Lines Matching defs:affine
76 * - #Affine: the transformation is stored as a (Dim+1)^2 matrix,
91 * Therefore, an affine transformation matrix M is shaped like this:
132 * \b Affine \b Matrix A (Dim)x(Dim+1):
154 * transformation of non homogeneous vectors by an affine transformation. In
200 /** type of read/write reference to the affine part of the transformation */
204 /** type of read reference to the affine part of the transformation */
218 enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) };
229 * If Mode==Affine, then the last row is set to [0 ... 0 1] */
233 if (int(Mode)==Affine)
300 // Affine | AffineCompact | Isometry = Projective
305 // Isometry = Affine | AffineCompact
306 EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
330 // So the only possibility is that OtherMode == Affine
376 /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
377 inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
378 /** \returns a writable expression of the Dim x HDim affine part of the transformation */
379 inline AffinePart affine() { return take_affine_part::run(m_matrix); }
394 * \li an affine transformation matrix of size Dim x Dim+1,
407 * \li an affine transformation matrix of size Dim x Dim+1,
417 * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
432 * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
533 inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry)> operator*(const UniformScaling<Scalar>& s) const
535 Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry),Options> res = *this;
602 * \returns the Dim x Dim linear part if the transformation is affine,
608 * \returns the Dim x Dim linear part if the transformation is affine,
615 * \returns the translation part if the transformation is affine,
621 * \returns the translation part if the transformation is affine,
652 typedef Transform<float,2,Affine> Affine2f;
654 typedef Transform<float,3,Affine> Affine3f;
656 typedef Transform<double,2,Affine> Affine2d;
658 typedef Transform<double,3,Affine> Affine3d;
710 * \warning this conversion might loss data if \c *this is not affine
856 affine() += other * m_matrix.row(Dim);
1109 * - #Projective if the transformation is not necessarily affine, i.e., if the
1111 * - #Affine if the last row can be assumed to be [0 ... 0 1]
1137 else if(hint&Affine)
1156 *** Specializations of take affine part ***
1196 transform->affine() = other;
1226 (LhsMode == (int)Affine || RhsMode == (int)Affine ) ? Affine :
1262 TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other;
1324 // affine matrix * T
1334 res.affine().noalias() = other * tr.matrix();
1340 // affine matrix * AffineCompact