Lines Matching full:inbounds
27 %x = getelementptr inbounds [3 x i8]* %a, i32 0, i32 0
36 %x = getelementptr inbounds [3 x i8]* %a, i32 0, i32 0
37 %y = getelementptr inbounds [3 x i8]* %a, i32 0, i32 0
71 %a = getelementptr inbounds %gept* %x, i64 0, i32 1
112 %first1 = getelementptr inbounds i8* %ptr, i32 0
113 %first2 = getelementptr inbounds i8* %first1, i32 1
114 %first3 = getelementptr inbounds i8* %first2, i32 2
115 %first4 = getelementptr inbounds i8* %first3, i32 4
116 %last1 = getelementptr inbounds i8* %first2, i32 48
117 %last2 = getelementptr inbounds i8* %last1, i32 8
118 %last3 = getelementptr inbounds i8* %last2, i32 -4
119 %last4 = getelementptr inbounds i8* %last3, i32 -4
132 %first1 = getelementptr inbounds i8* %ptr, i32 -2
133 %first2 = getelementptr inbounds i8* %first1, i32 44
134 %last1 = getelementptr inbounds i8* %ptr, i32 48
135 %last2 = getelementptr inbounds i8* %last1, i32 -6
148 %first1 = getelementptr inbounds i8* %ptr, i32 -2
149 %last1 = getelementptr inbounds i8* %ptr, i32 48
150 %last2 = getelementptr inbounds i8* %last1, i32 -6
161 %first1 = getelementptr inbounds i8* %ptr, i32 -2
162 %last1 = getelementptr inbounds i8* %ptr, i32 48
163 %last2 = getelementptr inbounds i8* %last1, i32 -6
170 ; We can prove this GEP is non-null because it is inbounds.
171 %x = getelementptr inbounds i8* %ptr, i32 1
181 %x = getelementptr inbounds { {}, i8 }* %ptr, i32 0, i32 1
190 ; would necessarily violate inbounds on one side or the other.
191 %x = getelementptr inbounds { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1
199 ; We can prove this GEP is non-null because it is inbounds and because we know
202 %x = getelementptr inbounds i8* %ptr, i32 %b
658 %1 = getelementptr inbounds { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx
712 ; We can prove this GEP is non-null because it is inbounds and the pointer
715 %x = getelementptr inbounds [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b