Lines Matching refs:mod
24 \def\mod{{\mathit\ mod\ }}
25 \renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
362 mp_div(&a, &b, &c, &d); /* c = [a/b], d = a mod b */
370 mp_div(&a, &b, &a, &c); /* a = [a/b], c = a mod b */
1277 as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$.
1280 a \equiv b \mbox{ (mod }c\mbox{)}
1281 \label{eqn:mod}
1329 * c and set c to 1...we want to compute a^3 mod b
1367 /* c now equals a^3 mod b */
1373 This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed.
1399 An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$
1411 example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by
1481 /* c now equals a^3 mod b */
1561 This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm. This function
1563 $X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that
1604 Performs a Fermat primality test to the base $b$. That is it computes $b^a \mbox{ mod }a$ and tests whether the value is
1650 want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime.
1814 Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.