Lines Matching refs:Matrix
26 * \brief Robust Cholesky decomposition of a matrix with pivoting
28 * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
33 * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
34 * is lower triangular with a unit diagonal and D is a diagonal matrix.
52 Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
60 typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
89 * This calculates the decomposition for the input \a matrix.
92 LDLT(const MatrixType& matrix)
93 : m_matrix(matrix.rows(), matrix.cols()),
94 m_transpositions(matrix.rows()),
95 m_temporary(matrix.rows()),
98 compute(matrix);
109 /** \returns a view of the upper triangular matrix U */
116 /** \returns a view of the lower triangular matrix L */
123 /** \returns the permutation matrix P as a transposition sequence.
131 /** \returns the coefficients of the diagonal matrix D */
138 /** \returns true if the matrix is positive (semidefinite) */
152 /** \returns true if the matrix is negative (semidefinite) */
167 * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
180 && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
196 LDLT& compute(const MatrixType& matrix);
201 /** \returns the internal LDLT decomposition matrix
219 * \c NumericalIssue if the matrix.appears to be negative.
285 // Finish early if the matrix is not full rank.
311 // partition the matrix:
338 // original matrix is not of full rank.
425 /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
523 * \param bAndX represents both the right-hand side matrix b and result x.
527 * This version avoids a copy when the right hand side matrix b is not
545 /** \returns the matrix represented by the decomposition,