Home | History | Annotate | Download | only in versions

Lines Matching full:specify

177 href="{@docRoot}guide/topics/manifest/uses-sdk-element.html#target">{@code targetSdkVersion}</a> to "19" or higher, creating a sync with {@link android.content.ContentResolver#addPeriodicSync addPeriodicSync()} will perform your sync operations within a default flex interval of approximately 4% of the period you specify. For example, if your poll frequency is 24 hours, then your sync operation may occur within roughly a one-hour window of time each day, instead of at exactly the same time each day.</p>
179 <p>To specify your own flex interval for sync operations, you should begin using the new {@link android.content.ContentResolver#requestSync requestSync()} method. For more details, see the section below about <a href="#SyncAdapter">Sync Adapters</a>.</p>
195 <p>Android now includes a complete framework that allows users to print any document using a printer connected over Wi-Fi, Bluetooth, or other services. The system handles the transaction between an app that wants to print a document and the services that deliver print jobs to a printer. The {@link android.print} framework provides all the APIs necessary to specify a print document and deliver it to the system for printing. Which APIs you actually need for a given print job depends on your content.</p>
279 <p>You can enable adaptive playback by adding two keys to {@link android.media.MediaFormat} that specify the maximum resolution that your app requires from the codec: {@link android.media.MediaFormat#KEY_MAX_WIDTH} and {@link android.media.MediaFormat#KEY_MAX_HEIGHT}. With these added to your {@link android.media.MediaFormat}, pass the {@link android.media.MediaFormat} to your {@link android.media.MediaCodec} instance with {@link android.media.MediaCodec#configure configure()}.</p>
329 <li>Then specify the rating style by calling {@link android.media.MediaMetadataEditor#putObject putObject()} and passing it {@link android.media.MediaMetadataEditor#RATING_KEY_BY_USER} as the key and one of the above rating styles as the value.</li>
338 <p>You can also provide {@link android.widget.VideoView} with your WebVTT subtitle tracks using the {@link android.widget.VideoView#addSubtitleSource addSubtitleSource()} method. This method accepts an {@link java.io.InputStream} that carries the subtitle data and a {@link android.media.MediaFormat} object that specifies the format for the subtitle data, which you can specify using {@link android.media.MediaFormat#createSubtitleFormat createSubtitleFormat()}. These subtitles also appear over the video according to the user's preferences. </p>
363 <li>Specify the {@link android.view.ViewGroup} containing the UI components you want to change.</li>
364 <li>Specify the layout representing the end-result of the change (the next scene).</li>
365 <li>Specify the type of transition that should animate the layout change.</li>
375 specify one or more {@code &lt;transition>} tags that each specify a scene (a reference to a layout file) and the transition to apply when entering and/or exiting that scene. Then inflate this set of transitions using {@link android.transition.TransitionInflater#inflateTransitionManager inflateTransitionManager()}. Use the returned {@link android.transition.TransitionManager} to execute each transition with {@link android.transition.TransitionManager#transitionTo transitionTo()}, passing a {@link android.transition.Scene} that is represented by one of the {@code &lt;transition>} tags. You can also define sets of transitions programmatically with the {@link android.transition.TransitionManager} APIs.</p>
377 <p>When specifying a transition, you can use several predefined types defined by subclasses of {@link android.transition.Transition}, such as {@link android.transition.Fade} and {@link android.transition.ChangeBounds}. If you don't specify a transition type, the system uses {@link android.transition.AutoTransition} by default, which automatically fades, moves, and resizes views as necessary. Additionally, you can create custom transitions by extending any of these classes to perform the animations however you'd like. A custom transition can track any property changes you'd like, and create any animation you want to based on those changes. For example, you could provide a subclass of {@link android.transition.Transition} that listens for changes to the "rotation" property of a view then animate any changes.</p>
394 <p>New APIs for {@link android.graphics.Bitmap} allow similar reconfiguration for reuse outside of {@link android.graphics.BitmapFactory} (for manual bitmap generation or custom decoding logic). You can now set a bitmap?s dimensions with methods {@link android.graphics.Bitmap#setHeight setHeight()} and {@link android.graphics.Bitmap#setWidth setWidth()}, and specify specify a new {@link android.graphics.Bitmap.Config} with {@link android.graphics.Bitmap#setConfig setConfig()} without affecting the underlying bitmap allocation. The {@link android.graphics.Bitmap#reconfigure reconfigure()} method also provides a convenient way to combine these changes with one call.</p>
439 <p>The new {@link android.content.ContentResolver#requestSync requestSync()} method in {@link android.content.ContentResolver} simplifies some of the procedure for defining a sync request for your {@link android.content.ContentProvider} by encapsulating requests in the new {@link android.content.SyncRequest} object, which you can create with {@link android.content.SyncRequest.Builder}. The properties in {@link android.content.SyncRequest} provide the same functionality as the existing {@link android.content.ContentProvider} sync calls, but adds the ability to specify that a sync should be dropped if the network is metered, by enabling {@link android.content.SyncRequest.Builder#setDisallowMetered setDisallowMetered()}.</p>
473 <p>To better manage device power, the {@link android.hardware.SensorManager} APIs now allow you to specify the frequency at which you'd like the system to deliver batches of sensor events to your app. This doesn't reduce the number of actual sensor events available to your app for a given period of time, but instead reduces the frequency at which the system calls your {@link android.hardware.SensorEventListener} with sensor updates. That is, instead of delivering each event to your app the moment it occurs, the system saves up all the events that occur over a period of time, then delivers them to your app all at once.</p>
475 <p>To provide batching, the {@link android.hardware.SensorManager} class adds two new versions of the {@link android.hardware.SensorManager#registerListener(SensorEventListener, Sensor, int, int) registerListener()} method that allow you to specify the "maximum report latency." This new parameter specifies the maximum delay that your {@link android.hardware.SensorEventListener} will tolerate for delivery of new sensor events. For example, if you specify a batch latency of one minute, the system will deliver the recent set of batched events at an interval no longer than one minute by making consecutive calls to your {@link android.hardware.SensorEventListener#onSensorChanged onSensorChanged()} method&mdash;once for each event that was batched. The sensor events will never be delayed longer than your maximum report latency value, but may arrive sooner if other apps have requested a shorter latency for the same sensor.</p>