1 //===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for inline asm statements. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "clang/AST/RecordLayout.h" 16 #include "clang/AST/TypeLoc.h" 17 #include "clang/Basic/TargetInfo.h" 18 #include "clang/Lex/Preprocessor.h" 19 #include "clang/Sema/Initialization.h" 20 #include "clang/Sema/Lookup.h" 21 #include "clang/Sema/Scope.h" 22 #include "clang/Sema/ScopeInfo.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/BitVector.h" 25 using namespace clang; 26 using namespace sema; 27 28 /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently 29 /// ignore "noop" casts in places where an lvalue is required by an inline asm. 30 /// We emulate this behavior when -fheinous-gnu-extensions is specified, but 31 /// provide a strong guidance to not use it. 32 /// 33 /// This method checks to see if the argument is an acceptable l-value and 34 /// returns false if it is a case we can handle. 35 static bool CheckAsmLValue(const Expr *E, Sema &S) { 36 // Type dependent expressions will be checked during instantiation. 37 if (E->isTypeDependent()) 38 return false; 39 40 if (E->isLValue()) 41 return false; // Cool, this is an lvalue. 42 43 // Okay, this is not an lvalue, but perhaps it is the result of a cast that we 44 // are supposed to allow. 45 const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); 46 if (E != E2 && E2->isLValue()) { 47 if (!S.getLangOpts().HeinousExtensions) 48 S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) 49 << E->getSourceRange(); 50 else 51 S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) 52 << E->getSourceRange(); 53 // Accept, even if we emitted an error diagnostic. 54 return false; 55 } 56 57 // None of the above, just randomly invalid non-lvalue. 58 return true; 59 } 60 61 /// isOperandMentioned - Return true if the specified operand # is mentioned 62 /// anywhere in the decomposed asm string. 63 static bool isOperandMentioned(unsigned OpNo, 64 ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { 65 for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { 66 const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; 67 if (!Piece.isOperand()) continue; 68 69 // If this is a reference to the input and if the input was the smaller 70 // one, then we have to reject this asm. 71 if (Piece.getOperandNo() == OpNo) 72 return true; 73 } 74 return false; 75 } 76 77 StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, 78 bool IsVolatile, unsigned NumOutputs, 79 unsigned NumInputs, IdentifierInfo **Names, 80 MultiExprArg constraints, MultiExprArg Exprs, 81 Expr *asmString, MultiExprArg clobbers, 82 SourceLocation RParenLoc) { 83 unsigned NumClobbers = clobbers.size(); 84 StringLiteral **Constraints = 85 reinterpret_cast<StringLiteral**>(constraints.data()); 86 StringLiteral *AsmString = cast<StringLiteral>(asmString); 87 StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); 88 89 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 90 91 // The parser verifies that there is a string literal here. 92 if (!AsmString->isAscii()) 93 return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) 94 << AsmString->getSourceRange()); 95 96 for (unsigned i = 0; i != NumOutputs; i++) { 97 StringLiteral *Literal = Constraints[i]; 98 if (!Literal->isAscii()) 99 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) 100 << Literal->getSourceRange()); 101 102 StringRef OutputName; 103 if (Names[i]) 104 OutputName = Names[i]->getName(); 105 106 TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); 107 if (!Context.getTargetInfo().validateOutputConstraint(Info)) 108 return StmtError(Diag(Literal->getLocStart(), 109 diag::err_asm_invalid_output_constraint) 110 << Info.getConstraintStr()); 111 112 // Check that the output exprs are valid lvalues. 113 Expr *OutputExpr = Exprs[i]; 114 if (CheckAsmLValue(OutputExpr, *this)) 115 return StmtError(Diag(OutputExpr->getLocStart(), 116 diag::err_asm_invalid_lvalue_in_output) 117 << OutputExpr->getSourceRange()); 118 119 if (RequireCompleteType(OutputExpr->getLocStart(), Exprs[i]->getType(), 120 diag::err_dereference_incomplete_type)) 121 return StmtError(); 122 123 OutputConstraintInfos.push_back(Info); 124 } 125 126 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 127 128 for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { 129 StringLiteral *Literal = Constraints[i]; 130 if (!Literal->isAscii()) 131 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) 132 << Literal->getSourceRange()); 133 134 StringRef InputName; 135 if (Names[i]) 136 InputName = Names[i]->getName(); 137 138 TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); 139 if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(), 140 NumOutputs, Info)) { 141 return StmtError(Diag(Literal->getLocStart(), 142 diag::err_asm_invalid_input_constraint) 143 << Info.getConstraintStr()); 144 } 145 146 Expr *InputExpr = Exprs[i]; 147 148 // Only allow void types for memory constraints. 149 if (Info.allowsMemory() && !Info.allowsRegister()) { 150 if (CheckAsmLValue(InputExpr, *this)) 151 return StmtError(Diag(InputExpr->getLocStart(), 152 diag::err_asm_invalid_lvalue_in_input) 153 << Info.getConstraintStr() 154 << InputExpr->getSourceRange()); 155 } 156 157 if (Info.allowsRegister()) { 158 if (InputExpr->getType()->isVoidType()) { 159 return StmtError(Diag(InputExpr->getLocStart(), 160 diag::err_asm_invalid_type_in_input) 161 << InputExpr->getType() << Info.getConstraintStr() 162 << InputExpr->getSourceRange()); 163 } 164 } 165 166 ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); 167 if (Result.isInvalid()) 168 return StmtError(); 169 170 Exprs[i] = Result.take(); 171 InputConstraintInfos.push_back(Info); 172 173 const Type *Ty = Exprs[i]->getType().getTypePtr(); 174 if (Ty->isDependentType()) 175 continue; 176 177 if (!Ty->isVoidType() || !Info.allowsMemory()) 178 if (RequireCompleteType(InputExpr->getLocStart(), Exprs[i]->getType(), 179 diag::err_dereference_incomplete_type)) 180 return StmtError(); 181 182 unsigned Size = Context.getTypeSize(Ty); 183 if (!Context.getTargetInfo().validateInputSize(Literal->getString(), 184 Size)) 185 return StmtError(Diag(InputExpr->getLocStart(), 186 diag::err_asm_invalid_input_size) 187 << Info.getConstraintStr()); 188 } 189 190 // Check that the clobbers are valid. 191 for (unsigned i = 0; i != NumClobbers; i++) { 192 StringLiteral *Literal = Clobbers[i]; 193 if (!Literal->isAscii()) 194 return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) 195 << Literal->getSourceRange()); 196 197 StringRef Clobber = Literal->getString(); 198 199 if (!Context.getTargetInfo().isValidClobber(Clobber)) 200 return StmtError(Diag(Literal->getLocStart(), 201 diag::err_asm_unknown_register_name) << Clobber); 202 } 203 204 GCCAsmStmt *NS = 205 new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, 206 NumInputs, Names, Constraints, Exprs.data(), 207 AsmString, NumClobbers, Clobbers, RParenLoc); 208 // Validate the asm string, ensuring it makes sense given the operands we 209 // have. 210 SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; 211 unsigned DiagOffs; 212 if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { 213 Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) 214 << AsmString->getSourceRange(); 215 return StmtError(); 216 } 217 218 // Validate constraints and modifiers. 219 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 220 GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; 221 if (!Piece.isOperand()) continue; 222 223 // Look for the correct constraint index. 224 unsigned Idx = 0; 225 unsigned ConstraintIdx = 0; 226 for (unsigned i = 0, e = NS->getNumOutputs(); i != e; ++i, ++ConstraintIdx) { 227 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 228 if (Idx == Piece.getOperandNo()) 229 break; 230 ++Idx; 231 232 if (Info.isReadWrite()) { 233 if (Idx == Piece.getOperandNo()) 234 break; 235 ++Idx; 236 } 237 } 238 239 for (unsigned i = 0, e = NS->getNumInputs(); i != e; ++i, ++ConstraintIdx) { 240 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 241 if (Idx == Piece.getOperandNo()) 242 break; 243 ++Idx; 244 245 if (Info.isReadWrite()) { 246 if (Idx == Piece.getOperandNo()) 247 break; 248 ++Idx; 249 } 250 } 251 252 // Now that we have the right indexes go ahead and check. 253 StringLiteral *Literal = Constraints[ConstraintIdx]; 254 const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); 255 if (Ty->isDependentType() || Ty->isIncompleteType()) 256 continue; 257 258 unsigned Size = Context.getTypeSize(Ty); 259 if (!Context.getTargetInfo() 260 .validateConstraintModifier(Literal->getString(), Piece.getModifier(), 261 Size)) 262 Diag(Exprs[ConstraintIdx]->getLocStart(), 263 diag::warn_asm_mismatched_size_modifier); 264 } 265 266 // Validate tied input operands for type mismatches. 267 for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { 268 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 269 270 // If this is a tied constraint, verify that the output and input have 271 // either exactly the same type, or that they are int/ptr operands with the 272 // same size (int/long, int*/long, are ok etc). 273 if (!Info.hasTiedOperand()) continue; 274 275 unsigned TiedTo = Info.getTiedOperand(); 276 unsigned InputOpNo = i+NumOutputs; 277 Expr *OutputExpr = Exprs[TiedTo]; 278 Expr *InputExpr = Exprs[InputOpNo]; 279 280 if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) 281 continue; 282 283 QualType InTy = InputExpr->getType(); 284 QualType OutTy = OutputExpr->getType(); 285 if (Context.hasSameType(InTy, OutTy)) 286 continue; // All types can be tied to themselves. 287 288 // Decide if the input and output are in the same domain (integer/ptr or 289 // floating point. 290 enum AsmDomain { 291 AD_Int, AD_FP, AD_Other 292 } InputDomain, OutputDomain; 293 294 if (InTy->isIntegerType() || InTy->isPointerType()) 295 InputDomain = AD_Int; 296 else if (InTy->isRealFloatingType()) 297 InputDomain = AD_FP; 298 else 299 InputDomain = AD_Other; 300 301 if (OutTy->isIntegerType() || OutTy->isPointerType()) 302 OutputDomain = AD_Int; 303 else if (OutTy->isRealFloatingType()) 304 OutputDomain = AD_FP; 305 else 306 OutputDomain = AD_Other; 307 308 // They are ok if they are the same size and in the same domain. This 309 // allows tying things like: 310 // void* to int* 311 // void* to int if they are the same size. 312 // double to long double if they are the same size. 313 // 314 uint64_t OutSize = Context.getTypeSize(OutTy); 315 uint64_t InSize = Context.getTypeSize(InTy); 316 if (OutSize == InSize && InputDomain == OutputDomain && 317 InputDomain != AD_Other) 318 continue; 319 320 // If the smaller input/output operand is not mentioned in the asm string, 321 // then we can promote the smaller one to a larger input and the asm string 322 // won't notice. 323 bool SmallerValueMentioned = false; 324 325 // If this is a reference to the input and if the input was the smaller 326 // one, then we have to reject this asm. 327 if (isOperandMentioned(InputOpNo, Pieces)) { 328 // This is a use in the asm string of the smaller operand. Since we 329 // codegen this by promoting to a wider value, the asm will get printed 330 // "wrong". 331 SmallerValueMentioned |= InSize < OutSize; 332 } 333 if (isOperandMentioned(TiedTo, Pieces)) { 334 // If this is a reference to the output, and if the output is the larger 335 // value, then it's ok because we'll promote the input to the larger type. 336 SmallerValueMentioned |= OutSize < InSize; 337 } 338 339 // If the smaller value wasn't mentioned in the asm string, and if the 340 // output was a register, just extend the shorter one to the size of the 341 // larger one. 342 if (!SmallerValueMentioned && InputDomain != AD_Other && 343 OutputConstraintInfos[TiedTo].allowsRegister()) 344 continue; 345 346 // Either both of the operands were mentioned or the smaller one was 347 // mentioned. One more special case that we'll allow: if the tied input is 348 // integer, unmentioned, and is a constant, then we'll allow truncating it 349 // down to the size of the destination. 350 if (InputDomain == AD_Int && OutputDomain == AD_Int && 351 !isOperandMentioned(InputOpNo, Pieces) && 352 InputExpr->isEvaluatable(Context)) { 353 CastKind castKind = 354 (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); 355 InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take(); 356 Exprs[InputOpNo] = InputExpr; 357 NS->setInputExpr(i, InputExpr); 358 continue; 359 } 360 361 Diag(InputExpr->getLocStart(), 362 diag::err_asm_tying_incompatible_types) 363 << InTy << OutTy << OutputExpr->getSourceRange() 364 << InputExpr->getSourceRange(); 365 return StmtError(); 366 } 367 368 return Owned(NS); 369 } 370 371 ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS, 372 SourceLocation TemplateKWLoc, 373 UnqualifiedId &Id, 374 InlineAsmIdentifierInfo &Info, 375 bool IsUnevaluatedContext) { 376 Info.clear(); 377 378 if (IsUnevaluatedContext) 379 PushExpressionEvaluationContext(UnevaluatedAbstract, 380 ReuseLambdaContextDecl); 381 382 ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id, 383 /*trailing lparen*/ false, 384 /*is & operand*/ false, 385 /*CorrectionCandidateCallback=*/0, 386 /*IsInlineAsmIdentifier=*/ true); 387 388 if (IsUnevaluatedContext) 389 PopExpressionEvaluationContext(); 390 391 if (!Result.isUsable()) return Result; 392 393 Result = CheckPlaceholderExpr(Result.take()); 394 if (!Result.isUsable()) return Result; 395 396 QualType T = Result.get()->getType(); 397 398 // For now, reject dependent types. 399 if (T->isDependentType()) { 400 Diag(Id.getLocStart(), diag::err_asm_incomplete_type) << T; 401 return ExprError(); 402 } 403 404 // Any sort of function type is fine. 405 if (T->isFunctionType()) { 406 return Result; 407 } 408 409 // Otherwise, it needs to be a complete type. 410 if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) { 411 return ExprError(); 412 } 413 414 // Compute the type size (and array length if applicable?). 415 Info.Type = Info.Size = Context.getTypeSizeInChars(T).getQuantity(); 416 if (T->isArrayType()) { 417 const ArrayType *ATy = Context.getAsArrayType(T); 418 Info.Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity(); 419 Info.Length = Info.Size / Info.Type; 420 } 421 422 // We can work with the expression as long as it's not an r-value. 423 if (!Result.get()->isRValue()) 424 Info.IsVarDecl = true; 425 426 return Result; 427 } 428 429 bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, 430 unsigned &Offset, SourceLocation AsmLoc) { 431 Offset = 0; 432 LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), 433 LookupOrdinaryName); 434 435 if (!LookupName(BaseResult, getCurScope())) 436 return true; 437 438 if (!BaseResult.isSingleResult()) 439 return true; 440 441 const RecordType *RT = 0; 442 NamedDecl *FoundDecl = BaseResult.getFoundDecl(); 443 if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) 444 RT = VD->getType()->getAs<RecordType>(); 445 else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(FoundDecl)) 446 RT = TD->getUnderlyingType()->getAs<RecordType>(); 447 if (!RT) 448 return true; 449 450 if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0)) 451 return true; 452 453 LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(), 454 LookupMemberName); 455 456 if (!LookupQualifiedName(FieldResult, RT->getDecl())) 457 return true; 458 459 // FIXME: Handle IndirectFieldDecl? 460 FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); 461 if (!FD) 462 return true; 463 464 const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); 465 unsigned i = FD->getFieldIndex(); 466 CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); 467 Offset = (unsigned)Result.getQuantity(); 468 469 return false; 470 } 471 472 StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, 473 ArrayRef<Token> AsmToks, 474 StringRef AsmString, 475 unsigned NumOutputs, unsigned NumInputs, 476 ArrayRef<StringRef> Constraints, 477 ArrayRef<StringRef> Clobbers, 478 ArrayRef<Expr*> Exprs, 479 SourceLocation EndLoc) { 480 bool IsSimple = (NumOutputs != 0 || NumInputs != 0); 481 MSAsmStmt *NS = 482 new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, 483 /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, 484 Constraints, Exprs, AsmString, 485 Clobbers, EndLoc); 486 return Owned(NS); 487 } 488