Lines Matching refs:yc
1952 # value of other. Write x = xc*10**xe and abs(y) = yc*10**ye, with xc
1953 # and yc positive integers not divisible by 10.
1981 # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
1982 # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
1990 # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
1992 # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
2002 yc, ye = y.int, y.exp
2003 while yc % 10 == 0:
2004 yc //= 10
2010 xe *= yc
2069 e = _decimal_lshift_exact(e * yc, ye)
2070 xe = _decimal_lshift_exact(xe * yc, ye)
2096 e = _decimal_lshift_exact(e * yc, ye)
2097 xe = _decimal_lshift_exact(xe * yc, ye)
2114 m, n = yc*10**ye, 1
2116 if xe != 0 and len(str(abs(yc*xe))) <= -ye:
2119 if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
2121 m, n = yc, 10**(-ye)
2324 yc, ye = y.int, y.exp
2326 yc = -yc
2332 coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
5782 def _dpower(xc, xe, yc, ye, p):
5783 """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5784 y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
5798 b = len(str(abs(yc))) + ye
5803 # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5806 pc = lxc*yc*10**shift
5808 pc = _div_nearest(lxc*yc, 10**-shift)
5813 if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1: