Lines Matching full:step
74 // gradient) and the new Gauss-Newton step are computed from
75 // scratch. The Dogleg step is then computed as interpolation of these
81 double* step) {
84 CHECK_NOTNULL(step);
93 ComputeTraditionalDoglegStep(step);
97 ComputeSubspaceDoglegStep(step);
119 // || D * step || <= radius_ .
140 // Interpolate the Cauchy point and the Gauss-Newton step.
142 ComputeTraditionalDoglegStep(step);
146 // Cauchy point and the (Gauss-)Newton step.
152 ComputeSubspaceDoglegStep(step);
162 // It is implemented by substituting step' = D * step.
163 // The trust region for step' is spherical.
164 // The gradient, the Gauss-Newton step, the Cauchy point,
189 // The dogleg step is defined as the intersection of the trust region
197 // Case 1. The Gauss-Newton step lies inside the trust region, and
205 VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
217 VLOG(3) << "Cauchy step size: " << dogleg_step_norm_
223 // Gauss-Newton step is outside. Compute the line joining the two
248 VLOG(3) << "Dogleg step size: " << dogleg_step_norm_
279 VLOG(3) << "GaussNewton step size: " << dogleg_step_norm_
303 // the Gauss-Newton step point towards the same direction.
309 VLOG(3) << "Dogleg subspace step size (1D): " << dogleg_step_norm_
316 // For the positive semi-definite case, a traditional dogleg step
319 << "Taking traditional dogleg step instead.";
348 << "Taking a regular dogleg step instead.\n"
355 // Create the full step from the optimal 2d solution.
359 VLOG(3) << "Dogleg subspace step size: " << dogleg_step_norm_
464 // In the failure case, another step should be taken, such as the traditional
465 // dogleg step.
531 // Next time when a new Gauss-Newton step is requested, the
534 // When a step is declared successful, the multiplier is decreased
539 // reasonably good estimate of the Gauss-Newton step. This means
593 // The scaled Gauss-Newton step is D * GN:
647 // and the Gauss-Newton step are zero. In this case, the minimizer should
656 // Gradient and Gauss-Newton step coincide, so we lie on one of the