS.take(), result);
   1142     if (!IsCompAssign)
   1143       LHS = (*doLHSCast)(S, LHS.take(), result);
   1144     return result;
   1145   }
   1146 }
   1147 
   1148 /// \brief Handle conversions with GCC complex int extension.  Helper function
   1149 /// of UsualArithmeticConversions()
   1150 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
   1151                                            ExprResult &RHS, QualType LHSType,
   1152                                            QualType RHSType,
   1153                                            bool IsCompAssign) {
   1154   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
   1155   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
   1156 
   1157   if (LHSComplexInt && RHSComplexInt) {
   1158     QualType LHSEltType = LHSComplexInt->getElementType();
   1159     QualType RHSEltType = RHSComplexInt->getElementType();
   1160     QualType ScalarType =
   1161       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
   1162         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
   1163 
   1164     return S.Context.getComplexType(ScalarType);
   1165   }
   1166 
   1167   if (LHSComplexInt) {
   1168     QualType LHSEltType = LHSComplexInt->getElementType();
   1169     QualType ScalarType =
   1170       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
   1171         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
   1172     QualType ComplexType = S.Context.getComplexType(ScalarType);
   1173     RHS = S.ImpCastExprToType(RHS.take(), ComplexType,
   1174                               CK_IntegralRealToComplex);
   1175 
   1176     return ComplexType;
   1177   }
   1178 
   1179   assert(RHSComplexInt);
   1180 
   1181   QualType RHSEltType = RHSComplexInt->getElementType();
   1182   QualType ScalarType =
   1183     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
   1184       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
   1185   QualType ComplexType = S.Context.getComplexType(ScalarType);
   1186 
   1187   if (!IsCompAssign)
   1188     LHS = S.ImpCastExprToType(LHS.take(), ComplexType,
   1189                               CK_IntegralRealToComplex);
   1190   return ComplexType;
   1191 }
   1192 
   1193 /// UsualArithmeticConversions - Performs various conversions that are common to
   1194 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
   1195 /// routine returns the first non-arithmetic type found. The client is
   1196 /// responsible for emitting appropriate error diagnostics.
   1197 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
   1198                                           bool IsCompAssign) {
   1199   if (!IsCompAssign) {
   1200     LHS = UsualUnaryConversions(LHS.take());
   1201     if (LHS.isInvalid())
   1202       return QualType();
   1203   }
   1204 
   1205   RHS = UsualUnaryConversions(RHS.take());
   1206   if (RHS.isInvalid())
   1207     return QualType();
   1208 
   1209   // For conversion purposes, we ignore any qualifiers.
   1210   // For example, "const float" and "float" are equivalent.
   1211   QualType LHSType =
   1212     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   1213   QualType RHSType =
   1214     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   1215 
   1216   // For conversion purposes, we ignore any atomic qualifier on the LHS.
   1217   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
   1218     LHSType = AtomicLHS->getValueType();
   1219 
   1220   // If both types are identical, no conversion is needed.
   1221   if (LHSType == RHSType)
   1222     return LHSType;
   1223 
   1224   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
   1225   // The caller can deal with this (e.g. pointer + int).
   1226   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
   1227     return QualType();
   1228 
   1229   // Apply unary and bitfield promotions to the LHS's type.
   1230   QualType LHSUnpromotedType = LHSType;
   1231   if (LHSType->isPromotableIntegerType())
   1232     LHSType = Context.getPromotedIntegerType(LHSType);
   1233   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
   1234   if (!LHSBitfieldPromoteTy.isNull())
   1235     LHSType = LHSBitfieldPromoteTy;
   1236   if (LHSType != LHSUnpromotedType && !IsCompAssign)
   1237     LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
   1238 
   1239   // If both types are identical, no conversion is needed.
   1240   if (LHSType == RHSType)
   1241     return LHSType;
   1242 
   1243   // At this point, we have two different arithmetic types.
   1244 
   1245   // Handle complex types first (C99 6.3.1.8p1).
   1246   if (LHSType->isComplexType() || RHSType->isComplexType())
   1247     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1248                                         IsCompAssign);
   1249 
   1250   // Now handle "real" floating types (i.e. float, double, long double).
   1251   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   1252     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1253                                  IsCompAssign);
   1254 
   1255   // Handle GCC complex int extension.
   1256   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
   1257     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
   1258                                       IsCompAssign);
   1259 
   1260   // Finally, we have two differing integer types.
   1261   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   1262            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
   1263 }
   1264 
   1265 
   1266 //===----------------------------------------------------------------------===//
   1267 //  Semantic Analysis for various Expression Types
   1268 //===----------------------------------------------------------------------===//
   1269 
   1270 
   1271 ExprResult
   1272 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
   1273                                 SourceLocation DefaultLoc,
   1274                                 SourceLocation RParenLoc,
   1275                                 Expr *ControllingExpr,
   1276                                 ArrayRef<ParsedType> ArgTypes,
   1277                                 ArrayRef<Expr *> ArgExprs) {
   1278   unsigned NumAssocs = ArgTypes.size();
   1279   assert(NumAssocs == ArgExprs.size());
   1280 
   1281   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
   1282   for (unsigned i = 0; i < NumAssocs; ++i) {
   1283     if (ArgTypes[i])
   1284       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
   1285     else
   1286       Types[i] = 0;
   1287   }
   1288 
   1289   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
   1290                                              ControllingExpr,
   1291                                              llvm::makeArrayRef(Types, NumAssocs),
   1292                                              ArgExprs);
   1293   delete [] Types;
   1294   return ER;
   1295 }
   1296 
   1297 ExprResult
   1298 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
   1299                                  SourceLocation DefaultLoc,
   1300                                  SourceLocation RParenLoc,
   1301                                  Expr *ControllingExpr,
   1302                                  ArrayRef<TypeSourceInfo *> Types,
   1303                                  ArrayRef<Expr *> Exprs) {
   1304   unsigned NumAssocs = Types.size();
   1305   assert(NumAssocs == Exprs.size());
   1306   if (ControllingExpr->getType()->isPlaceholderType()) {
   1307     ExprResult result = CheckPlaceholderExpr(ControllingExpr);
   1308     if (result.isInvalid()) return ExprError();
   1309     ControllingExpr = result.take();
   1310   }
   1311 
   1312   bool TypeErrorFound = false,
   1313        IsResultDependent = ControllingExpr->isTypeDependent(),
   1314        ContainsUnexpandedParameterPack
   1315          = ControllingExpr->containsUnexpandedParameterPack();
   1316 
   1317   for (unsigned i = 0; i < NumAssocs; ++i) {
   1318     if (Exprs[i]->containsUnexpandedParameterPack())
   1319       ContainsUnexpandedParameterPack = true;
   1320 
   1321     if (Types[i]) {
   1322       if (Types[i]->getType()->containsUnexpandedParameterPack())
   1323         ContainsUnexpandedParameterPack = true;
   1324 
   1325       if (Types[i]->getType()->isDependentType()) {
   1326         IsResultDependent = true;
   1327       } else {
   1328         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
   1329         // complete object type other than a variably modified type."
   1330         unsigned D = 0;
   1331         if (Types[i]->getType()->isIncompleteType())
   1332           D = diag::err_assoc_type_incomplete;
   1333         else if (!Types[i]->getType()->isObjectType())
   1334           D = diag::err_assoc_type_nonobject;
   1335         else if (Types[i]->getType()->isVariablyModifiedType())
   1336           D = diag::err_assoc_type_variably_modified;
   1337 
   1338         if (D != 0) {
   1339           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
   1340             << Types[i]->getTypeLoc().getSourceRange()
   1341             << Types[i]->getType();
   1342           TypeErrorFound = true;
   1343         }
   1344 
   1345         // C11 6.5.1.1p2 "No two generic associations in the same generic
   1346         // selection shall specify compatible types."
   1347         for (unsigned j = i+1; j < NumAssocs; ++j)
   1348           if (Types[j] && !Types[j]->getType()->isDependentType() &&
   1349               Context.typesAreCompatible(Types[i]->getType(),
   1350                                          Types[j]->getType())) {
   1351             Diag(Types[j]->getTypeLoc().getBeginLoc(),
   1352                  diag::err_assoc_compatible_types)
   1353               << Types[j]->getTypeLoc().getSourceRange()
   1354               << Types[j]->getType()
   1355               << Types[i]->getType();
   1356             Diag(Types[i]->getTypeLoc().getBeginLoc(),
   1357                  diag::note_compat_assoc)
   1358               << Types[i]->getTypeLoc().getSourceRange()
   1359               << Types[i]->getType();
   1360             TypeErrorFound = true;
   1361           }
   1362       }
   1363     }
   1364   }
   1365   if (TypeErrorFound)
   1366     return ExprError();
   1367 
   1368   // If we determined that the generic selection is result-dependent, don't
   1369   // try to compute the result expression.
   1370   if (IsResultDependent)
   1371     return Owned(new (Context) GenericSelectionExpr(
   1372                    Context, KeyLoc, ControllingExpr,
   1373                    Types, Exprs,
   1374                    DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack));
   1375 
   1376   SmallVector<unsigned, 1> CompatIndices;
   1377   unsigned DefaultIndex = -1U;
   1378   for (unsigned i = 0; i < NumAssocs; ++i) {
   1379     if (!Types[i])
   1380       DefaultIndex = i;
   1381     else if (Context.typesAreCompatible(ControllingExpr->getType(),
   1382                                         Types[i]->getType()))
   1383       CompatIndices.push_back(i);
   1384   }
   1385 
   1386   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
   1387   // type compatible with at most one of the types named in its generic
   1388   // association list."
   1389   if (CompatIndices.size() > 1) {
   1390     // We strip parens here because the controlling expression is typically
   1391     // parenthesized in macro definitions.
   1392     ControllingExpr = ControllingExpr->IgnoreParens();
   1393     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
   1394       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
   1395       << (unsigned) CompatIndices.size();
   1396     for (SmallVectorImpl<unsigned>::iterator I = CompatIndices.begin(),
   1397          E = CompatIndices.end(); I != E; ++I) {
   1398       Diag(Types[*I]->getTypeLoc().getBeginLoc(),
   1399            diag::note_compat_assoc)
   1400         << Types[*I]->getTypeLoc().getSourceRange()
   1401         << Types[*I]->getType();
   1402     }
   1403     return ExprError();
   1404   }
   1405 
   1406   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
   1407   // its controlling expression shall have type compatible with exactly one of
   1408   // the types named in its generic association list."
   1409   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
   1410     // We strip parens here because the controlling expression is typically
   1411     // parenthesized in macro definitions.
   1412     ControllingExpr = ControllingExpr->IgnoreParens();
   1413     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
   1414       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
   1415     return ExprError();
   1416   }
   1417 
   1418   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
   1419   // type name that is compatible with the type of the controlling expression,
   1420   // then the result expression of the generic selection is the expression
   1421   // in that generic association. Otherwise, the result expression of the
   1422   // generic selection is the expression in the default generic association."
   1423   unsigned ResultIndex =
   1424     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
   1425 
   1426   return Owned(new (Context) GenericSelectionExpr(
   1427                  Context, KeyLoc, ControllingExpr,
   1428                  Types, Exprs,
   1429                  DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack,
   1430                  ResultIndex));
   1431 }
   1432 
   1433 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
   1434 /// location of the token and the offset of the ud-suffix within it.
   1435 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
   1436                                      unsigned Offset) {
   1437   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
   1438                                         S.getLangOpts());
   1439 }
   1440 
   1441 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
   1442 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
   1443 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
   1444                                                  IdentifierInfo *UDSuffix,
   1445                                                  SourceLocation UDSuffixLoc,
   1446                                                  ArrayRef<Expr*> Args,
   1447                                                  SourceLocation LitEndLoc) {
   1448   assert(Args.size() <= 2 && "too many arguments for literal operator");
   1449 
   1450   QualType ArgTy[2];
   1451   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   1452     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
   1453     if (ArgTy[ArgIdx]->isArrayType())
   1454       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
   1455   }
   1456 
   1457   DeclarationName OpName =
   1458     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1459   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1460   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1461 
   1462   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
   1463   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
   1464                               /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
   1465     return ExprError();
   1466 
   1467   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
   1468 }
   1469 
   1470 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
   1471 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
   1472 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
   1473 /// multiple tokens.  However, the common case is that StringToks points to one
   1474 /// string.
   1475 ///
   1476 ExprResult
   1477 Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
   1478                          Scope *UDLScope) {
   1479   assert(NumStringToks && "Must have at least one string!");
   1480 
   1481   StringLiteralParser Literal(StringToks, NumStringToks, PP);
   1482   if (Literal.hadError)
   1483     return ExprError();
   1484 
   1485   SmallVector<SourceLocation, 4> StringTokLocs;
   1486   for (unsigned i = 0; i != NumStringToks; ++i)
   1487     StringTokLocs.push_back(StringToks[i].getLocation());
   1488 
   1489   QualType StrTy = Context.CharTy;
   1490   if (Literal.isWide())
   1491     StrTy = Context.getWideCharType();
   1492   else if (Literal.isUTF16())
   1493     StrTy = Context.Char16Ty;
   1494   else if (Literal.isUTF32())
   1495     StrTy = Context.Char32Ty;
   1496   else if (Literal.isPascal())
   1497     StrTy = Context.UnsignedCharTy;
   1498 
   1499   StringLiteral::StringKind Kind = StringLiteral::Ascii;
   1500   if (Literal.isWide())
   1501     Kind = StringLiteral::Wide;
   1502   else if (Literal.isUTF8())
   1503     Kind = StringLiteral::UTF8;
   1504   else if (Literal.isUTF16())
   1505     Kind = StringLiteral::UTF16;
   1506   else if (Literal.isUTF32())
   1507     Kind = StringLiteral::UTF32;
   1508 
   1509   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
   1510   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
   1511     StrTy.addConst();
   1512 
   1513   // Get an array type for the string, according to C99 6.4.5.  This includes
   1514   // the nul terminator character as well as the string length for pascal
   1515   // strings.
   1516   StrTy = Context.getConstantArrayType(StrTy,
   1517                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
   1518                                        ArrayType::Normal, 0);
   1519 
   1520   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
   1521   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
   1522                                              Kind, Literal.Pascal, StrTy,
   1523                                              &StringTokLocs[0],
   1524                                              StringTokLocs.size());
   1525   if (Literal.getUDSuffix().empty())
   1526     return Owned(Lit);
   1527 
   1528   // We're building a user-defined literal.
   1529   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   1530   SourceLocation UDSuffixLoc =
   1531     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
   1532                    Literal.getUDSuffixOffset());
   1533 
   1534   // Make sure we're allowed user-defined literals here.
   1535   if (!UDLScope)
   1536     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
   1537 
   1538   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
   1539   //   operator "" X (str, len)
   1540   QualType SizeType = Context.getSizeType();
   1541   llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
   1542   IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
   1543                                                   StringTokLocs[0]);
   1544   Expr *Args[] = { Lit, LenArg };
   1545   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
   1546                                         Args, StringTokLocs.back());
   1547 }
   1548 
   1549 ExprResult
   1550 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1551                        SourceLocation Loc,
   1552                        const CXXScopeSpec *SS) {
   1553   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
   1554   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
   1555 }
   1556 
   1557 /// BuildDeclRefExpr - Build an expression that references a
   1558 /// declaration that does not require a closure capture.
   1559 ExprResult
   1560 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1561                        const DeclarationNameInfo &NameInfo,
   1562                        const CXXScopeSpec *SS, NamedDecl *FoundD,
   1563                        const TemplateArgumentListInfo *TemplateArgs) {
   1564   if (getLangOpts().CUDA)
   1565     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   1566       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
   1567         CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
   1568                            CalleeTarget = IdentifyCUDATarget(Callee);
   1569         if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
   1570           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
   1571             << CalleeTarget << D->getIdentifier() << CallerTarget;
   1572           Diag(D->getLocation(), diag::note_previous_decl)
   1573             << D->getIdentifier();
   1574           return ExprError();
   1575         }
   1576       }
   1577 
   1578   bool refersToEnclosingScope =
   1579     (CurContext != D->getDeclContext() &&
   1580      D->getDeclContext()->isFunctionOrMethod());
   1581 
   1582   DeclRefExpr *E;
   1583   if (isa<VarTemplateSpecializationDecl>(D)) {
   1584     VarTemplateSpecializationDecl *VarSpec =
   1585         cast<VarTemplateSpecializationDecl>(D);
   1586 
   1587     E = DeclRefExpr::Create(
   1588         Context,
   1589         SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
   1590         VarSpec->getTemplateKeywordLoc(), D, refersToEnclosingScope,
   1591         NameInfo.getLoc(), Ty, VK, FoundD, TemplateArgs);
   1592   } else {
   1593     assert(!TemplateArgs && "No template arguments for non-variable"
   1594                             " template specialization referrences");
   1595     E = DeclRefExpr::Create(
   1596         Context,
   1597         SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(),
   1598         SourceLocation(), D, refersToEnclosingScope, NameInfo, Ty, VK, FoundD);
   1599   }
   1600 
   1601   MarkDeclRefReferenced(E);
   1602 
   1603   if (getLangOpts().ObjCARCWeak && isa<VarDecl>(D) &&
   1604       Ty.getObjCLifetime() == Qualifiers::OCL_Weak) {
   1605     DiagnosticsEngine::Level Level =
   1606       Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
   1607                                E->getLocStart());
   1608     if (Level != DiagnosticsEngine::Ignored)
   1609       recordUseOfEvaluatedWeak(E);
   1610   }
   1611 
   1612   // Just in case we're building an illegal pointer-to-member.
   1613   FieldDecl *FD = dyn_cast<FieldDecl>(D);
   1614   if (FD && FD->isBitField())
   1615     E->setObjectKind(OK_BitField);
   1616 
   1617   return Owned(E);
   1618 }
   1619 
   1620 /// Decomposes the given name into a DeclarationNameInfo, its location, and
   1621 /// possibly a list of template arguments.
   1622 ///
   1623 /// If this produces template arguments, it is permitted to call
   1624 /// DecomposeTemplateName.
   1625 ///
   1626 /// This actually loses a lot of source location information for
   1627 /// non-standard name kinds; we should consider preserving that in
   1628 /// some way.
   1629 void
   1630 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
   1631                              TemplateArgumentListInfo &Buffer,
   1632                              DeclarationNameInfo &NameInfo,
   1633                              const TemplateArgumentListInfo *&TemplateArgs) {
   1634   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
   1635     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
   1636     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
   1637 
   1638     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
   1639                                        Id.TemplateId->NumArgs);
   1640     translateTemplateArguments(TemplateArgsPtr, Buffer);
   1641 
   1642     TemplateName TName = Id.TemplateId->Template.get();
   1643     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
   1644     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
   1645     TemplateArgs = &Buffer;
   1646   } else {
   1647     NameInfo = GetNameFromUnqualifiedId(Id);
   1648     TemplateArgs = 0;
   1649   }
   1650 }
   1651 
   1652 /// Diagnose an empty lookup.
   1653 ///
   1654 /// \return false if new lookup candidates were found
   1655 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
   1656                                CorrectionCandidateCallback &CCC,
   1657                                TemplateArgumentListInfo *ExplicitTemplateArgs,
   1658                                llvm::ArrayRef<Expr *> Args) {
   1659   DeclarationName Name = R.getLookupName();
   1660 
   1661   unsigned diagnostic = diag::err_undeclared_var_use;
   1662   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
   1663   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
   1664       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
   1665       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   1666     diagnostic = diag::err_undeclared_use;
   1667     diagnostic_suggest = diag::err_undeclared_use_suggest;
   1668   }
   1669 
   1670   // If the original lookup was an unqualified lookup, fake an
   1671   // unqualified lookup.  This is useful when (for example) the
   1672   // original lookup would not have found something because it was a
   1673   // dependent name.
   1674   DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
   1675     ? CurContext : 0;
   1676   while (DC) {
   1677     if (isa<CXXRecordDecl>(DC)) {
   1678       LookupQualifiedName(R, DC);
   1679 
   1680       if (!R.empty()) {
   1681         // Don't give errors about ambiguities in this lookup.
   1682         R.suppressDiagnostics();
   1683 
   1684         // During a default argument instantiation the CurContext points
   1685         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
   1686         // function parameter list, hence add an explicit check.
   1687         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
   1688                               ActiveTemplateInstantiations.back().Kind ==
   1689             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
   1690         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
   1691         bool isInstance = CurMethod &&
   1692                           CurMethod->isInstance() &&
   1693                           DC == CurMethod->getParent() && !isDefaultArgument;
   1694 
   1695 
   1696         // Give a code modification hint to insert 'this->'.
   1697         // TODO: fixit for inserting 'Base<T>::' in the other cases.
   1698         // Actually quite difficult!
   1699         if (getLangOpts().MicrosoftMode)
   1700           diagnostic = diag::warn_found_via_dependent_bases_lookup;
   1701         if (isInstance) {
   1702           Diag(R.getNameLoc(), diagnostic) << Name
   1703             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
   1704           UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
   1705               CallsUndergoingInstantiation.back()->getCallee());
   1706 
   1707           CXXMethodDecl *DepMethod;
   1708           if (CurMethod->isDependentContext())
   1709             DepMethod = CurMethod;
   1710           else if (CurMethod->getTemplatedKind() ==
   1711               FunctionDecl::TK_FunctionTemplateSpecialization)
   1712             DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
   1713                 getInstantiatedFromMemberTemplate()->getTemplatedDecl());
   1714           else
   1715             DepMethod = cast<CXXMethodDecl>(
   1716                 CurMethod->getInstantiatedFromMemberFunction());
   1717           assert(DepMethod && "No template pattern found");
   1718 
   1719           QualType DepThisType = DepMethod->getThisType(Context);
   1720           CheckCXXThisCapture(R.getNameLoc());
   1721           CXXThisExpr *DepThis = new (Context) CXXThisExpr(
   1722                                      R.getNameLoc(), DepThisType, false);
   1723           TemplateArgumentListInfo TList;
   1724           if (ULE->hasExplicitTemplateArgs())
   1725             ULE->copyTemplateArgumentsInto(TList);
   1726 
   1727           CXXScopeSpec SS;
   1728           SS.Adopt(ULE->getQualifierLoc());
   1729           CXXDependentScopeMemberExpr *DepExpr =
   1730               CXXDependentScopeMemberExpr::Create(
   1731                   Context, DepThis, DepThisType, true, SourceLocation(),
   1732                   SS.getWithLocInContext(Context),
   1733                   ULE->getTemplateKeywordLoc(), 0,
   1734                   R.getLookupNameInfo(),
   1735                   ULE->hasExplicitTemplateArgs() ? &TList : 0);
   1736           CallsUndergoingInstantiation.back()->setCallee(DepExpr);
   1737         } else {
   1738           Diag(R.getNameLoc(), diagnostic) << Name;
   1739         }
   1740 
   1741         // Do we really want to note all of these?
   1742         for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
   1743           Diag((*I)->getLocation(), diag::note_dependent_var_use);
   1744 
   1745         // Return true if we are inside a default argument instantiation
   1746         // and the found name refers to an instance member function, otherwise
   1747         // the function calling DiagnoseEmptyLookup will try to create an
   1748         // implicit member call and this is wrong for default argument.
   1749         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
   1750           Diag(R.getNameLoc(), diag::err_member_call_without_object);
   1751           return true;
   1752         }
   1753 
   1754         // Tell the callee to try to recover.
   1755         return false;
   1756       }
   1757 
   1758       R.clear();
   1759     }
   1760 
   1761     // In Microsoft mode, if we are performing lookup from within a friend
   1762     // function definition declared at class scope then we must set
   1763     // DC to the lexical parent to be able to search into the parent
   1764     // class.
   1765     if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
   1766         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
   1767         DC->getLexicalParent()->isRecord())
   1768       DC = DC->getLexicalParent();
   1769     else
   1770       DC = DC->getParent();
   1771   }
   1772 
   1773   // We didn't find anything, so try to correct for a typo.
   1774   TypoCorrection Corrected;
   1775   if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
   1776                                     S, &SS, CCC))) {
   1777     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
   1778     std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
   1779     bool droppedSpecifier =
   1780         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
   1781     R.setLookupName(Corrected.getCorrection());
   1782 
   1783     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
   1784       if (Corrected.isOverloaded()) {
   1785         OverloadCandidateSet OCS(R.getNameLoc());
   1786         OverloadCandidateSet::iterator Best;
   1787         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
   1788                                         CDEnd = Corrected.end();
   1789              CD != CDEnd; ++CD) {
   1790           if (FunctionTemplateDecl *FTD =
   1791                    dyn_cast<FunctionTemplateDecl>(*CD))
   1792             AddTemplateOverloadCandidate(
   1793                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
   1794                 Args, OCS);
   1795           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
   1796             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
   1797               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
   1798                                    Args, OCS);
   1799         }
   1800         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
   1801           case OR_Success:
   1802             ND = Best->Function;
   1803             break;
   1804           default:
   1805             break;
   1806         }
   1807       }
   1808       R.addDecl(ND);
   1809       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
   1810         if (SS.isEmpty())
   1811           Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
   1812             << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
   1813         else
   1814           Diag(R.getNameLoc(), diag::err_no_member_suggest)
   1815             << Name << computeDeclContext(SS, false) << droppedSpecifier
   1816             << CorrectedQuotedStr << SS.getRange()
   1817             << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
   1818                                             CorrectedStr);
   1819 
   1820         unsigned diag = isa<ImplicitParamDecl>(ND)
   1821           ? diag::note_implicit_param_decl
   1822           : diag::note_previous_decl;
   1823 
   1824         Diag(ND->getLocation(), diag)
   1825           << CorrectedQuotedStr;
   1826 
   1827         // Tell the callee to try to recover.
   1828         return false;
   1829       }
   1830 
   1831       if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
   1832         // FIXME: If we ended up with a typo for a type name or
   1833         // Objective-C class name, we're in trouble because the parser
   1834         // is in the wrong place to recover. Suggest the typo
   1835         // correction, but don't make it a fix-it since we're not going
   1836         // to recover well anyway.
   1837         if (SS.isEmpty())
   1838           Diag(R.getNameLoc(), diagnostic_suggest)
   1839             << Name << CorrectedQuotedStr;
   1840         else
   1841           Diag(R.getNameLoc(), diag::err_no_member_suggest)
   1842             << Name << computeDeclContext(SS, false) << droppedSpecifier
   1843             << CorrectedQuotedStr << SS.getRange();
   1844 
   1845         // Don't try to recover; it won't work.
   1846         return true;
   1847       }
   1848     } else {
   1849       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
   1850       // because we aren't able to recover.
   1851       if (SS.isEmpty())
   1852         Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
   1853       else
   1854         Diag(R.getNameLoc(), diag::err_no_member_suggest)
   1855           << Name << computeDeclContext(SS, false) << droppedSpecifier
   1856           << CorrectedQuotedStr << SS.getRange();
   1857       return true;
   1858     }
   1859   }
   1860   R.clear();
   1861 
   1862   // Emit a special diagnostic for failed member lookups.
   1863   // FIXME: computing the declaration context might fail here (?)
   1864   if (!SS.isEmpty()) {
   1865     Diag(R.getNameLoc(), diag::err_no_member)
   1866       << Name << computeDeclContext(SS, false)
   1867       << SS.getRange();
   1868     return true;
   1869   }
   1870 
   1871   // Give up, we can't recover.
   1872   Diag(R.getNameLoc(), diagnostic) << Name;
   1873   return true;
   1874 }
   1875 
   1876 ExprResult Sema::ActOnIdExpression(Scope *S,
   1877                                    CXXScopeSpec &SS,
   1878                                    SourceLocation TemplateKWLoc,
   1879                                    UnqualifiedId &Id,
   1880                                    bool HasTrailingLParen,
   1881                                    bool IsAddressOfOperand,
   1882                                    CorrectionCandidateCallback *CCC,
   1883                                    bool IsInlineAsmIdentifier) {
   1884   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
   1885          "cannot be direct & operand and have a trailing lparen");
   1886   if (SS.isInvalid())
   1887     return ExprError();
   1888 
   1889   TemplateArgumentListInfo TemplateArgsBuffer;
   1890 
   1891   // Decompose the UnqualifiedId into the following data.
   1892   DeclarationNameInfo NameInfo;
   1893   const TemplateArgumentListInfo *TemplateArgs;
   1894   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
   1895 
   1896   DeclarationName Name = NameInfo.getName();
   1897   IdentifierInfo *II = Name.getAsIdentifierInfo();
   1898   SourceLocation NameLoc = NameInfo.getLoc();
   1899 
   1900   // C++ [temp.dep.expr]p3:
   1901   //   An id-expression is type-dependent if it contains:
   1902   //     -- an identifier that was declared with a dependent type,
   1903   //        (note: handled after lookup)
   1904   //     -- a template-id that is dependent,
   1905   //        (note: handled in BuildTemplateIdExpr)
   1906   //     -- a conversion-function-id that specifies a dependent type,
   1907   //     -- a nested-name-specifier that contains a class-name that
   1908   //        names a dependent type.
   1909   // Determine whether this is a member of an unknown specialization;
   1910   // we need to handle these differently.
   1911   bool DependentID = false;
   1912   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
   1913       Name.getCXXNameType()->isDependentType()) {
   1914     DependentID = true;
   1915   } else if (SS.isSet()) {
   1916     if (DeclContext *DC = computeDeclContext(SS, false)) {
   1917       if (RequireCompleteDeclContext(SS, DC))
   1918         return ExprError();
   1919     } else {
   1920       DependentID = true;
   1921     }
   1922   }
   1923 
   1924   if (DependentID)
   1925     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   1926                                       IsAddressOfOperand, TemplateArgs);
   1927 
   1928   // Perform the required lookup.
   1929   LookupResult R(*this, NameInfo,
   1930                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
   1931                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
   1932   if (TemplateArgs) {
   1933     // Lookup the template name again to correctly establish the context in
   1934     // which it was found. This is really unfortunate as we already did the
   1935     // lookup to determine that it was a template name in the first place. If
   1936     // this becomes a performance hit, we can work harder to preserve those
   1937     // results until we get here but it's likely not worth it.
   1938     bool MemberOfUnknownSpecialization;
   1939     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
   1940                        MemberOfUnknownSpecialization);
   1941 
   1942     if (MemberOfUnknownSpecialization ||
   1943         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
   1944       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   1945                                         IsAddressOfOperand, TemplateArgs);
   1946   } else {
   1947     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
   1948     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
   1949 
   1950     // If the result might be in a dependent base class, this is a dependent
   1951     // id-expression.
   1952     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   1953       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   1954                                         IsAddressOfOperand, TemplateArgs);
   1955 
   1956     // If this reference is in an Objective-C method, then we need to do
   1957     // some special Objective-C lookup, too.
   1958     if (IvarLookupFollowUp) {
   1959       ExprResult E(LookupInObjCMethod(R, S, II, true));
   1960       if (E.isInvalid())
   1961         return ExprError();
   1962 
   1963       if (Expr *Ex = E.takeAs<Expr>())
   1964         return Owned(Ex);
   1965     }
   1966   }
   1967 
   1968   if (R.isAmbiguous())
   1969     return ExprError();
   1970 
   1971   // Determine whether this name might be a candidate for
   1972   // argument-dependent lookup.
   1973   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
   1974 
   1975   if (R.empty() && !ADL) {
   1976 
   1977     // Otherwise, this could be an implicitly declared function reference (legal
   1978     // in C90, extension in C99, forbidden in C++).
   1979     if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
   1980       NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
   1981       if (D) R.addDecl(D);
   1982     }
   1983 
   1984     // If this name wasn't predeclared and if this is not a function
   1985     // call, diagnose the problem.
   1986     if (R.empty()) {
   1987       // In Microsoft mode, if we are inside a template class member function
   1988       // whose parent class has dependent base classes, and we can't resolve
   1989       // an identifier, then assume the identifier is type dependent.  The
   1990       // goal is to postpone name lookup to instantiation time to be able to
   1991       // search into the type dependent base classes.
   1992       if (getLangOpts().MicrosoftMode) {
   1993         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext);
   1994         if (MD && MD->getParent()->hasAnyDependentBases())
   1995           return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   1996                                             IsAddressOfOperand, TemplateArgs);
   1997       }
   1998 
   1999       // Don't diagnose an empty lookup for inline assmebly.
   2000       if (IsInlineAsmIdentifier)
   2001         return ExprError();
   2002 
   2003       CorrectionCandidateCallback DefaultValidator;
   2004       if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
   2005         return ExprError();
   2006 
   2007       assert(!R.empty() &&
   2008              "DiagnoseEmptyLookup returned false but added no results");
   2009 
   2010       // If we found an Objective-C instance variable, let
   2011       // LookupInObjCMethod build the appropriate expression to
   2012       // reference the ivar.
   2013       if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
   2014         R.clear();
   2015         ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
   2016         // In a hopelessly buggy code, Objective-C instance variable
   2017         // lookup fails and no expression will be built to reference it.
   2018         if (!E.isInvalid() && !E.get())
   2019           return ExprError();
   2020         return E;
   2021       }
   2022     }
   2023   }
   2024 
   2025   // This is guaranteed from this point on.
   2026   assert(!R.empty() || ADL);
   2027 
   2028   // Check whether this might be a C++ implicit instance member access.
   2029   // C++ [class.mfct.non-static]p3:
   2030   //   When an id-expression that is not part of a class member access
   2031   //   syntax and not used to form a pointer to member is used in the
   2032   //   body of a non-static member function of class X, if name lookup
   2033   //   resolves the name in the id-expression to a non-static non-type
   2034   //   member of some class C, the id-expression is transformed into a
   2035   //   class member access expression using (*this) as the
   2036   //   postfix-expression to the left of the . operator.
   2037   //
   2038   // But we don't actually need to do this for '&' operands if R
   2039   // resolved to a function or overloaded function set, because the
   2040   // expression is ill-formed if it actually works out to be a
   2041   // non-static member function:
   2042   //
   2043   // C++ [expr.ref]p4:
   2044   //   Otherwise, if E1.E2 refers to a non-static member function. . .
   2045   //   [t]he expression can be used only as the left-hand operand of a
   2046   //   member function call.
   2047   //
   2048   // There are other safeguards against such uses, but it's important
   2049   // to get this right here so that we don't end up making a
   2050   // spuriously dependent expression if we're inside a dependent
   2051   // instance method.
   2052   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
   2053     bool MightBeImplicitMember;
   2054     if (!IsAddressOfOperand)
   2055       MightBeImplicitMember = true;
   2056     else if (!SS.isEmpty())
   2057       MightBeImplicitMember = false;
   2058     else if (R.isOverloadedResult())
   2059       MightBeImplicitMember = false;
   2060     else if (R.isUnresolvableResult())
   2061       MightBeImplicitMember = true;
   2062     else
   2063       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
   2064                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
   2065                               isa<MSPropertyDecl>(R.getFoundDecl());
   2066 
   2067     if (MightBeImplicitMember)
   2068       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
   2069                                              R, TemplateArgs);
   2070   }
   2071 
   2072   if (TemplateArgs || TemplateKWLoc.isValid()) {
   2073 
   2074     // In C++1y, if this is a variable template id, then check it
   2075     // in BuildTemplateIdExpr().
   2076     // The single lookup result must be a variable template declaration.
   2077     if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
   2078         Id.TemplateId->Kind == TNK_Var_template) {
   2079       assert(R.getAsSingle<VarTemplateDecl>() &&
   2080              "There should only be one declaration found.");
   2081     }
   2082 
   2083     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
   2084   }
   2085 
   2086   return BuildDeclarationNameExpr(SS, R, ADL);
   2087 }
   2088 
   2089 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
   2090 /// declaration name, generally during template instantiation.
   2091 /// There's a large number of things which don't need to be done along
   2092 /// this path.
   2093 ExprResult
   2094 Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
   2095                                         const DeclarationNameInfo &NameInfo,
   2096                                         bool IsAddressOfOperand) {
   2097   DeclContext *DC = computeDeclContext(SS, false);
   2098   if (!DC)
   2099     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2100                                      NameInfo, /*TemplateArgs=*/0);
   2101 
   2102   if (RequireCompleteDeclContext(SS, DC))
   2103     return ExprError();
   2104 
   2105   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2106   LookupQualifiedName(R, DC);
   2107 
   2108   if (R.isAmbiguous())
   2109     return ExprError();
   2110 
   2111   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2112     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2113                                      NameInfo, /*TemplateArgs=*/0);
   2114 
   2115   if (R.empty()) {
   2116     Diag(NameInfo.getLoc(), diag::err_no_member)
   2117       << NameInfo.getName() << DC << SS.getRange();
   2118     return ExprError();
   2119   }
   2120 
   2121   // Defend against this resolving to an implicit member access. We usually
   2122   // won't get here if this might be a legitimate a class member (we end up in
   2123   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
   2124   // a pointer-to-member or in an unevaluated context in C++11.
   2125   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
   2126     return BuildPossibleImplicitMemberExpr(SS,
   2127                                            /*TemplateKWLoc=*/SourceLocation(),
   2128                                            R, /*TemplateArgs=*/0);
   2129 
   2130   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
   2131 }
   2132 
   2133 /// LookupInObjCMethod - The parser has read a name in, and Sema has
   2134 /// detected that we're currently inside an ObjC method.  Perform some
   2135 /// additional lookup.
   2136 ///
   2137 /// Ideally, most of this would be done by lookup, but there's
   2138 /// actually quite a lot of extra work involved.
   2139 ///
   2140 /// Returns a null sentinel to indicate trivial success.
   2141 ExprResult
   2142 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
   2143                          IdentifierInfo *II, bool AllowBuiltinCreation) {
   2144   SourceLocation Loc = Lookup.getNameLoc();
   2145   ObjCMethodDecl *CurMethod = getCurMethodDecl();
   2146 
   2147   // Check for error condition which is already reported.
   2148   if (!CurMethod)
   2149     return ExprError();
   2150 
   2151   // There are two cases to handle here.  1) scoped lookup could have failed,
   2152   // in which case we should look for an ivar.  2) scoped lookup could have
   2153   // found a decl, but that decl is outside the current instance method (i.e.
   2154   // a global variable).  In these two cases, we do a lookup for an ivar with
   2155   // this name, if the lookup sucedes, we replace it our current decl.
   2156 
   2157   // If we're in a class method, we don't normally want to look for
   2158   // ivars.  But if we don't find anything else, and there's an
   2159   // ivar, that's an error.
   2160   bool IsClassMethod = CurMethod->isClassMethod();
   2161 
   2162   bool LookForIvars;
   2163   if (Lookup.empty())
   2164     LookForIvars = true;
   2165   else if (IsClassMethod)
   2166     LookForIvars = false;
   2167   else
   2168     LookForIvars = (Lookup.isSingleResult() &&
   2169                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
   2170   ObjCInterfaceDecl *IFace = 0;
   2171   if (LookForIvars) {
   2172     IFace = CurMethod->getClassInterface();
   2173     ObjCInterfaceDecl *ClassDeclared;
   2174     ObjCIvarDecl *IV = 0;
   2175     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
   2176       // Diagnose using an ivar in a class method.
   2177       if (IsClassMethod)
   2178         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2179                          << IV->getDeclName());
   2180 
   2181       // If we're referencing an invalid decl, just return this as a silent
   2182       // error node.  The error diagnostic was already emitted on the decl.
   2183       if (IV->isInvalidDecl())
   2184         return ExprError();
   2185 
   2186       // Check if referencing a field with __attribute__((deprecated)).
   2187       if (DiagnoseUseOfDecl(IV, Loc))
   2188         return ExprError();
   2189 
   2190       // Diagnose the use of an ivar outside of the declaring class.
   2191       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
   2192           !declaresSameEntity(ClassDeclared, IFace) &&
   2193           !getLangOpts().DebuggerSupport)
   2194         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
   2195 
   2196       // FIXME: This should use a new expr for a direct reference, don't
   2197       // turn this into Self->ivar, just return a BareIVarExpr or something.
   2198       IdentifierInfo &II = Context.Idents.get("self");
   2199       UnqualifiedId SelfName;
   2200       SelfName.setIdentifier(&II, SourceLocation());
   2201       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
   2202       CXXScopeSpec SelfScopeSpec;
   2203       SourceLocation TemplateKWLoc;
   2204       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
   2205                                               SelfName, false, false);
   2206       if (SelfExpr.isInvalid())
   2207         return ExprError();
   2208 
   2209       SelfExpr = DefaultLvalueConversion(SelfExpr.take());
   2210       if (SelfExpr.isInvalid())
   2211         return ExprError();
   2212 
   2213       MarkAnyDeclReferenced(Loc, IV, true);
   2214 
   2215       ObjCMethodFamily MF = CurMethod->getMethodFamily();
   2216       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
   2217           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
   2218         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
   2219 
   2220       ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
   2221                                                               Loc, IV->getLocation(),
   2222                                                               SelfExpr.take(),
   2223                                                               true, true);
   2224 
   2225       if (getLangOpts().ObjCAutoRefCount) {
   2226         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   2227           DiagnosticsEngine::Level Level =
   2228             Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
   2229           if (Level != DiagnosticsEngine::Ignored)
   2230             recordUseOfEvaluatedWeak(Result);
   2231         }
   2232         if (CurContext->isClosure())
   2233           Diag(Loc, diag::warn_implicitly_retains_self)
   2234             << FixItHint::CreateInsertion(Loc, "self->");
   2235       }
   2236 
   2237       return Owned(Result);
   2238     }
   2239   } else if (CurMethod->isInstanceMethod()) {
   2240     // We should warn if a local variable hides an ivar.
   2241     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
   2242       ObjCInterfaceDecl *ClassDeclared;
   2243       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
   2244         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
   2245             declaresSameEntity(IFace, ClassDeclared))
   2246           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
   2247       }
   2248     }
   2249   } else if (Lookup.isSingleResult() &&
   2250              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
   2251     // If accessing a stand-alone ivar in a class method, this is an error.
   2252     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
   2253       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2254                        << IV->getDeclName());
   2255   }
   2256 
   2257   if (Lookup.empty() && II && AllowBuiltinCreation) {
   2258     // FIXME. Consolidate this with similar code in LookupName.
   2259     if (unsigned BuiltinID = II->getBuiltinID()) {
   2260       if (!(getLangOpts().CPlusPlus &&
   2261             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
   2262         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
   2263                                            S, Lookup.isForRedeclaration(),
   2264                                            Lookup.getNameLoc());
   2265         if (D) Lookup.addDecl(D);
   2266       }
   2267     }
   2268   }
   2269   // Sentinel value saying that we didn't do anything special.
   2270   return Owned((Expr*) 0);
   2271 }
   2272 
   2273 /// \brief Cast a base object to a member's actual type.
   2274 ///
   2275 /// Logically this happens in three phases:
   2276 ///
   2277 /// * First we cast from the base type to the naming class.
   2278 ///   The naming class is the class into which we were looking
   2279 ///   when we found the member;  it's the qualifier type if a
   2280 ///   qualifier was provided, and otherwise it's the base type.
   2281 ///
   2282 /// * Next we cast from the naming class to the declaring class.
   2283 ///   If the member we found was brought into a class's scope by
   2284 ///   a using declaration, this is that class;  otherwise it's
   2285 ///   the class declaring the member.
   2286 ///
   2287 /// * Finally we cast from the declaring class to the "true"
   2288 ///   declaring class of the member.  This conversion does not
   2289 ///   obey access control.
   2290 ExprResult
   2291 Sema::PerformObjectMemberConversion(Expr *From,
   2292                                     NestedNameSpecifier *Qualifier,
   2293                                     NamedDecl *FoundDecl,
   2294                                     NamedDecl *Member) {
   2295   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
   2296   if (!RD)
   2297     return Owned(From);
   2298 
   2299   QualType DestRecordType;
   2300   QualType DestType;
   2301   QualType FromRecordType;
   2302   QualType FromType = From->getType();
   2303   bool PointerConversions = false;
   2304   if (isa<FieldDecl>(Member)) {
   2305     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
   2306 
   2307     if (FromType->getAs<PointerType>()) {
   2308       DestType = Context.getPointerType(DestRecordType);
   2309       FromRecordType = FromType->getPointeeType();
   2310       PointerConversions = true;
   2311     } else {
   2312       DestType = DestRecordType;
   2313       FromRecordType = FromType;
   2314     }
   2315   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
   2316     if (Method->isStatic())
   2317       return Owned(From);
   2318 
   2319     DestType = Method->getThisType(Context);
   2320     DestRecordType = DestType->getPointeeType();
   2321 
   2322     if (FromType->getAs<PointerType>()) {
   2323       FromRecordType = FromType->getPointeeType();
   2324       PointerConversions = true;
   2325     } else {
   2326       FromRecordType = FromType;
   2327       DestType = DestRecordType;
   2328     }
   2329   } else {
   2330     // No conversion necessary.
   2331     return Owned(From);
   2332   }
   2333 
   2334   if (DestType->isDependentType() || FromType->isDependentType())
   2335     return Owned(From);
   2336 
   2337   // If the unqualified types are the same, no conversion is necessary.
   2338   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2339     return Owned(From);
   2340 
   2341   SourceRange FromRange = From->getSourceRange();
   2342   SourceLocation FromLoc = FromRange.getBegin();
   2343 
   2344   ExprValueKind VK = From->getValueKind();
   2345 
   2346   // C++ [class.member.lookup]p8:
   2347   //   [...] Ambiguities can often be resolved by qualifying a name with its
   2348   //   class name.
   2349   //
   2350   // If the member was a qualified name and the qualified referred to a
   2351   // specific base subobject type, we'll cast to that intermediate type
   2352   // first and then to the object in which the member is declared. That allows
   2353   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
   2354   //
   2355   //   class Base { public: int x; };
   2356   //   class Derived1 : public Base { };
   2357   //   class Derived2 : public Base { };
   2358   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
   2359   //
   2360   //   void VeryDerived::f() {
   2361   //     x = 17; // error: ambiguous base subobjects
   2362   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
   2363   //   }
   2364   if (Qualifier && Qualifier->getAsType()) {
   2365     QualType QType = QualType(Qualifier->getAsType(), 0);
   2366     assert(QType->isRecordType() && "lookup done with non-record type");
   2367 
   2368     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
   2369 
   2370     // In C++98, the qualifier type doesn't actually have to be a base
   2371     // type of the object type, in which case we just ignore it.
   2372     // Otherwise build the appropriate casts.
   2373     if (IsDerivedFrom(FromRecordType, QRecordType)) {
   2374       CXXCastPath BasePath;
   2375       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
   2376                                        FromLoc, FromRange, &BasePath))
   2377         return ExprError();
   2378 
   2379       if (PointerConversions)
   2380         QType = Context.getPointerType(QType);
   2381       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
   2382                                VK, &BasePath).take();
   2383 
   2384       FromType = QType;
   2385       FromRecordType = QRecordType;
   2386 
   2387       // If the qualifier type was the same as the destination type,
   2388       // we're done.
   2389       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2390         return Owned(From);
   2391     }
   2392   }
   2393 
   2394   bool IgnoreAccess = false;
   2395 
   2396   // If we actually found the member through a using declaration, cast
   2397   // down to the using declaration's type.
   2398   //
   2399   // Pointer equality is fine here because only one declaration of a
   2400   // class ever has member declarations.
   2401   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
   2402     assert(isa<UsingShadowDecl>(FoundDecl));
   2403     QualType URecordType = Context.getTypeDeclType(
   2404                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
   2405 
   2406     // We only need to do this if the naming-class to declaring-class
   2407     // conversion is non-trivial.
   2408     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
   2409       assert(IsDerivedFrom(FromRecordType, URecordType));
   2410       CXXCastPath BasePath;
   2411       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
   2412                                        FromLoc, FromRange, &BasePath))
   2413         return ExprError();
   2414 
   2415       QualType UType = URecordType;
   2416       if (PointerConversions)
   2417         UType = Context.getPointerType(UType);
   2418       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
   2419                                VK, &BasePath).take();
   2420       FromType = UType;
   2421       FromRecordType = URecordType;
   2422     }
   2423 
   2424     // We don't do access control for the conversion from the
   2425     // declaring class to the true declaring class.
   2426     IgnoreAccess = true;
   2427   }
   2428 
   2429   CXXCastPath BasePath;
   2430   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
   2431                                    FromLoc, FromRange, &BasePath,
   2432                                    IgnoreAccess))
   2433     return ExprError();
   2434 
   2435   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
   2436                            VK, &BasePath);
   2437 }
   2438 
   2439 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
   2440                                       const LookupResult &R,
   2441                                       bool HasTrailingLParen) {
   2442   // Only when used directly as the postfix-expression of a call.
   2443   if (!HasTrailingLParen)
   2444     return false;
   2445 
   2446   // Never if a scope specifier was provided.
   2447   if (SS.isSet())
   2448     return false;
   2449 
   2450   // Only in C++ or ObjC++.
   2451   if (!getLangOpts().CPlusPlus)
   2452     return false;
   2453 
   2454   // Turn off ADL when we find certain kinds of declarations during
   2455   // normal lookup:
   2456   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   2457     NamedDecl *D = *I;
   2458 
   2459     // C++0x [basic.lookup.argdep]p3:
   2460     //     -- a declaration of a class member
   2461     // Since using decls preserve this property, we check this on the
   2462     // original decl.
   2463     if (D->isCXXClassMember())
   2464       return false;
   2465 
   2466     // C++0x [basic.lookup.argdep]p3:
   2467     //     -- a block-scope function declaration that is not a
   2468     //        using-declaration
   2469     // NOTE: we also trigger this for function templates (in fact, we
   2470     // don't check the decl type at all, since all other decl types
   2471     // turn off ADL anyway).
   2472     if (isa<UsingShadowDecl>(D))
   2473       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2474     else if (D->getDeclContext()->isFunctionOrMethod())
   2475       return false;
   2476 
   2477     // C++0x [basic.lookup.argdep]p3:
   2478     //     -- a declaration that is neither a function or a function
   2479     //        template
   2480     // And also for builtin functions.
   2481     if (isa<FunctionDecl>(D)) {
   2482       FunctionDecl *FDecl = cast<FunctionDecl>(D);
   2483 
   2484       // But also builtin functions.
   2485       if (FDecl->getBuiltinID() && FDecl->isImplicit())
   2486         return false;
   2487     } else if (!isa<FunctionTemplateDecl>(D))
   2488       return false;
   2489   }
   2490 
   2491   return true;
   2492 }
   2493 
   2494 
   2495 /// Diagnoses obvious problems with the use of the given declaration
   2496 /// as an expression.  This is only actually called for lookups that
   2497 /// were not overloaded, and it doesn't promise that the declaration
   2498 /// will in fact be used.
   2499 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
   2500   if (isa<TypedefNameDecl>(D)) {
   2501     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
   2502     return true;
   2503   }
   2504 
   2505   if (isa<ObjCInterfaceDecl>(D)) {
   2506     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
   2507     return true;
   2508   }
   2509 
   2510   if (isa<NamespaceDecl>(D)) {
   2511     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
   2512     return true;
   2513   }
   2514 
   2515   return false;
   2516 }
   2517 
   2518 ExprResult
   2519 Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2520                                LookupResult &R,
   2521                                bool NeedsADL) {
   2522   // If this is a single, fully-resolved result and we don't need ADL,
   2523   // just build an ordinary singleton decl ref.
   2524   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
   2525     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
   2526                                     R.getRepresentativeDecl());
   2527 
   2528   // We only need to check the declaration if there's exactly one
   2529   // result, because in the overloaded case the results can only be
   2530   // functions and function templates.
   2531   if (R.isSingleResult() &&
   2532       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
   2533     return ExprError();
   2534 
   2535   // Otherwise, just build an unresolved lookup expression.  Suppress
   2536   // any lookup-related diagnostics; we'll hash these out later, when
   2537   // we've picked a target.
   2538   R.suppressDiagnostics();
   2539 
   2540   UnresolvedLookupExpr *ULE
   2541     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2542                                    SS.getWithLocInContext(Context),
   2543                                    R.getLookupNameInfo(),
   2544                                    NeedsADL, R.isOverloadedResult(),
   2545                                    R.begin(), R.end());
   2546 
   2547   return Owned(ULE);
   2548 }
   2549 
   2550 /// \brief Complete semantic analysis for a reference to the given declaration.
   2551 ExprResult Sema::BuildDeclarationNameExpr(
   2552     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
   2553     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs) {
   2554   assert(D && "Cannot refer to a NULL declaration");
   2555   assert(!isa<FunctionTemplateDecl>(D) &&
   2556          "Cannot refer unambiguously to a function template");
   2557 
   2558   SourceLocation Loc = NameInfo.getLoc();
   2559   if (CheckDeclInExpr(*this, Loc, D))
   2560     return ExprError();
   2561 
   2562   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
   2563     // Specifically diagnose references to class templates that are missing
   2564     // a template argument list.
   2565     Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
   2566                                            << Template << SS.getRange();
   2567     Diag(Template->getLocation(), diag::note_template_decl_here);
   2568     return ExprError();
   2569   }
   2570 
   2571   // Make sure that we're referring to a value.
   2572   ValueDecl *VD = dyn_cast<ValueDecl>(D);
   2573   if (!VD) {
   2574     Diag(Loc, diag::err_ref_non_value)
   2575       << D << SS.getRange();
   2576     Diag(D->getLocation(), diag::note_declared_at);
   2577     return ExprError();
   2578   }
   2579 
   2580   // Check whether this declaration can be used. Note that we suppress
   2581   // this check when we're going to perform argument-dependent lookup
   2582   // on this function name, because this might not be the function
   2583   // that overload resolution actually selects.
   2584   if (DiagnoseUseOfDecl(VD, Loc))
   2585     return ExprError();
   2586 
   2587   // Only create DeclRefExpr's for valid Decl's.
   2588   if (VD->isInvalidDecl())
   2589     return ExprError();
   2590 
   2591   // Handle members of anonymous structs and unions.  If we got here,
   2592   // and the reference is to a class member indirect field, then this
   2593   // must be the subject of a pointer-to-member expression.
   2594   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
   2595     if (!indirectField->isCXXClassMember())
   2596       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
   2597                                                       indirectField);
   2598 
   2599   {
   2600     QualType type = VD->getType();
   2601     ExprValueKind valueKind = VK_RValue;
   2602 
   2603     switch (D->getKind()) {
   2604     // Ignore all the non-ValueDecl kinds.
   2605 #define ABSTRACT_DECL(kind)
   2606 #define VALUE(type, base)
   2607 #define DECL(type, base) \
   2608     case Decl::type:
   2609 #include "clang/AST/DeclNodes.inc"
   2610       llvm_unreachable("invalid value decl kind");
   2611 
   2612     // These shouldn't make it here.
   2613     case Decl::ObjCAtDefsField:
   2614     case Decl::ObjCIvar:
   2615       llvm_unreachable("forming non-member reference to ivar?");
   2616 
   2617     // Enum constants are always r-values and never references.
   2618     // Unresolved using declarations are dependent.
   2619     case Decl::EnumConstant:
   2620     case Decl::UnresolvedUsingValue:
   2621       valueKind = VK_RValue;
   2622       break;
   2623 
   2624     // Fields and indirect fields that got here must be for
   2625     // pointer-to-member expressions; we just call them l-values for
   2626     // internal consistency, because this subexpression doesn't really
   2627     // exist in the high-level semantics.
   2628     case Decl::Field:
   2629     case Decl::IndirectField:
   2630       assert(getLangOpts().CPlusPlus &&
   2631              "building reference to field in C?");
   2632 
   2633       // These can't have reference type in well-formed programs, but
   2634       // for internal consistency we do this anyway.
   2635       type = type.getNonReferenceType();
   2636       valueKind = VK_LValue;
   2637       break;
   2638 
   2639     // Non-type template parameters are either l-values or r-values
   2640     // depending on the type.
   2641     case Decl::NonTypeTemplateParm: {
   2642       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
   2643         type = reftype->getPointeeType();
   2644         valueKind = VK_LValue; // even if the parameter is an r-value reference
   2645         break;
   2646       }
   2647 
   2648       // For non-references, we need to strip qualifiers just in case
   2649       // the template parameter was declared as 'const int' or whatever.
   2650       valueKind = VK_RValue;
   2651       type = type.getUnqualifiedType();
   2652       break;
   2653     }
   2654 
   2655     case Decl::Var:
   2656     case Decl::VarTemplateSpecialization:
   2657     case Decl::VarTemplatePartialSpecialization:
   2658       // In C, "extern void blah;" is valid and is an r-value.
   2659       if (!getLangOpts().CPlusPlus &&
   2660           !type.hasQualifiers() &&
   2661           type->isVoidType()) {
   2662         valueKind = VK_RValue;
   2663         break;
   2664       }
   2665       // fallthrough
   2666 
   2667     case Decl::ImplicitParam:
   2668     case Decl::ParmVar: {
   2669       // These are always l-values.
   2670       valueKind = VK_LValue;
   2671       type = type.getNonReferenceType();
   2672 
   2673       // FIXME: Does the addition of const really only apply in
   2674       // potentially-evaluated contexts? Since the variable isn't actually
   2675       // captured in an unevaluated context, it seems that the answer is no.
   2676       if (!isUnevaluatedContext()) {
   2677         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
   2678         if (!CapturedType.isNull())
   2679           type = CapturedType;
   2680       }
   2681 
   2682       break;
   2683     }
   2684 
   2685     case Decl::Function: {
   2686       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
   2687         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   2688           type = Context.BuiltinFnTy;
   2689           valueKind = VK_RValue;
   2690           break;
   2691         }
   2692       }
   2693 
   2694       const FunctionType *fty = type->castAs<FunctionType>();
   2695 
   2696       // If we're referring to a function with an __unknown_anytype
   2697       // result type, make the entire expression __unknown_anytype.
   2698       if (fty->getResultType() == Context.UnknownAnyTy) {
   2699         type = Context.UnknownAnyTy;
   2700         valueKind = VK_RValue;
   2701         break;
   2702       }
   2703 
   2704       // Functions are l-values in C++.
   2705       if (getLangOpts().CPlusPlus) {
   2706         valueKind = VK_LValue;
   2707         break;
   2708       }
   2709 
   2710       // C99 DR 316 says that, if a function type comes from a
   2711       // function definition (without a prototype), that type is only
   2712       // used for checking compatibility. Therefore, when referencing
   2713       // the function, we pretend that we don't have the full function
   2714       // type.
   2715       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
   2716           isa<FunctionProtoType>(fty))
   2717         type = Context.getFunctionNoProtoType(fty->getResultType(),
   2718                                               fty->getExtInfo());
   2719 
   2720       // Functions are r-values in C.
   2721       valueKind = VK_RValue;
   2722       break;
   2723     }
   2724 
   2725     case Decl::MSProperty:
   2726       valueKind = VK_LValue;
   2727       break;
   2728 
   2729     case Decl::CXXMethod:
   2730       // If we're referring to a method with an __unknown_anytype
   2731       // result type, make the entire expression __unknown_anytype.
   2732       // This should only be possible with a type written directly.
   2733       if (const FunctionProtoType *proto
   2734             = dyn_cast<FunctionProtoType>(VD->getType()))
   2735         if (proto->getResultType() == Context.UnknownAnyTy) {
   2736           type = Context.UnknownAnyTy;
   2737           valueKind = VK_RValue;
   2738           break;
   2739         }
   2740 
   2741       // C++ methods are l-values if static, r-values if non-static.
   2742       if (cast<CXXMethodDecl>(VD)->isStatic()) {
   2743         valueKind = VK_LValue;
   2744         break;
   2745       }
   2746       // fallthrough
   2747 
   2748     case Decl::CXXConversion:
   2749     case Decl::CXXDestructor:
   2750     case Decl::CXXConstructor:
   2751       valueKind = VK_RValue;
   2752       break;
   2753     }
   2754 
   2755     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
   2756                             TemplateArgs);
   2757   }
   2758 }
   2759 
   2760 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
   2761   PredefinedExpr::IdentType IT;
   2762 
   2763   switch (Kind) {
   2764   default: llvm_unreachable("Unknown simple primary expr!");
   2765   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
   2766   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
   2767   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
   2768   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
   2769   }
   2770 
   2771   // Pre-defined identifiers are of type char[x], where x is the length of the
   2772   // string.
   2773 
   2774   Decl *currentDecl = getCurFunctionOrMethodDecl();
   2775   // Blocks and lambdas can occur at global scope. Don't emit a warning.
   2776   if (!currentDecl) {
   2777     if (const BlockScopeInfo *BSI = getCurBlock())
   2778       currentDecl = BSI->TheDecl;
   2779     else if (const LambdaScopeInfo *LSI = getCurLambda())
   2780       currentDecl = LSI->CallOperator;
   2781   }
   2782 
   2783   if (!currentDecl) {
   2784     Diag(Loc, diag::ext_predef_outside_function);
   2785     currentDecl = Context.getTranslationUnitDecl();
   2786   }
   2787 
   2788   QualType ResTy;
   2789   if (cast<DeclContext>(currentDecl)->isDependentContext()) {
   2790     ResTy = Context.DependentTy;
   2791   } else {
   2792     unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
   2793 
   2794     llvm::APInt LengthI(32, Length + 1);
   2795     if (IT == PredefinedExpr::LFunction)
   2796       ResTy = Context.WideCharTy.withConst();
   2797     else
   2798       ResTy = Context.CharTy.withConst();
   2799     ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
   2800   }
   2801   return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
   2802 }
   2803 
   2804 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
   2805   SmallString<16> CharBuffer;
   2806   bool Invalid = false;
   2807   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
   2808   if (Invalid)
   2809     return ExprError();
   2810 
   2811   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
   2812                             PP, Tok.getKind());
   2813   if (Literal.hadError())
   2814     return ExprError();
   2815 
   2816   QualType Ty;
   2817   if (Literal.isWide())
   2818     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
   2819   else if (Literal.isUTF16())
   2820     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
   2821   else if (Literal.isUTF32())
   2822     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
   2823   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
   2824     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
   2825   else
   2826     Ty = Context.CharTy;  // 'x' -> char in C++
   2827 
   2828   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
   2829   if (Literal.isWide())
   2830     Kind = CharacterLiteral::Wide;
   2831   else if (Literal.isUTF16())
   2832     Kind = CharacterLiteral::UTF16;
   2833   else if (Literal.isUTF32())
   2834     Kind = CharacterLiteral::UTF32;
   2835 
   2836   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
   2837                                              Tok.getLocation());
   2838 
   2839   if (Literal.getUDSuffix().empty())
   2840     return Owned(Lit);
   2841 
   2842   // We're building a user-defined literal.
   2843   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   2844   SourceLocation UDSuffixLoc =
   2845     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   2846 
   2847   // Make sure we're allowed user-defined literals here.
   2848   if (!UDLScope)
   2849     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
   2850 
   2851   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
   2852   //   operator "" X (ch)
   2853   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
   2854                                         Lit, Tok.getLocation());
   2855 }
   2856 
   2857 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
   2858   unsigned IntSize = Context.getTargetInfo().getIntWidth();
   2859   return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
   2860                                       Context.IntTy, Loc));
   2861 }
   2862 
   2863 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
   2864                                   QualType Ty, SourceLocation Loc) {
   2865   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
   2866 
   2867   using llvm::APFloat;
   2868   APFloat Val(Format);
   2869 
   2870   APFloat::opStatus result = Literal.GetFloatValue(Val);
   2871 
   2872   // Overflow is always an error, but underflow is only an error if
   2873   // we underflowed to zero (APFloat reports denormals as underflow).
   2874   if ((result & APFloat::opOverflow) ||
   2875       ((result & APFloat::opUnderflow) && Val.isZero())) {
   2876     unsigned diagnostic;
   2877     SmallString<20> buffer;
   2878     if (result & APFloat::opOverflow) {
   2879       diagnostic = diag::warn_float_overflow;
   2880       APFloat::getLargest(Format).toString(buffer);
   2881     } else {
   2882       diagnostic = diag::warn_float_underflow;
   2883       APFloat::getSmallest(Format).toString(buffer);
   2884     }
   2885 
   2886     S.Diag(Loc, diagnostic)
   2887       << Ty
   2888       << StringRef(buffer.data(), buffer.size());
   2889   }
   2890 
   2891   bool isExact = (result == APFloat::opOK);
   2892   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
   2893 }
   2894 
   2895 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
   2896   // Fast path for a single digit (which is quite common).  A single digit
   2897   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
   2898   if (Tok.getLength() == 1) {
   2899     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
   2900     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
   2901   }
   2902 
   2903   SmallString<128> SpellingBuffer;
   2904   // NumericLiteralParser wants to overread by one character.  Add padding to
   2905   // the buffer in case the token is copied to the buffer.  If getSpelling()
   2906   // returns a StringRef to the memory buffer, it should have a null char at
   2907   // the EOF, so it is also safe.
   2908   SpellingBuffer.resize(Tok.getLength() + 1);
   2909 
   2910   // Get the spelling of the token, which eliminates trigraphs, etc.
   2911   bool Invalid = false;
   2912   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
   2913   if (Invalid)
   2914     return ExprError();
   2915 
   2916   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
   2917   if (Literal.hadError)
   2918     return ExprError();
   2919 
   2920   if (Literal.hasUDSuffix()) {
   2921     // We're building a user-defined literal.
   2922     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   2923     SourceLocation UDSuffixLoc =
   2924       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   2925 
   2926     // Make sure we're allowed user-defined literals here.
   2927     if (!UDLScope)
   2928       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
   2929 
   2930     QualType CookedTy;
   2931     if (Literal.isFloatingLiteral()) {
   2932       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
   2933       // long double, the literal is treated as a call of the form
   2934       //   operator "" X (f L)
   2935       CookedTy = Context.LongDoubleTy;
   2936     } else {
   2937       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
   2938       // unsigned long long, the literal is treated as a call of the form
   2939       //   operator "" X (n ULL)
   2940       CookedTy = Context.UnsignedLongLongTy;
   2941     }
   2942 
   2943     DeclarationName OpName =
   2944       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   2945     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   2946     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   2947 
   2948     // Perform literal operator lookup to determine if we're building a raw
   2949     // literal or a cooked one.
   2950     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   2951     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
   2952                                   /*AllowRawAndTemplate*/true)) {
   2953     case LOLR_Error:
   2954       return ExprError();
   2955 
   2956     case LOLR_Cooked: {
   2957       Expr *Lit;
   2958       if (Literal.isFloatingLiteral()) {
   2959         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
   2960       } else {
   2961         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
   2962         if (Literal.GetIntegerValue(ResultVal))
   2963           Diag(Tok.getLocation(), diag::err_integer_too_large);
   2964         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
   2965                                      Tok.getLocation());
   2966       }
   2967       return BuildLiteralOperatorCall(R, OpNameInfo, Lit,
   2968                                       Tok.getLocation());
   2969     }
   2970 
   2971     case LOLR_Raw: {
   2972       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
   2973       // literal is treated as a call of the form
   2974       //   operator "" X ("n")
   2975       SourceLocation TokLoc = Tok.getLocation();
   2976       unsigned Length = Literal.getUDSuffixOffset();
   2977       QualType StrTy = Context.getConstantArrayType(
   2978           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
   2979           ArrayType::Normal, 0);
   2980       Expr *Lit = StringLiteral::Create(
   2981           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
   2982           /*Pascal*/false, StrTy, &TokLoc, 1);
   2983       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   2984     }
   2985 
   2986     case LOLR_Template:
   2987       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
   2988       // template), L is treated as a call fo the form
   2989       //   operator "" X <'c1', 'c2', ... 'ck'>()
   2990       // where n is the source character sequence c1 c2 ... ck.
   2991       TemplateArgumentListInfo ExplicitArgs;
   2992       unsigned CharBits = Context.getIntWidth(Context.CharTy);
   2993       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
   2994       llvm::APSInt Value(CharBits, CharIsUnsigned);
   2995       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
   2996         Value = TokSpelling[I];
   2997         TemplateArgument Arg(Context, Value, Context.CharTy);
   2998         TemplateArgumentLocInfo ArgInfo;
   2999         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   3000       }
   3001       return BuildLiteralOperatorCall(R, OpNameInfo, None, Tok.getLocation(),
   3002                                       &ExplicitArgs);
   3003     }
   3004 
   3005     llvm_unreachable("unexpected literal operator lookup result");
   3006   }
   3007 
   3008   Expr *Res;
   3009 
   3010   if (Literal.isFloatingLiteral()) {
   3011     QualType Ty;
   3012     if (Literal.isFloat)
   3013       Ty = Context.FloatTy;
   3014     else if (!Literal.isLong)
   3015       Ty = Context.DoubleTy;
   3016     else
   3017       Ty = Context.LongDoubleTy;
   3018 
   3019     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
   3020 
   3021     if (Ty == Context.DoubleTy) {
   3022       if (getLangOpts().SinglePrecisionConstants) {
   3023         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
   3024       } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
   3025         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
   3026         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
   3027       }
   3028     }
   3029   } else if (!Literal.isIntegerLiteral()) {
   3030     return ExprError();
   3031   } else {
   3032     QualType Ty;
   3033 
   3034     // 'long long' is a C99 or C++11 feature.
   3035     if (!getLangOpts().C99 && Literal.isLongLong) {
   3036       if (getLangOpts().CPlusPlus)
   3037         Diag(Tok.getLocation(),
   3038              getLangOpts().CPlusPlus11 ?
   3039              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
   3040       else
   3041         Diag(Tok.getLocation(), diag::ext_c99_longlong);
   3042     }
   3043 
   3044     // Get the value in the widest-possible width.
   3045     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
   3046     // The microsoft literal suffix extensions support 128-bit literals, which
   3047     // may be wider than [u]intmax_t.
   3048     // FIXME: Actually, they don't. We seem to have accidentally invented the
   3049     //        i128 suffix.
   3050     if (Literal.isMicrosoftInteger && MaxWidth < 128 &&
   3051         PP.getTargetInfo().hasInt128Type())
   3052       MaxWidth = 128;
   3053     llvm::APInt ResultVal(MaxWidth, 0);
   3054 
   3055     if (Literal.GetIntegerValue(ResultVal)) {
   3056       // If this value didn't fit into uintmax_t, error and force to ull.
   3057       Diag(Tok.getLocation(), diag::err_integer_too_large);
   3058       Ty = Context.UnsignedLongLongTy;
   3059       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
   3060              "long long is not intmax_t?");
   3061     } else {
   3062       // If this value fits into a ULL, try to figure out what else it fits into
   3063       // according to the rules of C99 6.4.4.1p5.
   3064 
   3065       // Octal, Hexadecimal, and integers with a U suffix are allowed to
   3066       // be an unsigned int.
   3067       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
   3068 
   3069       // Check from smallest to largest, picking the smallest type we can.
   3070       unsigned Width = 0;
   3071       if (!Literal.isLong && !Literal.isLongLong) {
   3072         // Are int/unsigned possibilities?
   3073         unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3074 
   3075         // Does it fit in a unsigned int?
   3076         if (ResultVal.isIntN(IntSize)) {
   3077           // Does it fit in a signed int?
   3078           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
   3079             Ty = Context.IntTy;
   3080           else if (AllowUnsigned)
   3081             Ty = Context.UnsignedIntTy;
   3082           Width = IntSize;
   3083         }
   3084       }
   3085 
   3086       // Are long/unsigned long possibilities?
   3087       if (Ty.isNull() && !Literal.isLongLong) {
   3088         unsigned LongSize = Context.getTargetInfo().getLongWidth();
   3089 
   3090         // Does it fit in a unsigned long?
   3091         if (ResultVal.isIntN(LongSize)) {
   3092           // Does it fit in a signed long?
   3093           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
   3094             Ty = Context.LongTy;
   3095           else if (AllowUnsigned)
   3096             Ty = Context.UnsignedLongTy;
   3097           Width = LongSize;
   3098         }
   3099       }
   3100 
   3101       // Check long long if needed.
   3102       if (Ty.isNull()) {
   3103         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
   3104 
   3105         // Does it fit in a unsigned long long?
   3106         if (ResultVal.isIntN(LongLongSize)) {
   3107           // Does it fit in a signed long long?
   3108           // To be compatible with MSVC, hex integer literals ending with the
   3109           // LL or i64 suffix are always signed in Microsoft mode.
   3110           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
   3111               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
   3112             Ty = Context.LongLongTy;
   3113           else if (AllowUnsigned)
   3114             Ty = Context.UnsignedLongLongTy;
   3115           Width = LongLongSize;
   3116         }
   3117       }
   3118 
   3119       // If it doesn't fit in unsigned long long, and we're using Microsoft
   3120       // extensions, then its a 128-bit integer literal.
   3121       if (Ty.isNull() && Literal.isMicrosoftInteger &&
   3122           PP.getTargetInfo().hasInt128Type()) {
   3123         if (Literal.isUnsigned)
   3124           Ty = Context.UnsignedInt128Ty;
   3125         else
   3126           Ty = Context.Int128Ty;
   3127         Width = 128;
   3128       }
   3129 
   3130       // If we still couldn't decide a type, we probably have something that
   3131       // does not fit in a signed long long, but has no U suffix.
   3132       if (Ty.isNull()) {
   3133         Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
   3134         Ty = Context.UnsignedLongLongTy;
   3135         Width = Context.getTargetInfo().getLongLongWidth();
   3136       }
   3137 
   3138       if (ResultVal.getBitWidth() != Width)
   3139         ResultVal = ResultVal.trunc(Width);
   3140     }
   3141     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
   3142   }
   3143 
   3144   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
   3145   if (Literal.isImaginary)
   3146     Res = new (Context) ImaginaryLiteral(Res,
   3147                                         Context.getComplexType(Res->getType()));
   3148 
   3149   return Owned(Res);
   3150 }
   3151 
   3152 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
   3153   assert((E != 0) && "ActOnParenExpr() missing expr");
   3154   return Owned(new (Context) ParenExpr(L, R, E));
   3155 }
   3156 
   3157 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
   3158                                          SourceLocation Loc,
   3159                                          SourceRange ArgRange) {
   3160   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
   3161   // scalar or vector data type argument..."
   3162   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
   3163   // type (C99 6.2.5p18) or void.
   3164   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
   3165     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
   3166       << T << ArgRange;
   3167     return true;
   3168   }
   3169 
   3170   assert((T->isVoidType() || !T->isIncompleteType()) &&
   3171          "Scalar types should always be complete");
   3172   return false;
   3173 }
   3174 
   3175 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
   3176                                            SourceLocation Loc,
   3177                                            SourceRange ArgRange,
   3178                                            UnaryExprOrTypeTrait TraitKind) {
   3179   // C99 6.5.3.4p1:
   3180   if (T->isFunctionType() &&
   3181       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
   3182     // sizeof(function)/alignof(function) is allowed as an extension.
   3183     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
   3184       << TraitKind << ArgRange;
   3185     return false;
   3186   }
   3187 
   3188   // Allow sizeof(void)/alignof(void) as an extension.
   3189   if (T->isVoidType()) {
   3190     S.Diag(Loc, diag::ext_sizeof_alignof_void_type) << TraitKind << ArgRange;
   3191     return false;
   3192   }
   3193 
   3194   return true;
   3195 }
   3196 
   3197 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
   3198                                              SourceLocation Loc,
   3199                                              SourceRange ArgRange,
   3200                                              UnaryExprOrTypeTrait TraitKind) {
   3201   // Reject sizeof(interface) and sizeof(interface<proto>) if the
   3202   // runtime doesn't allow it.
   3203   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
   3204     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
   3205       << T << (TraitKind == UETT_SizeOf)
   3206       << ArgRange;
   3207     return true;
   3208   }
   3209 
   3210   return false;
   3211 }
   3212 
   3213 /// \brief Check whether E is a pointer from a decayed array type (the decayed
   3214 /// pointer type is equal to T) and emit a warning if it is.
   3215 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
   3216                                      Expr *E) {
   3217   // Don't warn if the operation changed the type.
   3218   if (T != E->getType())
   3219     return;
   3220 
   3221   // Now look for array decays.
   3222   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
   3223   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
   3224     return;
   3225 
   3226   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
   3227                                              << ICE->getType()
   3228                                              << ICE->getSubExpr()->getType();
   3229 }
   3230 
   3231 /// \brief Check the constrains on expression operands to unary type expression
   3232 /// and type traits.
   3233 ///
   3234 /// Completes any types necessary and validates the constraints on the operand
   3235 /// expression. The logic mostly mirrors the type-based overload, but may modify
   3236 /// the expression as it completes the type for that expression through template
   3237 /// instantiation, etc.
   3238 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
   3239                                             UnaryExprOrTypeTrait ExprKind) {
   3240   QualType ExprTy = E->getType();
   3241   assert(!ExprTy->isReferenceType());
   3242 
   3243   if (ExprKind == UETT_VecStep)
   3244     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3245                                         E->getSourceRange());
   3246 
   3247   // Whitelist some types as extensions
   3248   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3249                                       E->getSourceRange(), ExprKind))
   3250     return false;
   3251 
   3252   if (RequireCompleteExprType(E,
   3253                               diag::err_sizeof_alignof_incomplete_type,
   3254                               ExprKind, E->getSourceRange()))
   3255     return true;
   3256 
   3257   // Completing the expression's type may have changed it.
   3258   ExprTy = E->getType();
   3259   assert(!ExprTy->isReferenceType());
   3260 
   3261   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
   3262                                        E->getSourceRange(), ExprKind))
   3263     return true;
   3264 
   3265   if (ExprKind == UETT_SizeOf) {
   3266     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   3267       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
   3268         QualType OType = PVD->getOriginalType();
   3269         QualType Type = PVD->getType();
   3270         if (Type->isPointerType() && OType->isArrayType()) {
   3271           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
   3272             << Type << OType;
   3273           Diag(PVD->getLocation(), diag::note_declared_at);
   3274         }
   3275       }
   3276     }
   3277 
   3278     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
   3279     // decays into a pointer and returns an unintended result. This is most
   3280     // likely a typo for "sizeof(array) op x".
   3281     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
   3282       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3283                                BO->getLHS());
   3284       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3285                                BO->getRHS());
   3286     }
   3287   }
   3288 
   3289   return false;
   3290 }
   3291 
   3292 /// \brief Check the constraints on operands to unary expression and type
   3293 /// traits.
   3294 ///
   3295 /// This will complete any types necessary, and validate the various constraints
   3296 /// on those operands.
   3297 ///
   3298 /// The UsualUnaryConversions() function is *not* called by this routine.
   3299 /// C99 6.3.2.1p[2-4] all state:
   3300 ///   Except when it is the operand of the sizeof operator ...
   3301 ///
   3302 /// C++ [expr.sizeof]p4
   3303 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
   3304 ///   standard conversions are not applied to the operand of sizeof.
   3305 ///
   3306 /// This policy is followed for all of the unary trait expressions.
   3307 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
   3308                                             SourceLocation OpLoc,
   3309                                             SourceRange ExprRange,
   3310                                             UnaryExprOrTypeTrait ExprKind) {
   3311   if (ExprType->isDependentType())
   3312     return false;
   3313 
   3314   // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
   3315   //   the result is the size of the referenced type."
   3316   // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
   3317   //   result shall be the alignment of the referenced type."
   3318   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
   3319     ExprType = Ref->getPointeeType();
   3320 
   3321   if (ExprKind == UETT_VecStep)
   3322     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
   3323 
   3324   // Whitelist some types as extensions
   3325   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
   3326                                       ExprKind))
   3327     return false;
   3328 
   3329   if (RequireCompleteType(OpLoc, ExprType,
   3330                           diag::err_sizeof_alignof_incomplete_type,
   3331                           ExprKind, ExprRange))
   3332     return true;
   3333 
   3334   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
   3335                                        ExprKind))
   3336     return true;
   3337 
   3338   return false;
   3339 }
   3340 
   3341 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
   3342   E = E->IgnoreParens();
   3343 
   3344   // Cannot know anything else if the expression is dependent.
   3345   if (E->isTypeDependent())
   3346     return false;
   3347 
   3348   if (E->getObjectKind() == OK_BitField) {
   3349     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
   3350        << 1 << E->getSourceRange();
   3351     return true;
   3352   }
   3353 
   3354   ValueDecl *D = 0;
   3355   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   3356     D = DRE->getDecl();
   3357   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   3358     D = ME->getMemberDecl();
   3359   }
   3360 
   3361   // If it's a field, require the containing struct to have a
   3362   // complete definition so that we can compute the layout.
   3363   //
   3364   // This requires a very particular set of circumstances.  For a
   3365   // field to be contained within an incomplete type, we must in the
   3366   // process of parsing that type.  To have an expression refer to a
   3367   // field, it must be an id-expression or a member-expression, but
   3368   // the latter are always ill-formed when the base type is
   3369   // incomplete, including only being partially complete.  An
   3370   // id-expression can never refer to a field in C because fields
   3371   // are not in the ordinary namespace.  In C++, an id-expression
   3372   // can implicitly be a member access, but only if there's an
   3373   // implicit 'this' value, and all such contexts are subject to
   3374   // delayed parsing --- except for trailing return types in C++11.
   3375   // And if an id-expression referring to a field occurs in a
   3376   // context that lacks a 'this' value, it's ill-formed --- except,
   3377   // agian, in C++11, where such references are allowed in an
   3378   // unevaluated context.  So C++11 introduces some new complexity.
   3379   //
   3380   // For the record, since __alignof__ on expressions is a GCC
   3381   // extension, GCC seems to permit this but always gives the
   3382   // nonsensical answer 0.
   3383   //
   3384   // We don't really need the layout here --- we could instead just
   3385   // directly check for all the appropriate alignment-lowing
   3386   // attributes --- but that would require duplicating a lot of
   3387   // logic that just isn't worth duplicating for such a marginal
   3388   // use-case.
   3389   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
   3390     // Fast path this check, since we at least know the record has a
   3391     // definition if we can find a member of it.
   3392     if (!FD->getParent()->isCompleteDefinition()) {
   3393       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
   3394         << E->getSourceRange();
   3395       return true;
   3396     }
   3397 
   3398     // Otherwise, if it's a field, and the field doesn't have
   3399     // reference type, then it must have a complete type (or be a
   3400     // flexible array member, which we explicitly want to
   3401     // white-list anyway), which makes the following checks trivial.
   3402     if (!FD->getType()->isReferenceType())
   3403       return false;
   3404   }
   3405 
   3406   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
   3407 }
   3408 
   3409 bool Sema::CheckVecStepExpr(Expr *E) {
   3410   E = E->IgnoreParens();
   3411 
   3412   // Cannot know anything else if the expression is dependent.
   3413   if (E->isTypeDependent())
   3414     return false;
   3415 
   3416   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
   3417 }
   3418 
   3419 /// \brief Build a sizeof or alignof expression given a type operand.
   3420 ExprResult
   3421 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
   3422                                      SourceLocation OpLoc,
   3423                                      UnaryExprOrTypeTrait ExprKind,
   3424                                      SourceRange R) {
   3425   if (!TInfo)
   3426     return ExprError();
   3427 
   3428   QualType T = TInfo->getType();
   3429 
   3430   if (!T->isDependentType() &&
   3431       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
   3432     return ExprError();
   3433 
   3434   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3435   return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
   3436                                                       Context.getSizeType(),
   3437                                                       OpLoc, R.getEnd()));
   3438 }
   3439 
   3440 /// \brief Build a sizeof or alignof expression given an expression
   3441 /// operand.
   3442 ExprResult
   3443 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
   3444                                      UnaryExprOrTypeTrait ExprKind) {
   3445   ExprResult PE = CheckPlaceholderExpr(E);
   3446   if (PE.isInvalid())
   3447     return ExprError();
   3448 
   3449   E = PE.get();
   3450 
   3451   // Verify that the operand is valid.
   3452   bool isInvalid = false;
   3453   if (E->isTypeDependent()) {
   3454     // Delay type-checking for type-dependent expressions.
   3455   } else if (ExprKind == UETT_AlignOf) {
   3456     isInvalid = CheckAlignOfExpr(*this, E);
   3457   } else if (ExprKind == UETT_VecStep) {
   3458     isInvalid = CheckVecStepExpr(E);
   3459   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
   3460     Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
   3461     isInvalid = true;
   3462   } else {
   3463     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
   3464   }
   3465 
   3466   if (isInvalid)
   3467     return ExprError();
   3468 
   3469   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
   3470     PE = TransformToPotentiallyEvaluated(E);
   3471     if (PE.isInvalid()) return ExprError();
   3472     E = PE.take();
   3473   }
   3474 
   3475   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3476   return Owned(new (Context) UnaryExprOrTypeTraitExpr(
   3477       ExprKind, E, Context.getSizeType(), OpLoc,
   3478       E->getSourceRange().getEnd()));
   3479 }
   3480 
   3481 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
   3482 /// expr and the same for @c alignof and @c __alignof
   3483 /// Note that the ArgRange is invalid if isType is false.
   3484 ExprResult
   3485 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
   3486                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
   3487                                     void *TyOrEx, const SourceRange &ArgRange) {
   3488   // If error parsing type, ignore.
   3489   if (TyOrEx == 0) return ExprError();
   3490 
   3491   if (IsType) {
   3492     TypeSourceInfo *TInfo;
   3493     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
   3494     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
   3495   }
   3496 
   3497   Expr *ArgEx = (Expr *)TyOrEx;
   3498   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
   3499   return Result;
   3500 }
   3501 
   3502 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
   3503                                      bool IsReal) {
   3504   if (V.get()->isTypeDependent())
   3505     return S.Context.DependentTy;
   3506 
   3507   // _Real and _Imag are only l-values for normal l-values.
   3508   if (V.get()->getObjectKind() != OK_Ordinary) {
   3509     V = S.DefaultLvalueConversion(V.take());
   3510     if (V.isInvalid())
   3511       return QualType();
   3512   }
   3513 
   3514   // These operators return the element type of a complex type.
   3515   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
   3516     return CT->getElementType();
   3517 
   3518   // Otherwise they pass through real integer and floating point types here.
   3519   if (V.get()->getType()->isArithmeticType())
   3520     return V.get()->getType();
   3521 
   3522   // Test for placeholders.
   3523   ExprResult PR = S.CheckPlaceholderExpr(V.get());
   3524   if (PR.isInvalid()) return QualType();
   3525   if (PR.get() != V.get()) {
   3526     V = PR;
   3527     return CheckRealImagOperand(S, V, Loc, IsReal);
   3528   }
   3529 
   3530   // Reject anything else.
   3531   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
   3532     << (IsReal ? "__real" : "__imag");
   3533   return QualType();
   3534 }
   3535 
   3536 
   3537 
   3538 ExprResult
   3539 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
   3540                           tok::TokenKind Kind, Expr *Input) {
   3541   UnaryOperatorKind Opc;
   3542   switch (Kind) {
   3543   default: llvm_unreachable("Unknown unary op!");
   3544   case tok::plusplus:   Opc = UO_PostInc; break;
   3545   case tok::minusminus: Opc = UO_PostDec; break;
   3546   }
   3547 
   3548   // Since this might is a postfix expression, get rid of ParenListExprs.
   3549   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
   3550   if (Result.isInvalid()) return ExprError();
   3551   Input = Result.take();
   3552 
   3553   return BuildUnaryOp(S, OpLoc, Opc, Input);
   3554 }
   3555 
   3556 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
   3557 ///
   3558 /// \return true on error
   3559 static bool checkArithmeticOnObjCPointer(Sema &S,
   3560                                          SourceLocation opLoc,
   3561                                          Expr *op) {
   3562   assert(op->getType()->isObjCObjectPointerType());
   3563   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
   3564     return false;
   3565 
   3566   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
   3567     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
   3568     << op->getSourceRange();
   3569   return true;
   3570 }
   3571 
   3572 ExprResult
   3573 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
   3574                               Expr *idx, SourceLocation rbLoc) {
   3575   // Since this might be a postfix expression, get rid of ParenListExprs.
   3576   if (isa<ParenListExpr>(base)) {
   3577     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
   3578     if (result.isInvalid()) return ExprError();
   3579     base = result.take();
   3580   }
   3581 
   3582   // Handle any non-overload placeholder types in the base and index
   3583   // expressions.  We can't handle overloads here because the other
   3584   // operand might be an overloadable type, in which case the overload
   3585   // resolution for the operator overload should get the first crack
   3586   // at the overload.
   3587   if (base->getType()->isNonOverloadPlaceholderType()) {
   3588     ExprResult result = CheckPlaceholderExpr(base);
   3589     if (result.isInvalid()) return ExprError();
   3590     base = result.take();
   3591   }
   3592   if (idx->getType()->isNonOverloadPlaceholderType()) {
   3593     ExprResult result = CheckPlaceholderExpr(idx);
   3594     if (result.isInvalid()) return ExprError();
   3595     idx = result.take();
   3596   }
   3597 
   3598   // Build an unanalyzed expression if either operand is type-dependent.
   3599   if (getLangOpts().CPlusPlus &&
   3600       (base->isTypeDependent() || idx->isTypeDependent())) {
   3601     return Owned(new (Context) ArraySubscriptExpr(base, idx,
   3602                                                   Context.DependentTy,
   3603                                                   VK_LValue, OK_Ordinary,
   3604                                                   rbLoc));
   3605   }
   3606 
   3607   // Use C++ overloaded-operator rules if either operand has record
   3608   // type.  The spec says to do this if either type is *overloadable*,
   3609   // but enum types can't declare subscript operators or conversion
   3610   // operators, so there's nothing interesting for overload resolution
   3611   // to do if there aren't any record types involved.
   3612   //
   3613   // ObjC pointers have their own subscripting logic that is not tied
   3614   // to overload resolution and so should not take this path.
   3615   if (getLangOpts().CPlusPlus &&
   3616       (base->getType()->isRecordType() ||
   3617        (!base->getType()->isObjCObjectPointerType() &&
   3618         idx->getType()->isRecordType()))) {
   3619     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
   3620   }
   3621 
   3622   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
   3623 }
   3624 
   3625 ExprResult
   3626 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
   3627                                       Expr *Idx, SourceLocation RLoc) {
   3628   Expr *LHSExp = Base;
   3629   Expr *RHSExp = Idx;
   3630 
   3631   // Perform default conversions.
   3632   if (!LHSExp->getType()->getAs<VectorType>()) {
   3633     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
   3634     if (Result.isInvalid())
   3635       return ExprError();
   3636     LHSExp = Result.take();
   3637   }
   3638   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
   3639   if (Result.isInvalid())
   3640     return ExprError();
   3641   RHSExp = Result.take();
   3642 
   3643   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
   3644   ExprValueKind VK = VK_LValue;
   3645   ExprObjectKind OK = OK_Ordinary;
   3646 
   3647   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
   3648   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
   3649   // in the subscript position. As a result, we need to derive the array base
   3650   // and index from the expression types.
   3651   Expr *BaseExpr, *IndexExpr;
   3652   QualType ResultType;
   3653   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
   3654     BaseExpr = LHSExp;
   3655     IndexExpr = RHSExp;
   3656     ResultType = Context.DependentTy;
   3657   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
   3658     BaseExpr = LHSExp;
   3659     IndexExpr = RHSExp;
   3660     ResultType = PTy->getPointeeType();
   3661   } else if (const ObjCObjectPointerType *PTy =
   3662                LHSTy->getAs<ObjCObjectPointerType>()) {
   3663     BaseExpr = LHSExp;
   3664     IndexExpr = RHSExp;
   3665 
   3666     // Use custom logic if this should be the pseudo-object subscript
   3667     // expression.
   3668     if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
   3669       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
   3670 
   3671     ResultType = PTy->getPointeeType();
   3672     if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
   3673       Diag(LLoc, diag::err_subscript_nonfragile_interface)
   3674         << ResultType << BaseExpr->getSourceRange();
   3675       return ExprError();
   3676     }
   3677   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
   3678      // Handle the uncommon case of "123[Ptr]".
   3679     BaseExpr = RHSExp;
   3680     IndexExpr = LHSExp;
   3681     ResultType = PTy->getPointeeType();
   3682   } else if (const ObjCObjectPointerType *PTy =
   3683                RHSTy->getAs<ObjCObjectPointerType>()) {
   3684      // Handle the uncommon case of "123[Ptr]".
   3685     BaseExpr = RHSExp;
   3686     IndexExpr = LHSExp;
   3687     ResultType = PTy->getPointeeType();
   3688     if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
   3689       Diag(LLoc, diag::err_subscript_nonfragile_interface)
   3690         << ResultType << BaseExpr->getSourceRange();
   3691       return ExprError();
   3692     }
   3693   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
   3694     BaseExpr = LHSExp;    // vectors: V[123]
   3695     IndexExpr = RHSExp;
   3696     VK = LHSExp->getValueKind();
   3697     if (VK != VK_RValue)
   3698       OK = OK_VectorComponent;
   3699 
   3700     // FIXME: need to deal with const...
   3701     ResultType = VTy->getElementType();
   3702   } else if (LHSTy->isArrayType()) {
   3703     // If we see an array that wasn't promoted by
   3704     // DefaultFunctionArrayLvalueConversion, it must be an array that
   3705     // wasn't promoted because of the C90 rule that doesn't
   3706     // allow promoting non-lvalue arrays.  Warn, then
   3707     // force the promotion here.
   3708     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   3709         LHSExp->getSourceRange();
   3710     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
   3711                                CK_ArrayToPointerDecay).take();
   3712     LHSTy = LHSExp->getType();
   3713 
   3714     BaseExpr = LHSExp;
   3715     IndexExpr = RHSExp;
   3716     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
   3717   } else if (RHSTy->isArrayType()) {
   3718     // Same as previous, except for 123[f().a] case
   3719     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   3720         RHSExp->getSourceRange();
   3721     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
   3722                                CK_ArrayToPointerDecay).take();
   3723     RHSTy = RHSExp->getType();
   3724 
   3725     BaseExpr = RHSExp;
   3726     IndexExpr = LHSExp;
   3727     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
   3728   } else {
   3729     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
   3730        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
   3731   }
   3732   // C99 6.5.2.1p1
   3733   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
   3734     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
   3735                      << IndexExpr->getSourceRange());
   3736 
   3737   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   3738        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   3739          && !IndexExpr->isTypeDependent())
   3740     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
   3741 
   3742   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   3743   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   3744   // type. Note that Functions are not objects, and that (in C99 parlance)
   3745   // incomplete types are not object types.
   3746   if (ResultType->isFunctionType()) {
   3747     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
   3748       << ResultType << BaseExpr->getSourceRange();
   3749     return ExprError();
   3750   }
   3751 
   3752   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
   3753     // GNU extension: subscripting on pointer to void
   3754     Diag(LLoc, diag::ext_gnu_subscript_void_type)
   3755       << BaseExpr->getSourceRange();
   3756 
   3757     // C forbids expressions of unqualified void type from being l-values.
   3758     // See IsCForbiddenLValueType.
   3759     if (!ResultType.hasQualifiers()) VK = VK_RValue;
   3760   } else if (!ResultType->isDependentType() &&
   3761       RequireCompleteType(LLoc, ResultType,
   3762                           diag::err_subscript_incomplete_type, BaseExpr))
   3763     return ExprError();
   3764 
   3765   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
   3766          !ResultType.isCForbiddenLValueType());
   3767 
   3768   return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
   3769                                                 ResultType, VK, OK, RLoc));
   3770 }
   3771 
   3772 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
   3773                                         FunctionDecl *FD,
   3774                                         ParmVarDecl *Param) {
   3775   if (Param->hasUnparsedDefaultArg()) {
   3776     Diag(CallLoc,
   3777          diag::err_use_of_default_argument_to_function_declared_later) <<
   3778       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
   3779     Diag(UnparsedDefaultArgLocs[Param],
   3780          diag::note_default_argument_declared_here);
   3781     return ExprError();
   3782   }
   3783 
   3784   if (Param->hasUninstantiatedDefaultArg()) {
   3785     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
   3786 
   3787     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
   3788                                                  Param);
   3789 
   3790     // Instantiate the expression.
   3791     MultiLevelTemplateArgumentList MutiLevelArgList
   3792       = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
   3793 
   3794     InstantiatingTemplate Inst(*this, CallLoc, Param,
   3795                                MutiLevelArgList.getInnermost());
   3796     if (Inst)
   3797       return ExprError();
   3798 
   3799     ExprResult Result;
   3800     {
   3801       // C++ [dcl.fct.default]p5:
   3802       //   The names in the [default argument] expression are bound, and
   3803       //   the semantic constraints are checked, at the point where the
   3804       //   default argument expression appears.
   3805       ContextRAII SavedContext(*this, FD);
   3806       LocalInstantiationScope Local(*this);
   3807       Result = SubstExpr(UninstExpr, MutiLevelArgList);
   3808     }
   3809     if (Result.isInvalid())
   3810       return ExprError();
   3811 
   3812     // Check the expression as an initializer for the parameter.
   3813     InitializedEntity Entity
   3814       = InitializedEntity::InitializeParameter(Context, Param);
   3815     InitializationKind Kind
   3816       = InitializationKind::CreateCopy(Param->getLocation(),
   3817              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
   3818     Expr *ResultE = Result.takeAs<Expr>();
   3819 
   3820     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
   3821     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
   3822     if (Result.isInvalid())
   3823       return ExprError();
   3824 
   3825     Expr *Arg = Result.takeAs<Expr>();
   3826     CheckCompletedExpr(Arg, Param->getOuterLocStart());
   3827     // Build the default argument expression.
   3828     return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
   3829   }
   3830 
   3831   // If the default expression creates temporaries, we need to
   3832   // push them to the current stack of expression temporaries so they'll
   3833   // be properly destroyed.
   3834   // FIXME: We should really be rebuilding the default argument with new
   3835   // bound temporaries; see the comment in PR5810.
   3836   // We don't need to do that with block decls, though, because
   3837   // blocks in default argument expression can never capture anything.
   3838   if (isa<ExprWithCleanups>(Param->getInit())) {
   3839     // Set the "needs cleanups" bit regardless of whether there are
   3840     // any explicit objects.
   3841     ExprNeedsCleanups = true;
   3842 
   3843     // Append all the objects to the cleanup list.  Right now, this
   3844     // should always be a no-op, because blocks in default argument
   3845     // expressions should never be able to capture anything.
   3846     assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
   3847            "default argument expression has capturing blocks?");
   3848   }
   3849 
   3850   // We already type-checked the argument, so we know it works.
   3851   // Just mark all of the declarations in this potentially-evaluated expression
   3852   // as being "referenced".
   3853   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
   3854                                    /*SkipLocalVariables=*/true);
   3855   return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
   3856 }
   3857 
   3858 
   3859 Sema::VariadicCallType
   3860 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
   3861                           Expr *Fn) {
   3862   if (Proto && Proto->isVariadic()) {
   3863     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
   3864       return VariadicConstructor;
   3865     else if (Fn && Fn->getType()->isBlockPointerType())
   3866       return VariadicBlock;
   3867     else if (FDecl) {
   3868       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   3869         if (Method->isInstance())
   3870           return VariadicMethod;
   3871     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
   3872       return VariadicMethod;
   3873     return VariadicFunction;
   3874   }
   3875   return VariadicDoesNotApply;
   3876 }
   3877 
   3878 namespace {
   3879 class FunctionCallCCC : public FunctionCallFilterCCC {
   3880 public:
   3881   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
   3882                   unsigned NumArgs, bool HasExplicitTemplateArgs)
   3883       : FunctionCallFilterCCC(SemaRef, NumArgs, HasExplicitTemplateArgs),
   3884         FunctionName(FuncName) {}
   3885 
   3886   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
   3887     if (!candidate.getCorrectionSpecifier() ||
   3888         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
   3889       return false;
   3890     }
   3891 
   3892     return FunctionCallFilterCCC::ValidateCandidate(candidate);
   3893   }
   3894 
   3895 private:
   3896   const IdentifierInfo *const FunctionName;
   3897 };
   3898 }
   3899 
   3900 static TypoCorrection TryTypoCorrectionForCall(Sema &S,
   3901                                                DeclarationNameInfo FuncName,
   3902                                                ArrayRef<Expr *> Args) {
   3903   FunctionCallCCC CCC(S, FuncName.getName().getAsIdentifierInfo(),
   3904                       Args.size(), false);
   3905   if (TypoCorrection Corrected =
   3906           S.CorrectTypo(FuncName, Sema::LookupOrdinaryName,
   3907                         S.getScopeForContext(S.CurContext), NULL, CCC)) {
   3908     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
   3909       if (Corrected.isOverloaded()) {
   3910         OverloadCandidateSet OCS(FuncName.getLoc());
   3911         OverloadCandidateSet::iterator Best;
   3912         for (TypoCorrection::decl_iterator CD = Corrected.begin(),
   3913                                            CDEnd = Corrected.end();
   3914              CD != CDEnd; ++CD) {
   3915           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
   3916             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
   3917                                    OCS);
   3918         }
   3919         switch (OCS.BestViableFunction(S, FuncName.getLoc(), Best)) {
   3920         case OR_Success:
   3921           ND = Best->Function;
   3922           Corrected.setCorrectionDecl(ND);
   3923           break;
   3924         default:
   3925           break;
   3926         }
   3927       }
   3928       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
   3929         return Corrected;
   3930       }
   3931     }
   3932   }
   3933   return TypoCorrection();
   3934 }
   3935 
   3936 /// ConvertArgumentsForCall - Converts the arguments specified in
   3937 /// Args/NumArgs to the parameter types of the function FDecl with
   3938 /// function prototype Proto. Call is the call expression itself, and
   3939 /// Fn is the function expression. For a C++ member function, this
   3940 /// routine does not attempt to convert the object argument. Returns
   3941 /// true if the call is ill-formed.
   3942 bool
   3943 Sema