1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements C++ semantic analysis for scope specifiers. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/DeclTemplate.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/NestedNameSpecifier.h" 20 #include "clang/Basic/PartialDiagnostic.h" 21 #include "clang/Sema/DeclSpec.h" 22 #include "clang/Sema/Lookup.h" 23 #include "clang/Sema/Template.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/Support/raw_ostream.h" 26 using namespace clang; 27 28 /// \brief Find the current instantiation that associated with the given type. 29 static CXXRecordDecl *getCurrentInstantiationOf(QualType T, 30 DeclContext *CurContext) { 31 if (T.isNull()) 32 return 0; 33 34 const Type *Ty = T->getCanonicalTypeInternal().getTypePtr(); 35 if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { 36 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); 37 if (!Record->isDependentContext() || 38 Record->isCurrentInstantiation(CurContext)) 39 return Record; 40 41 return 0; 42 } else if (isa<InjectedClassNameType>(Ty)) 43 return cast<InjectedClassNameType>(Ty)->getDecl(); 44 else 45 return 0; 46 } 47 48 /// \brief Compute the DeclContext that is associated with the given type. 49 /// 50 /// \param T the type for which we are attempting to find a DeclContext. 51 /// 52 /// \returns the declaration context represented by the type T, 53 /// or NULL if the declaration context cannot be computed (e.g., because it is 54 /// dependent and not the current instantiation). 55 DeclContext *Sema::computeDeclContext(QualType T) { 56 if (!T->isDependentType()) 57 if (const TagType *Tag = T->getAs<TagType>()) 58 return Tag->getDecl(); 59 60 return ::getCurrentInstantiationOf(T, CurContext); 61 } 62 63 /// \brief Compute the DeclContext that is associated with the given 64 /// scope specifier. 65 /// 66 /// \param SS the C++ scope specifier as it appears in the source 67 /// 68 /// \param EnteringContext when true, we will be entering the context of 69 /// this scope specifier, so we can retrieve the declaration context of a 70 /// class template or class template partial specialization even if it is 71 /// not the current instantiation. 72 /// 73 /// \returns the declaration context represented by the scope specifier @p SS, 74 /// or NULL if the declaration context cannot be computed (e.g., because it is 75 /// dependent and not the current instantiation). 76 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS, 77 bool EnteringContext) { 78 if (!SS.isSet() || SS.isInvalid()) 79 return 0; 80 81 NestedNameSpecifier *NNS = SS.getScopeRep(); 82 if (NNS->isDependent()) { 83 // If this nested-name-specifier refers to the current 84 // instantiation, return its DeclContext. 85 if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS)) 86 return Record; 87 88 if (EnteringContext) { 89 const Type *NNSType = NNS->getAsType(); 90 if (!NNSType) { 91 return 0; 92 } 93 94 // Look through type alias templates, per C++0x [temp.dep.type]p1. 95 NNSType = Context.getCanonicalType(NNSType); 96 if (const TemplateSpecializationType *SpecType 97 = NNSType->getAs<TemplateSpecializationType>()) { 98 // We are entering the context of the nested name specifier, so try to 99 // match the nested name specifier to either a primary class template 100 // or a class template partial specialization. 101 if (ClassTemplateDecl *ClassTemplate 102 = dyn_cast_or_null<ClassTemplateDecl>( 103 SpecType->getTemplateName().getAsTemplateDecl())) { 104 QualType ContextType 105 = Context.getCanonicalType(QualType(SpecType, 0)); 106 107 // If the type of the nested name specifier is the same as the 108 // injected class name of the named class template, we're entering 109 // into that class template definition. 110 QualType Injected 111 = ClassTemplate->getInjectedClassNameSpecialization(); 112 if (Context.hasSameType(Injected, ContextType)) 113 return ClassTemplate->getTemplatedDecl(); 114 115 // If the type of the nested name specifier is the same as the 116 // type of one of the class template's class template partial 117 // specializations, we're entering into the definition of that 118 // class template partial specialization. 119 if (ClassTemplatePartialSpecializationDecl *PartialSpec 120 = ClassTemplate->findPartialSpecialization(ContextType)) 121 return PartialSpec; 122 } 123 } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) { 124 // The nested name specifier refers to a member of a class template. 125 return RecordT->getDecl(); 126 } 127 } 128 129 return 0; 130 } 131 132 switch (NNS->getKind()) { 133 case NestedNameSpecifier::Identifier: 134 llvm_unreachable("Dependent nested-name-specifier has no DeclContext"); 135 136 case NestedNameSpecifier::Namespace: 137 return NNS->getAsNamespace(); 138 139 case NestedNameSpecifier::NamespaceAlias: 140 return NNS->getAsNamespaceAlias()->getNamespace(); 141 142 case NestedNameSpecifier::TypeSpec: 143 case NestedNameSpecifier::TypeSpecWithTemplate: { 144 const TagType *Tag = NNS->getAsType()->getAs<TagType>(); 145 assert(Tag && "Non-tag type in nested-name-specifier"); 146 return Tag->getDecl(); 147 } 148 149 case NestedNameSpecifier::Global: 150 return Context.getTranslationUnitDecl(); 151 } 152 153 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 154 } 155 156 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) { 157 if (!SS.isSet() || SS.isInvalid()) 158 return false; 159 160 return SS.getScopeRep()->isDependent(); 161 } 162 163 /// \brief If the given nested name specifier refers to the current 164 /// instantiation, return the declaration that corresponds to that 165 /// current instantiation (C++0x [temp.dep.type]p1). 166 /// 167 /// \param NNS a dependent nested name specifier. 168 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) { 169 assert(getLangOpts().CPlusPlus && "Only callable in C++"); 170 assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed"); 171 172 if (!NNS->getAsType()) 173 return 0; 174 175 QualType T = QualType(NNS->getAsType(), 0); 176 return ::getCurrentInstantiationOf(T, CurContext); 177 } 178 179 /// \brief Require that the context specified by SS be complete. 180 /// 181 /// If SS refers to a type, this routine checks whether the type is 182 /// complete enough (or can be made complete enough) for name lookup 183 /// into the DeclContext. A type that is not yet completed can be 184 /// considered "complete enough" if it is a class/struct/union/enum 185 /// that is currently being defined. Or, if we have a type that names 186 /// a class template specialization that is not a complete type, we 187 /// will attempt to instantiate that class template. 188 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS, 189 DeclContext *DC) { 190 assert(DC != 0 && "given null context"); 191 192 TagDecl *tag = dyn_cast<TagDecl>(DC); 193 194 // If this is a dependent type, then we consider it complete. 195 if (!tag || tag->isDependentContext()) 196 return false; 197 198 // If we're currently defining this type, then lookup into the 199 // type is okay: don't complain that it isn't complete yet. 200 QualType type = Context.getTypeDeclType(tag); 201 const TagType *tagType = type->getAs<TagType>(); 202 if (tagType && tagType->isBeingDefined()) 203 return false; 204 205 SourceLocation loc = SS.getLastQualifierNameLoc(); 206 if (loc.isInvalid()) loc = SS.getRange().getBegin(); 207 208 // The type must be complete. 209 if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec, 210 SS.getRange())) { 211 SS.SetInvalid(SS.getRange()); 212 return true; 213 } 214 215 // Fixed enum types are complete, but they aren't valid as scopes 216 // until we see a definition, so awkwardly pull out this special 217 // case. 218 const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType); 219 if (!enumType || enumType->getDecl()->isCompleteDefinition()) 220 return false; 221 222 // Try to instantiate the definition, if this is a specialization of an 223 // enumeration temploid. 224 EnumDecl *ED = enumType->getDecl(); 225 if (EnumDecl *Pattern = ED->getInstantiatedFromMemberEnum()) { 226 MemberSpecializationInfo *MSI = ED->getMemberSpecializationInfo(); 227 if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) { 228 if (InstantiateEnum(loc, ED, Pattern, getTemplateInstantiationArgs(ED), 229 TSK_ImplicitInstantiation)) { 230 SS.SetInvalid(SS.getRange()); 231 return true; 232 } 233 return false; 234 } 235 } 236 237 Diag(loc, diag::err_incomplete_nested_name_spec) 238 << type << SS.getRange(); 239 SS.SetInvalid(SS.getRange()); 240 return true; 241 } 242 243 bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc, 244 CXXScopeSpec &SS) { 245 SS.MakeGlobal(Context, CCLoc); 246 return false; 247 } 248 249 /// \brief Determines whether the given declaration is an valid acceptable 250 /// result for name lookup of a nested-name-specifier. 251 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD) { 252 if (!SD) 253 return false; 254 255 // Namespace and namespace aliases are fine. 256 if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD)) 257 return true; 258 259 if (!isa<TypeDecl>(SD)) 260 return false; 261 262 // Determine whether we have a class (or, in C++11, an enum) or 263 // a typedef thereof. If so, build the nested-name-specifier. 264 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD)); 265 if (T->isDependentType()) 266 return true; 267 else if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) { 268 if (TD->getUnderlyingType()->isRecordType() || 269 (Context.getLangOpts().CPlusPlus11 && 270 TD->getUnderlyingType()->isEnumeralType())) 271 return true; 272 } else if (isa<RecordDecl>(SD) || 273 (Context.getLangOpts().CPlusPlus11 && isa<EnumDecl>(SD))) 274 return true; 275 276 return false; 277 } 278 279 /// \brief If the given nested-name-specifier begins with a bare identifier 280 /// (e.g., Base::), perform name lookup for that identifier as a 281 /// nested-name-specifier within the given scope, and return the result of that 282 /// name lookup. 283 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) { 284 if (!S || !NNS) 285 return 0; 286 287 while (NNS->getPrefix()) 288 NNS = NNS->getPrefix(); 289 290 if (NNS->getKind() != NestedNameSpecifier::Identifier) 291 return 0; 292 293 LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(), 294 LookupNestedNameSpecifierName); 295 LookupName(Found, S); 296 assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet"); 297 298 if (!Found.isSingleResult()) 299 return 0; 300 301 NamedDecl *Result = Found.getFoundDecl(); 302 if (isAcceptableNestedNameSpecifier(Result)) 303 return Result; 304 305 return 0; 306 } 307 308 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS, 309 SourceLocation IdLoc, 310 IdentifierInfo &II, 311 ParsedType ObjectTypePtr) { 312 QualType ObjectType = GetTypeFromParser(ObjectTypePtr); 313 LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName); 314 315 // Determine where to perform name lookup 316 DeclContext *LookupCtx = 0; 317 bool isDependent = false; 318 if (!ObjectType.isNull()) { 319 // This nested-name-specifier occurs in a member access expression, e.g., 320 // x->B::f, and we are looking into the type of the object. 321 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 322 LookupCtx = computeDeclContext(ObjectType); 323 isDependent = ObjectType->isDependentType(); 324 } else if (SS.isSet()) { 325 // This nested-name-specifier occurs after another nested-name-specifier, 326 // so long into the context associated with the prior nested-name-specifier. 327 LookupCtx = computeDeclContext(SS, false); 328 isDependent = isDependentScopeSpecifier(SS); 329 Found.setContextRange(SS.getRange()); 330 } 331 332 if (LookupCtx) { 333 // Perform "qualified" name lookup into the declaration context we 334 // computed, which is either the type of the base of a member access 335 // expression or the declaration context associated with a prior 336 // nested-name-specifier. 337 338 // The declaration context must be complete. 339 if (!LookupCtx->isDependentContext() && 340 RequireCompleteDeclContext(SS, LookupCtx)) 341 return false; 342 343 LookupQualifiedName(Found, LookupCtx); 344 } else if (isDependent) { 345 return false; 346 } else { 347 LookupName(Found, S); 348 } 349 Found.suppressDiagnostics(); 350 351 if (NamedDecl *ND = Found.getAsSingle<NamedDecl>()) 352 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND); 353 354 return false; 355 } 356 357 namespace { 358 359 // Callback to only accept typo corrections that can be a valid C++ member 360 // intializer: either a non-static field member or a base class. 361 class NestedNameSpecifierValidatorCCC : public CorrectionCandidateCallback { 362 public: 363 explicit NestedNameSpecifierValidatorCCC(Sema &SRef) 364 : SRef(SRef) {} 365 366 virtual bool ValidateCandidate(const TypoCorrection &candidate) { 367 return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl()); 368 } 369 370 private: 371 Sema &SRef; 372 }; 373 374 } 375 376 /// \brief Build a new nested-name-specifier for "identifier::", as described 377 /// by ActOnCXXNestedNameSpecifier. 378 /// 379 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in 380 /// that it contains an extra parameter \p ScopeLookupResult, which provides 381 /// the result of name lookup within the scope of the nested-name-specifier 382 /// that was computed at template definition time. 383 /// 384 /// If ErrorRecoveryLookup is true, then this call is used to improve error 385 /// recovery. This means that it should not emit diagnostics, it should 386 /// just return true on failure. It also means it should only return a valid 387 /// scope if it *knows* that the result is correct. It should not return in a 388 /// dependent context, for example. Nor will it extend \p SS with the scope 389 /// specifier. 390 bool Sema::BuildCXXNestedNameSpecifier(Scope *S, 391 IdentifierInfo &Identifier, 392 SourceLocation IdentifierLoc, 393 SourceLocation CCLoc, 394 QualType ObjectType, 395 bool EnteringContext, 396 CXXScopeSpec &SS, 397 NamedDecl *ScopeLookupResult, 398 bool ErrorRecoveryLookup) { 399 LookupResult Found(*this, &Identifier, IdentifierLoc, 400 LookupNestedNameSpecifierName); 401 402 // Determine where to perform name lookup 403 DeclContext *LookupCtx = 0; 404 bool isDependent = false; 405 if (!ObjectType.isNull()) { 406 // This nested-name-specifier occurs in a member access expression, e.g., 407 // x->B::f, and we are looking into the type of the object. 408 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist"); 409 LookupCtx = computeDeclContext(ObjectType); 410 isDependent = ObjectType->isDependentType(); 411 } else if (SS.isSet()) { 412 // This nested-name-specifier occurs after another nested-name-specifier, 413 // so look into the context associated with the prior nested-name-specifier. 414 LookupCtx = computeDeclContext(SS, EnteringContext); 415 isDependent = isDependentScopeSpecifier(SS); 416 Found.setContextRange(SS.getRange()); 417 } 418 419 420 bool ObjectTypeSearchedInScope = false; 421 if (LookupCtx) { 422 // Perform "qualified" name lookup into the declaration context we 423 // computed, which is either the type of the base of a member access 424 // expression or the declaration context associated with a prior 425 // nested-name-specifier. 426 427 // The declaration context must be complete. 428 if (!LookupCtx->isDependentContext() && 429 RequireCompleteDeclContext(SS, LookupCtx)) 430 return true; 431 432 LookupQualifiedName(Found, LookupCtx); 433 434 if (!ObjectType.isNull() && Found.empty()) { 435 // C++ [basic.lookup.classref]p4: 436 // If the id-expression in a class member access is a qualified-id of 437 // the form 438 // 439 // class-name-or-namespace-name::... 440 // 441 // the class-name-or-namespace-name following the . or -> operator is 442 // looked up both in the context of the entire postfix-expression and in 443 // the scope of the class of the object expression. If the name is found 444 // only in the scope of the class of the object expression, the name 445 // shall refer to a class-name. If the name is found only in the 446 // context of the entire postfix-expression, the name shall refer to a 447 // class-name or namespace-name. [...] 448 // 449 // Qualified name lookup into a class will not find a namespace-name, 450 // so we do not need to diagnose that case specifically. However, 451 // this qualified name lookup may find nothing. In that case, perform 452 // unqualified name lookup in the given scope (if available) or 453 // reconstruct the result from when name lookup was performed at template 454 // definition time. 455 if (S) 456 LookupName(Found, S); 457 else if (ScopeLookupResult) 458 Found.addDecl(ScopeLookupResult); 459 460 ObjectTypeSearchedInScope = true; 461 } 462 } else if (!isDependent) { 463 // Perform unqualified name lookup in the current scope. 464 LookupName(Found, S); 465 } 466 467 // If we performed lookup into a dependent context and did not find anything, 468 // that's fine: just build a dependent nested-name-specifier. 469 if (Found.empty() && isDependent && 470 !(LookupCtx && LookupCtx->isRecord() && 471 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() || 472 !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) { 473 // Don't speculate if we're just trying to improve error recovery. 474 if (ErrorRecoveryLookup) 475 return true; 476 477 // We were not able to compute the declaration context for a dependent 478 // base object type or prior nested-name-specifier, so this 479 // nested-name-specifier refers to an unknown specialization. Just build 480 // a dependent nested-name-specifier. 481 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc); 482 return false; 483 } 484 485 // FIXME: Deal with ambiguities cleanly. 486 487 if (Found.empty() && !ErrorRecoveryLookup) { 488 // We haven't found anything, and we're not recovering from a 489 // different kind of error, so look for typos. 490 DeclarationName Name = Found.getLookupName(); 491 NestedNameSpecifierValidatorCCC Validator(*this); 492 TypoCorrection Corrected; 493 Found.clear(); 494 if ((Corrected = CorrectTypo(Found.getLookupNameInfo(), 495 Found.getLookupKind(), S, &SS, Validator, 496 LookupCtx, EnteringContext))) { 497 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 498 std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts())); 499 bool droppedSpecifier = Corrected.WillReplaceSpecifier() && 500 Name.getAsString() == CorrectedStr; 501 if (LookupCtx) 502 Diag(Found.getNameLoc(), diag::err_no_member_suggest) 503 << Name << LookupCtx << droppedSpecifier << CorrectedQuotedStr 504 << SS.getRange() 505 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(), 506 CorrectedStr); 507 else 508 Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest) 509 << Name << CorrectedQuotedStr 510 << FixItHint::CreateReplacement(Corrected.getCorrectionRange(), 511 CorrectedStr); 512 513 if (NamedDecl *ND = Corrected.getCorrectionDecl()) { 514 Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr; 515 Found.addDecl(ND); 516 } 517 Found.setLookupName(Corrected.getCorrection()); 518 } else { 519 Found.setLookupName(&Identifier); 520 } 521 } 522 523 NamedDecl *SD = Found.getAsSingle<NamedDecl>(); 524 if (isAcceptableNestedNameSpecifier(SD)) { 525 if (!ObjectType.isNull() && !ObjectTypeSearchedInScope && 526 !getLangOpts().CPlusPlus11) { 527 // C++03 [basic.lookup.classref]p4: 528 // [...] If the name is found in both contexts, the 529 // class-name-or-namespace-name shall refer to the same entity. 530 // 531 // We already found the name in the scope of the object. Now, look 532 // into the current scope (the scope of the postfix-expression) to 533 // see if we can find the same name there. As above, if there is no 534 // scope, reconstruct the result from the template instantiation itself. 535 // 536 // Note that C++11 does *not* perform this redundant lookup. 537 NamedDecl *OuterDecl; 538 if (S) { 539 LookupResult FoundOuter(*this, &Identifier, IdentifierLoc, 540 LookupNestedNameSpecifierName); 541 LookupName(FoundOuter, S); 542 OuterDecl = FoundOuter.getAsSingle<NamedDecl>(); 543 } else 544 OuterDecl = ScopeLookupResult; 545 546 if (isAcceptableNestedNameSpecifier(OuterDecl) && 547 OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() && 548 (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) || 549 !Context.hasSameType( 550 Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)), 551 Context.getTypeDeclType(cast<TypeDecl>(SD))))) { 552 if (ErrorRecoveryLookup) 553 return true; 554 555 Diag(IdentifierLoc, 556 diag::err_nested_name_member_ref_lookup_ambiguous) 557 << &Identifier; 558 Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type) 559 << ObjectType; 560 Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope); 561 562 // Fall through so that we'll pick the name we found in the object 563 // type, since that's probably what the user wanted anyway. 564 } 565 } 566 567 // If we're just performing this lookup for error-recovery purposes, 568 // don't extend the nested-name-specifier. Just return now. 569 if (ErrorRecoveryLookup) 570 return false; 571 572 if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) { 573 SS.Extend(Context, Namespace, IdentifierLoc, CCLoc); 574 return false; 575 } 576 577 if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) { 578 SS.Extend(Context, Alias, IdentifierLoc, CCLoc); 579 return false; 580 } 581 582 QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD)); 583 TypeLocBuilder TLB; 584 if (isa<InjectedClassNameType>(T)) { 585 InjectedClassNameTypeLoc InjectedTL 586 = TLB.push<InjectedClassNameTypeLoc>(T); 587 InjectedTL.setNameLoc(IdentifierLoc); 588 } else if (isa<RecordType>(T)) { 589 RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T); 590 RecordTL.setNameLoc(IdentifierLoc); 591 } else if (isa<TypedefType>(T)) { 592 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T); 593 TypedefTL.setNameLoc(IdentifierLoc); 594 } else if (isa<EnumType>(T)) { 595 EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T); 596 EnumTL.setNameLoc(IdentifierLoc); 597 } else if (isa<TemplateTypeParmType>(T)) { 598 TemplateTypeParmTypeLoc TemplateTypeTL 599 = TLB.push<TemplateTypeParmTypeLoc>(T); 600 TemplateTypeTL.setNameLoc(IdentifierLoc); 601 } else if (isa<UnresolvedUsingType>(T)) { 602 UnresolvedUsingTypeLoc UnresolvedTL 603 = TLB.push<UnresolvedUsingTypeLoc>(T); 604 UnresolvedTL.setNameLoc(IdentifierLoc); 605 } else if (isa<SubstTemplateTypeParmType>(T)) { 606 SubstTemplateTypeParmTypeLoc TL 607 = TLB.push<SubstTemplateTypeParmTypeLoc>(T); 608 TL.setNameLoc(IdentifierLoc); 609 } else if (isa<SubstTemplateTypeParmPackType>(T)) { 610 SubstTemplateTypeParmPackTypeLoc TL 611 = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T); 612 TL.setNameLoc(IdentifierLoc); 613 } else { 614 llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier"); 615 } 616 617 if (T->isEnumeralType()) 618 Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec); 619 620 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T), 621 CCLoc); 622 return false; 623 } 624 625 // Otherwise, we have an error case. If we don't want diagnostics, just 626 // return an error now. 627 if (ErrorRecoveryLookup) 628 return true; 629 630 // If we didn't find anything during our lookup, try again with 631 // ordinary name lookup, which can help us produce better error 632 // messages. 633 if (Found.empty()) { 634 Found.clear(LookupOrdinaryName); 635 LookupName(Found, S); 636 } 637 638 // In Microsoft mode, if we are within a templated function and we can't 639 // resolve Identifier, then extend the SS with Identifier. This will have 640 // the effect of resolving Identifier during template instantiation. 641 // The goal is to be able to resolve a function call whose 642 // nested-name-specifier is located inside a dependent base class. 643 // Example: 644 // 645 // class C { 646 // public: 647 // static void foo2() { } 648 // }; 649 // template <class T> class A { public: typedef C D; }; 650 // 651 // template <class T> class B : public A<T> { 652 // public: 653 // void foo() { D::foo2(); } 654 // }; 655 if (getLangOpts().MicrosoftExt) { 656 DeclContext *DC = LookupCtx ? LookupCtx : CurContext; 657 if (DC->isDependentContext() && DC->isFunctionOrMethod()) { 658 SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc); 659 return false; 660 } 661 } 662 663 unsigned DiagID; 664 if (!Found.empty()) 665 DiagID = diag::err_expected_class_or_namespace; 666 else if (SS.isSet()) { 667 Diag(IdentifierLoc, diag::err_no_member) 668 << &Identifier << LookupCtx << SS.getRange(); 669 return true; 670 } else 671 DiagID = diag::err_undeclared_var_use; 672 673 if (SS.isSet()) 674 Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange(); 675 else 676 Diag(IdentifierLoc, DiagID) << &Identifier; 677 678 return true; 679 } 680 681 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, 682 IdentifierInfo &Identifier, 683 SourceLocation IdentifierLoc, 684 SourceLocation CCLoc, 685 ParsedType ObjectType, 686 bool EnteringContext, 687 CXXScopeSpec &SS) { 688 if (SS.isInvalid()) 689 return true; 690 691 return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc, 692 GetTypeFromParser(ObjectType), 693 EnteringContext, SS, 694 /*ScopeLookupResult=*/0, false); 695 } 696 697 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS, 698 const DeclSpec &DS, 699 SourceLocation ColonColonLoc) { 700 if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error) 701 return true; 702 703 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype); 704 705 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 706 if (!T->isDependentType() && !T->getAs<TagType>()) { 707 Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class) 708 << T << getLangOpts().CPlusPlus; 709 return true; 710 } 711 712 TypeLocBuilder TLB; 713 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 714 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 715 SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T), 716 ColonColonLoc); 717 return false; 718 } 719 720 /// IsInvalidUnlessNestedName - This method is used for error recovery 721 /// purposes to determine whether the specified identifier is only valid as 722 /// a nested name specifier, for example a namespace name. It is 723 /// conservatively correct to always return false from this method. 724 /// 725 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier. 726 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS, 727 IdentifierInfo &Identifier, 728 SourceLocation IdentifierLoc, 729 SourceLocation ColonLoc, 730 ParsedType ObjectType, 731 bool EnteringContext) { 732 if (SS.isInvalid()) 733 return false; 734 735 return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc, 736 GetTypeFromParser(ObjectType), 737 EnteringContext, SS, 738 /*ScopeLookupResult=*/0, true); 739 } 740 741 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, 742 CXXScopeSpec &SS, 743 SourceLocation TemplateKWLoc, 744 TemplateTy Template, 745 SourceLocation TemplateNameLoc, 746 SourceLocation LAngleLoc, 747 ASTTemplateArgsPtr TemplateArgsIn, 748 SourceLocation RAngleLoc, 749 SourceLocation CCLoc, 750 bool EnteringContext) { 751 if (SS.isInvalid()) 752 return true; 753 754 // Translate the parser's template argument list in our AST format. 755 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); 756 translateTemplateArguments(TemplateArgsIn, TemplateArgs); 757 758 if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){ 759 // Handle a dependent template specialization for which we cannot resolve 760 // the template name. 761 assert(DTN->getQualifier() == SS.getScopeRep()); 762 QualType T = Context.getDependentTemplateSpecializationType(ETK_None, 763 DTN->getQualifier(), 764 DTN->getIdentifier(), 765 TemplateArgs); 766 767 // Create source-location information for this type. 768 TypeLocBuilder Builder; 769 DependentTemplateSpecializationTypeLoc SpecTL 770 = Builder.push<DependentTemplateSpecializationTypeLoc>(T); 771 SpecTL.setElaboratedKeywordLoc(SourceLocation()); 772 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); 773 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 774 SpecTL.setTemplateNameLoc(TemplateNameLoc); 775 SpecTL.setLAngleLoc(LAngleLoc); 776 SpecTL.setRAngleLoc(RAngleLoc); 777 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 778 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 779 780 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T), 781 CCLoc); 782 return false; 783 } 784 785 786 if (Template.get().getAsOverloadedTemplate() || 787 isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) { 788 SourceRange R(TemplateNameLoc, RAngleLoc); 789 if (SS.getRange().isValid()) 790 R.setBegin(SS.getRange().getBegin()); 791 792 Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier) 793 << Template.get() << R; 794 NoteAllFoundTemplates(Template.get()); 795 return true; 796 } 797 798 // We were able to resolve the template name to an actual template. 799 // Build an appropriate nested-name-specifier. 800 QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc, 801 TemplateArgs); 802 if (T.isNull()) 803 return true; 804 805 // Alias template specializations can produce types which are not valid 806 // nested name specifiers. 807 if (!T->isDependentType() && !T->getAs<TagType>()) { 808 Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T; 809 NoteAllFoundTemplates(Template.get()); 810 return true; 811 } 812 813 // Provide source-location information for the template specialization type. 814 TypeLocBuilder Builder; 815 TemplateSpecializationTypeLoc SpecTL 816 = Builder.push<TemplateSpecializationTypeLoc>(T); 817 SpecTL.setTemplateKeywordLoc(TemplateKWLoc); 818 SpecTL.setTemplateNameLoc(TemplateNameLoc); 819 SpecTL.setLAngleLoc(LAngleLoc); 820 SpecTL.setRAngleLoc(RAngleLoc); 821 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 822 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); 823 824 825 SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T), 826 CCLoc); 827 return false; 828 } 829 830 namespace { 831 /// \brief A structure that stores a nested-name-specifier annotation, 832 /// including both the nested-name-specifier 833 struct NestedNameSpecifierAnnotation { 834 NestedNameSpecifier *NNS; 835 }; 836 } 837 838 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) { 839 if (SS.isEmpty() || SS.isInvalid()) 840 return 0; 841 842 void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) + 843 SS.location_size()), 844 llvm::alignOf<NestedNameSpecifierAnnotation>()); 845 NestedNameSpecifierAnnotation *Annotation 846 = new (Mem) NestedNameSpecifierAnnotation; 847 Annotation->NNS = SS.getScopeRep(); 848 memcpy(Annotation + 1, SS.location_data(), SS.location_size()); 849 return Annotation; 850 } 851 852 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr, 853 SourceRange AnnotationRange, 854 CXXScopeSpec &SS) { 855 if (!AnnotationPtr) { 856 SS.SetInvalid(AnnotationRange); 857 return; 858 } 859 860 NestedNameSpecifierAnnotation *Annotation 861 = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr); 862 SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1)); 863 } 864 865 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) { 866 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); 867 868 NestedNameSpecifier *Qualifier = SS.getScopeRep(); 869 870 // There are only two places a well-formed program may qualify a 871 // declarator: first, when defining a namespace or class member 872 // out-of-line, and second, when naming an explicitly-qualified 873 // friend function. The latter case is governed by 874 // C++03 [basic.lookup.unqual]p10: 875 // In a friend declaration naming a member function, a name used 876 // in the function declarator and not part of a template-argument 877 // in a template-id is first looked up in the scope of the member 878 // function's class. If it is not found, or if the name is part of 879 // a template-argument in a template-id, the look up is as 880 // described for unqualified names in the definition of the class 881 // granting friendship. 882 // i.e. we don't push a scope unless it's a class member. 883 884 switch (Qualifier->getKind()) { 885 case NestedNameSpecifier::Global: 886 case NestedNameSpecifier::Namespace: 887 case NestedNameSpecifier::NamespaceAlias: 888 // These are always namespace scopes. We never want to enter a 889 // namespace scope from anything but a file context. 890 return CurContext->getRedeclContext()->isFileContext(); 891 892 case NestedNameSpecifier::Identifier: 893 case NestedNameSpecifier::TypeSpec: 894 case NestedNameSpecifier::TypeSpecWithTemplate: 895 // These are never namespace scopes. 896 return true; 897 } 898 899 llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); 900 } 901 902 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global 903 /// scope or nested-name-specifier) is parsed, part of a declarator-id. 904 /// After this method is called, according to [C++ 3.4.3p3], names should be 905 /// looked up in the declarator-id's scope, until the declarator is parsed and 906 /// ActOnCXXExitDeclaratorScope is called. 907 /// The 'SS' should be a non-empty valid CXXScopeSpec. 908 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) { 909 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); 910 911 if (SS.isInvalid()) return true; 912 913 DeclContext *DC = computeDeclContext(SS, true); 914 if (!DC) return true; 915 916 // Before we enter a declarator's context, we need to make sure that 917 // it is a complete declaration context. 918 if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC)) 919 return true; 920 921 EnterDeclaratorContext(S, DC); 922 923 // Rebuild the nested name specifier for the new scope. 924 if (DC->isDependentContext()) 925 RebuildNestedNameSpecifierInCurrentInstantiation(SS); 926 927 return false; 928 } 929 930 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously 931 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same 932 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well. 933 /// Used to indicate that names should revert to being looked up in the 934 /// defining scope. 935 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) { 936 assert(SS.isSet() && "Parser passed invalid CXXScopeSpec."); 937 if (SS.isInvalid()) 938 return; 939 assert(!SS.isInvalid() && computeDeclContext(SS, true) && 940 "exiting declarator scope we never really entered"); 941 ExitDeclaratorContext(S); 942 } 943