Home | History | Annotate | Download | only in IPA
      1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements inline cost analysis.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "inline-cost"
     15 #include "llvm/Analysis/InlineCost.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/SetVector.h"
     18 #include "llvm/ADT/SmallPtrSet.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/ConstantFolding.h"
     22 #include "llvm/Analysis/InstructionSimplify.h"
     23 #include "llvm/Analysis/TargetTransformInfo.h"
     24 #include "llvm/IR/CallingConv.h"
     25 #include "llvm/IR/DataLayout.h"
     26 #include "llvm/IR/GlobalAlias.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/Operator.h"
     29 #include "llvm/InstVisitor.h"
     30 #include "llvm/Support/CallSite.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/GetElementPtrTypeIterator.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 
     35 using namespace llvm;
     36 
     37 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
     38 
     39 namespace {
     40 
     41 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
     42   typedef InstVisitor<CallAnalyzer, bool> Base;
     43   friend class InstVisitor<CallAnalyzer, bool>;
     44 
     45   // DataLayout if available, or null.
     46   const DataLayout *const TD;
     47 
     48   /// The TargetTransformInfo available for this compilation.
     49   const TargetTransformInfo &TTI;
     50 
     51   // The called function.
     52   Function &F;
     53 
     54   int Threshold;
     55   int Cost;
     56 
     57   bool IsCallerRecursive;
     58   bool IsRecursiveCall;
     59   bool ExposesReturnsTwice;
     60   bool HasDynamicAlloca;
     61   bool ContainsNoDuplicateCall;
     62 
     63   /// Number of bytes allocated statically by the callee.
     64   uint64_t AllocatedSize;
     65   unsigned NumInstructions, NumVectorInstructions;
     66   int FiftyPercentVectorBonus, TenPercentVectorBonus;
     67   int VectorBonus;
     68 
     69   // While we walk the potentially-inlined instructions, we build up and
     70   // maintain a mapping of simplified values specific to this callsite. The
     71   // idea is to propagate any special information we have about arguments to
     72   // this call through the inlinable section of the function, and account for
     73   // likely simplifications post-inlining. The most important aspect we track
     74   // is CFG altering simplifications -- when we prove a basic block dead, that
     75   // can cause dramatic shifts in the cost of inlining a function.
     76   DenseMap<Value *, Constant *> SimplifiedValues;
     77 
     78   // Keep track of the values which map back (through function arguments) to
     79   // allocas on the caller stack which could be simplified through SROA.
     80   DenseMap<Value *, Value *> SROAArgValues;
     81 
     82   // The mapping of caller Alloca values to their accumulated cost savings. If
     83   // we have to disable SROA for one of the allocas, this tells us how much
     84   // cost must be added.
     85   DenseMap<Value *, int> SROAArgCosts;
     86 
     87   // Keep track of values which map to a pointer base and constant offset.
     88   DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs;
     89 
     90   // Custom simplification helper routines.
     91   bool isAllocaDerivedArg(Value *V);
     92   bool lookupSROAArgAndCost(Value *V, Value *&Arg,
     93                             DenseMap<Value *, int>::iterator &CostIt);
     94   void disableSROA(DenseMap<Value *, int>::iterator CostIt);
     95   void disableSROA(Value *V);
     96   void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
     97                           int InstructionCost);
     98   bool handleSROACandidate(bool IsSROAValid,
     99                            DenseMap<Value *, int>::iterator CostIt,
    100                            int InstructionCost);
    101   bool isGEPOffsetConstant(GetElementPtrInst &GEP);
    102   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
    103   bool simplifyCallSite(Function *F, CallSite CS);
    104   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
    105 
    106   // Custom analysis routines.
    107   bool analyzeBlock(BasicBlock *BB);
    108 
    109   // Disable several entry points to the visitor so we don't accidentally use
    110   // them by declaring but not defining them here.
    111   void visit(Module *);     void visit(Module &);
    112   void visit(Function *);   void visit(Function &);
    113   void visit(BasicBlock *); void visit(BasicBlock &);
    114 
    115   // Provide base case for our instruction visit.
    116   bool visitInstruction(Instruction &I);
    117 
    118   // Our visit overrides.
    119   bool visitAlloca(AllocaInst &I);
    120   bool visitPHI(PHINode &I);
    121   bool visitGetElementPtr(GetElementPtrInst &I);
    122   bool visitBitCast(BitCastInst &I);
    123   bool visitPtrToInt(PtrToIntInst &I);
    124   bool visitIntToPtr(IntToPtrInst &I);
    125   bool visitCastInst(CastInst &I);
    126   bool visitUnaryInstruction(UnaryInstruction &I);
    127   bool visitCmpInst(CmpInst &I);
    128   bool visitSub(BinaryOperator &I);
    129   bool visitBinaryOperator(BinaryOperator &I);
    130   bool visitLoad(LoadInst &I);
    131   bool visitStore(StoreInst &I);
    132   bool visitExtractValue(ExtractValueInst &I);
    133   bool visitInsertValue(InsertValueInst &I);
    134   bool visitCallSite(CallSite CS);
    135 
    136 public:
    137   CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI,
    138                Function &Callee, int Threshold)
    139       : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0),
    140         IsCallerRecursive(false), IsRecursiveCall(false),
    141         ExposesReturnsTwice(false), HasDynamicAlloca(false),
    142         ContainsNoDuplicateCall(false), AllocatedSize(0), NumInstructions(0),
    143         NumVectorInstructions(0), FiftyPercentVectorBonus(0),
    144         TenPercentVectorBonus(0), VectorBonus(0), NumConstantArgs(0),
    145         NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), NumConstantPtrCmps(0),
    146         NumConstantPtrDiffs(0), NumInstructionsSimplified(0),
    147         SROACostSavings(0), SROACostSavingsLost(0) {}
    148 
    149   bool analyzeCall(CallSite CS);
    150 
    151   int getThreshold() { return Threshold; }
    152   int getCost() { return Cost; }
    153 
    154   // Keep a bunch of stats about the cost savings found so we can print them
    155   // out when debugging.
    156   unsigned NumConstantArgs;
    157   unsigned NumConstantOffsetPtrArgs;
    158   unsigned NumAllocaArgs;
    159   unsigned NumConstantPtrCmps;
    160   unsigned NumConstantPtrDiffs;
    161   unsigned NumInstructionsSimplified;
    162   unsigned SROACostSavings;
    163   unsigned SROACostSavingsLost;
    164 
    165   void dump();
    166 };
    167 
    168 } // namespace
    169 
    170 /// \brief Test whether the given value is an Alloca-derived function argument.
    171 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
    172   return SROAArgValues.count(V);
    173 }
    174 
    175 /// \brief Lookup the SROA-candidate argument and cost iterator which V maps to.
    176 /// Returns false if V does not map to a SROA-candidate.
    177 bool CallAnalyzer::lookupSROAArgAndCost(
    178     Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) {
    179   if (SROAArgValues.empty() || SROAArgCosts.empty())
    180     return false;
    181 
    182   DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V);
    183   if (ArgIt == SROAArgValues.end())
    184     return false;
    185 
    186   Arg = ArgIt->second;
    187   CostIt = SROAArgCosts.find(Arg);
    188   return CostIt != SROAArgCosts.end();
    189 }
    190 
    191 /// \brief Disable SROA for the candidate marked by this cost iterator.
    192 ///
    193 /// This marks the candidate as no longer viable for SROA, and adds the cost
    194 /// savings associated with it back into the inline cost measurement.
    195 void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) {
    196   // If we're no longer able to perform SROA we need to undo its cost savings
    197   // and prevent subsequent analysis.
    198   Cost += CostIt->second;
    199   SROACostSavings -= CostIt->second;
    200   SROACostSavingsLost += CostIt->second;
    201   SROAArgCosts.erase(CostIt);
    202 }
    203 
    204 /// \brief If 'V' maps to a SROA candidate, disable SROA for it.
    205 void CallAnalyzer::disableSROA(Value *V) {
    206   Value *SROAArg;
    207   DenseMap<Value *, int>::iterator CostIt;
    208   if (lookupSROAArgAndCost(V, SROAArg, CostIt))
    209     disableSROA(CostIt);
    210 }
    211 
    212 /// \brief Accumulate the given cost for a particular SROA candidate.
    213 void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt,
    214                                       int InstructionCost) {
    215   CostIt->second += InstructionCost;
    216   SROACostSavings += InstructionCost;
    217 }
    218 
    219 /// \brief Helper for the common pattern of handling a SROA candidate.
    220 /// Either accumulates the cost savings if the SROA remains valid, or disables
    221 /// SROA for the candidate.
    222 bool CallAnalyzer::handleSROACandidate(bool IsSROAValid,
    223                                        DenseMap<Value *, int>::iterator CostIt,
    224                                        int InstructionCost) {
    225   if (IsSROAValid) {
    226     accumulateSROACost(CostIt, InstructionCost);
    227     return true;
    228   }
    229 
    230   disableSROA(CostIt);
    231   return false;
    232 }
    233 
    234 /// \brief Check whether a GEP's indices are all constant.
    235 ///
    236 /// Respects any simplified values known during the analysis of this callsite.
    237 bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) {
    238   for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I)
    239     if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I))
    240       return false;
    241 
    242   return true;
    243 }
    244 
    245 /// \brief Accumulate a constant GEP offset into an APInt if possible.
    246 ///
    247 /// Returns false if unable to compute the offset for any reason. Respects any
    248 /// simplified values known during the analysis of this callsite.
    249 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
    250   if (!TD)
    251     return false;
    252 
    253   unsigned IntPtrWidth = TD->getPointerSizeInBits();
    254   assert(IntPtrWidth == Offset.getBitWidth());
    255 
    256   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
    257        GTI != GTE; ++GTI) {
    258     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
    259     if (!OpC)
    260       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
    261         OpC = dyn_cast<ConstantInt>(SimpleOp);
    262     if (!OpC)
    263       return false;
    264     if (OpC->isZero()) continue;
    265 
    266     // Handle a struct index, which adds its field offset to the pointer.
    267     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    268       unsigned ElementIdx = OpC->getZExtValue();
    269       const StructLayout *SL = TD->getStructLayout(STy);
    270       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
    271       continue;
    272     }
    273 
    274     APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType()));
    275     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
    276   }
    277   return true;
    278 }
    279 
    280 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
    281   // FIXME: Check whether inlining will turn a dynamic alloca into a static
    282   // alloca, and handle that case.
    283 
    284   // Accumulate the allocated size.
    285   if (I.isStaticAlloca()) {
    286     Type *Ty = I.getAllocatedType();
    287     AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) :
    288                       Ty->getPrimitiveSizeInBits());
    289   }
    290 
    291   // We will happily inline static alloca instructions.
    292   if (I.isStaticAlloca())
    293     return Base::visitAlloca(I);
    294 
    295   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
    296   // a variety of reasons, and so we would like to not inline them into
    297   // functions which don't currently have a dynamic alloca. This simply
    298   // disables inlining altogether in the presence of a dynamic alloca.
    299   HasDynamicAlloca = true;
    300   return false;
    301 }
    302 
    303 bool CallAnalyzer::visitPHI(PHINode &I) {
    304   // FIXME: We should potentially be tracking values through phi nodes,
    305   // especially when they collapse to a single value due to deleted CFG edges
    306   // during inlining.
    307 
    308   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
    309   // though we don't want to propagate it's bonuses. The idea is to disable
    310   // SROA if it *might* be used in an inappropriate manner.
    311 
    312   // Phi nodes are always zero-cost.
    313   return true;
    314 }
    315 
    316 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
    317   Value *SROAArg;
    318   DenseMap<Value *, int>::iterator CostIt;
    319   bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(),
    320                                             SROAArg, CostIt);
    321 
    322   // Try to fold GEPs of constant-offset call site argument pointers. This
    323   // requires target data and inbounds GEPs.
    324   if (TD && I.isInBounds()) {
    325     // Check if we have a base + offset for the pointer.
    326     Value *Ptr = I.getPointerOperand();
    327     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr);
    328     if (BaseAndOffset.first) {
    329       // Check if the offset of this GEP is constant, and if so accumulate it
    330       // into Offset.
    331       if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) {
    332         // Non-constant GEPs aren't folded, and disable SROA.
    333         if (SROACandidate)
    334           disableSROA(CostIt);
    335         return false;
    336       }
    337 
    338       // Add the result as a new mapping to Base + Offset.
    339       ConstantOffsetPtrs[&I] = BaseAndOffset;
    340 
    341       // Also handle SROA candidates here, we already know that the GEP is
    342       // all-constant indexed.
    343       if (SROACandidate)
    344         SROAArgValues[&I] = SROAArg;
    345 
    346       return true;
    347     }
    348   }
    349 
    350   if (isGEPOffsetConstant(I)) {
    351     if (SROACandidate)
    352       SROAArgValues[&I] = SROAArg;
    353 
    354     // Constant GEPs are modeled as free.
    355     return true;
    356   }
    357 
    358   // Variable GEPs will require math and will disable SROA.
    359   if (SROACandidate)
    360     disableSROA(CostIt);
    361   return false;
    362 }
    363 
    364 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
    365   // Propagate constants through bitcasts.
    366   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
    367   if (!COp)
    368     COp = SimplifiedValues.lookup(I.getOperand(0));
    369   if (COp)
    370     if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) {
    371       SimplifiedValues[&I] = C;
    372       return true;
    373     }
    374 
    375   // Track base/offsets through casts
    376   std::pair<Value *, APInt> BaseAndOffset
    377     = ConstantOffsetPtrs.lookup(I.getOperand(0));
    378   // Casts don't change the offset, just wrap it up.
    379   if (BaseAndOffset.first)
    380     ConstantOffsetPtrs[&I] = BaseAndOffset;
    381 
    382   // Also look for SROA candidates here.
    383   Value *SROAArg;
    384   DenseMap<Value *, int>::iterator CostIt;
    385   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
    386     SROAArgValues[&I] = SROAArg;
    387 
    388   // Bitcasts are always zero cost.
    389   return true;
    390 }
    391 
    392 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
    393   // Propagate constants through ptrtoint.
    394   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
    395   if (!COp)
    396     COp = SimplifiedValues.lookup(I.getOperand(0));
    397   if (COp)
    398     if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) {
    399       SimplifiedValues[&I] = C;
    400       return true;
    401     }
    402 
    403   // Track base/offset pairs when converted to a plain integer provided the
    404   // integer is large enough to represent the pointer.
    405   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
    406   if (TD && IntegerSize >= TD->getPointerSizeInBits()) {
    407     std::pair<Value *, APInt> BaseAndOffset
    408       = ConstantOffsetPtrs.lookup(I.getOperand(0));
    409     if (BaseAndOffset.first)
    410       ConstantOffsetPtrs[&I] = BaseAndOffset;
    411   }
    412 
    413   // This is really weird. Technically, ptrtoint will disable SROA. However,
    414   // unless that ptrtoint is *used* somewhere in the live basic blocks after
    415   // inlining, it will be nuked, and SROA should proceed. All of the uses which
    416   // would block SROA would also block SROA if applied directly to a pointer,
    417   // and so we can just add the integer in here. The only places where SROA is
    418   // preserved either cannot fire on an integer, or won't in-and-of themselves
    419   // disable SROA (ext) w/o some later use that we would see and disable.
    420   Value *SROAArg;
    421   DenseMap<Value *, int>::iterator CostIt;
    422   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt))
    423     SROAArgValues[&I] = SROAArg;
    424 
    425   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
    426 }
    427 
    428 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
    429   // Propagate constants through ptrtoint.
    430   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
    431   if (!COp)
    432     COp = SimplifiedValues.lookup(I.getOperand(0));
    433   if (COp)
    434     if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) {
    435       SimplifiedValues[&I] = C;
    436       return true;
    437     }
    438 
    439   // Track base/offset pairs when round-tripped through a pointer without
    440   // modifications provided the integer is not too large.
    441   Value *Op = I.getOperand(0);
    442   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
    443   if (TD && IntegerSize <= TD->getPointerSizeInBits()) {
    444     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
    445     if (BaseAndOffset.first)
    446       ConstantOffsetPtrs[&I] = BaseAndOffset;
    447   }
    448 
    449   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
    450   Value *SROAArg;
    451   DenseMap<Value *, int>::iterator CostIt;
    452   if (lookupSROAArgAndCost(Op, SROAArg, CostIt))
    453     SROAArgValues[&I] = SROAArg;
    454 
    455   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
    456 }
    457 
    458 bool CallAnalyzer::visitCastInst(CastInst &I) {
    459   // Propagate constants through ptrtoint.
    460   Constant *COp = dyn_cast<Constant>(I.getOperand(0));
    461   if (!COp)
    462     COp = SimplifiedValues.lookup(I.getOperand(0));
    463   if (COp)
    464     if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
    465       SimplifiedValues[&I] = C;
    466       return true;
    467     }
    468 
    469   // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere.
    470   disableSROA(I.getOperand(0));
    471 
    472   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I);
    473 }
    474 
    475 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
    476   Value *Operand = I.getOperand(0);
    477   Constant *COp = dyn_cast<Constant>(Operand);
    478   if (!COp)
    479     COp = SimplifiedValues.lookup(Operand);
    480   if (COp)
    481     if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(),
    482                                                COp, TD)) {
    483       SimplifiedValues[&I] = C;
    484       return true;
    485     }
    486 
    487   // Disable any SROA on the argument to arbitrary unary operators.
    488   disableSROA(Operand);
    489 
    490   return false;
    491 }
    492 
    493 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
    494   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    495   // First try to handle simplified comparisons.
    496   if (!isa<Constant>(LHS))
    497     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
    498       LHS = SimpleLHS;
    499   if (!isa<Constant>(RHS))
    500     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
    501       RHS = SimpleRHS;
    502   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
    503     if (Constant *CRHS = dyn_cast<Constant>(RHS))
    504       if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
    505         SimplifiedValues[&I] = C;
    506         return true;
    507       }
    508   }
    509 
    510   if (I.getOpcode() == Instruction::FCmp)
    511     return false;
    512 
    513   // Otherwise look for a comparison between constant offset pointers with
    514   // a common base.
    515   Value *LHSBase, *RHSBase;
    516   APInt LHSOffset, RHSOffset;
    517   llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
    518   if (LHSBase) {
    519     llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    520     if (RHSBase && LHSBase == RHSBase) {
    521       // We have common bases, fold the icmp to a constant based on the
    522       // offsets.
    523       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
    524       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
    525       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
    526         SimplifiedValues[&I] = C;
    527         ++NumConstantPtrCmps;
    528         return true;
    529       }
    530     }
    531   }
    532 
    533   // If the comparison is an equality comparison with null, we can simplify it
    534   // for any alloca-derived argument.
    535   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)))
    536     if (isAllocaDerivedArg(I.getOperand(0))) {
    537       // We can actually predict the result of comparisons between an
    538       // alloca-derived value and null. Note that this fires regardless of
    539       // SROA firing.
    540       bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
    541       SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
    542                                         : ConstantInt::getFalse(I.getType());
    543       return true;
    544     }
    545 
    546   // Finally check for SROA candidates in comparisons.
    547   Value *SROAArg;
    548   DenseMap<Value *, int>::iterator CostIt;
    549   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    550     if (isa<ConstantPointerNull>(I.getOperand(1))) {
    551       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    552       return true;
    553     }
    554 
    555     disableSROA(CostIt);
    556   }
    557 
    558   return false;
    559 }
    560 
    561 bool CallAnalyzer::visitSub(BinaryOperator &I) {
    562   // Try to handle a special case: we can fold computing the difference of two
    563   // constant-related pointers.
    564   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    565   Value *LHSBase, *RHSBase;
    566   APInt LHSOffset, RHSOffset;
    567   llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
    568   if (LHSBase) {
    569     llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
    570     if (RHSBase && LHSBase == RHSBase) {
    571       // We have common bases, fold the subtract to a constant based on the
    572       // offsets.
    573       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
    574       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
    575       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
    576         SimplifiedValues[&I] = C;
    577         ++NumConstantPtrDiffs;
    578         return true;
    579       }
    580     }
    581   }
    582 
    583   // Otherwise, fall back to the generic logic for simplifying and handling
    584   // instructions.
    585   return Base::visitSub(I);
    586 }
    587 
    588 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
    589   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    590   if (!isa<Constant>(LHS))
    591     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
    592       LHS = SimpleLHS;
    593   if (!isa<Constant>(RHS))
    594     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
    595       RHS = SimpleRHS;
    596   Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD);
    597   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) {
    598     SimplifiedValues[&I] = C;
    599     return true;
    600   }
    601 
    602   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
    603   disableSROA(LHS);
    604   disableSROA(RHS);
    605 
    606   return false;
    607 }
    608 
    609 bool CallAnalyzer::visitLoad(LoadInst &I) {
    610   Value *SROAArg;
    611   DenseMap<Value *, int>::iterator CostIt;
    612   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    613     if (I.isSimple()) {
    614       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    615       return true;
    616     }
    617 
    618     disableSROA(CostIt);
    619   }
    620 
    621   return false;
    622 }
    623 
    624 bool CallAnalyzer::visitStore(StoreInst &I) {
    625   Value *SROAArg;
    626   DenseMap<Value *, int>::iterator CostIt;
    627   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) {
    628     if (I.isSimple()) {
    629       accumulateSROACost(CostIt, InlineConstants::InstrCost);
    630       return true;
    631     }
    632 
    633     disableSROA(CostIt);
    634   }
    635 
    636   return false;
    637 }
    638 
    639 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
    640   // Constant folding for extract value is trivial.
    641   Constant *C = dyn_cast<Constant>(I.getAggregateOperand());
    642   if (!C)
    643     C = SimplifiedValues.lookup(I.getAggregateOperand());
    644   if (C) {
    645     SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices());
    646     return true;
    647   }
    648 
    649   // SROA can look through these but give them a cost.
    650   return false;
    651 }
    652 
    653 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
    654   // Constant folding for insert value is trivial.
    655   Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand());
    656   if (!AggC)
    657     AggC = SimplifiedValues.lookup(I.getAggregateOperand());
    658   Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand());
    659   if (!InsertedC)
    660     InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand());
    661   if (AggC && InsertedC) {
    662     SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC,
    663                                                         I.getIndices());
    664     return true;
    665   }
    666 
    667   // SROA can look through these but give them a cost.
    668   return false;
    669 }
    670 
    671 /// \brief Try to simplify a call site.
    672 ///
    673 /// Takes a concrete function and callsite and tries to actually simplify it by
    674 /// analyzing the arguments and call itself with instsimplify. Returns true if
    675 /// it has simplified the callsite to some other entity (a constant), making it
    676 /// free.
    677 bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) {
    678   // FIXME: Using the instsimplify logic directly for this is inefficient
    679   // because we have to continually rebuild the argument list even when no
    680   // simplifications can be performed. Until that is fixed with remapping
    681   // inside of instsimplify, directly constant fold calls here.
    682   if (!canConstantFoldCallTo(F))
    683     return false;
    684 
    685   // Try to re-map the arguments to constants.
    686   SmallVector<Constant *, 4> ConstantArgs;
    687   ConstantArgs.reserve(CS.arg_size());
    688   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
    689        I != E; ++I) {
    690     Constant *C = dyn_cast<Constant>(*I);
    691     if (!C)
    692       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I));
    693     if (!C)
    694       return false; // This argument doesn't map to a constant.
    695 
    696     ConstantArgs.push_back(C);
    697   }
    698   if (Constant *C = ConstantFoldCall(F, ConstantArgs)) {
    699     SimplifiedValues[CS.getInstruction()] = C;
    700     return true;
    701   }
    702 
    703   return false;
    704 }
    705 
    706 bool CallAnalyzer::visitCallSite(CallSite CS) {
    707   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->canReturnTwice() &&
    708       !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
    709                                       Attribute::ReturnsTwice)) {
    710     // This aborts the entire analysis.
    711     ExposesReturnsTwice = true;
    712     return false;
    713   }
    714   if (CS.isCall() &&
    715       cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate))
    716     ContainsNoDuplicateCall = true;
    717 
    718   if (Function *F = CS.getCalledFunction()) {
    719     // When we have a concrete function, first try to simplify it directly.
    720     if (simplifyCallSite(F, CS))
    721       return true;
    722 
    723     // Next check if it is an intrinsic we know about.
    724     // FIXME: Lift this into part of the InstVisitor.
    725     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
    726       switch (II->getIntrinsicID()) {
    727       default:
    728         return Base::visitCallSite(CS);
    729 
    730       case Intrinsic::memset:
    731       case Intrinsic::memcpy:
    732       case Intrinsic::memmove:
    733         // SROA can usually chew through these intrinsics, but they aren't free.
    734         return false;
    735       }
    736     }
    737 
    738     if (F == CS.getInstruction()->getParent()->getParent()) {
    739       // This flag will fully abort the analysis, so don't bother with anything
    740       // else.
    741       IsRecursiveCall = true;
    742       return false;
    743     }
    744 
    745     if (TTI.isLoweredToCall(F)) {
    746       // We account for the average 1 instruction per call argument setup
    747       // here.
    748       Cost += CS.arg_size() * InlineConstants::InstrCost;
    749 
    750       // Everything other than inline ASM will also have a significant cost
    751       // merely from making the call.
    752       if (!isa<InlineAsm>(CS.getCalledValue()))
    753         Cost += InlineConstants::CallPenalty;
    754     }
    755 
    756     return Base::visitCallSite(CS);
    757   }
    758 
    759   // Otherwise we're in a very special case -- an indirect function call. See
    760   // if we can be particularly clever about this.
    761   Value *Callee = CS.getCalledValue();
    762 
    763   // First, pay the price of the argument setup. We account for the average
    764   // 1 instruction per call argument setup here.
    765   Cost += CS.arg_size() * InlineConstants::InstrCost;
    766 
    767   // Next, check if this happens to be an indirect function call to a known
    768   // function in this inline context. If not, we've done all we can.
    769   Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
    770   if (!F)
    771     return Base::visitCallSite(CS);
    772 
    773   // If we have a constant that we are calling as a function, we can peer
    774   // through it and see the function target. This happens not infrequently
    775   // during devirtualization and so we want to give it a hefty bonus for
    776   // inlining, but cap that bonus in the event that inlining wouldn't pan
    777   // out. Pretend to inline the function, with a custom threshold.
    778   CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold);
    779   if (CA.analyzeCall(CS)) {
    780     // We were able to inline the indirect call! Subtract the cost from the
    781     // bonus we want to apply, but don't go below zero.
    782     Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost());
    783   }
    784 
    785   return Base::visitCallSite(CS);
    786 }
    787 
    788 bool CallAnalyzer::visitInstruction(Instruction &I) {
    789   // Some instructions are free. All of the free intrinsics can also be
    790   // handled by SROA, etc.
    791   if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I))
    792     return true;
    793 
    794   // We found something we don't understand or can't handle. Mark any SROA-able
    795   // values in the operand list as no longer viable.
    796   for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI)
    797     disableSROA(*OI);
    798 
    799   return false;
    800 }
    801 
    802 
    803 /// \brief Analyze a basic block for its contribution to the inline cost.
    804 ///
    805 /// This method walks the analyzer over every instruction in the given basic
    806 /// block and accounts for their cost during inlining at this callsite. It
    807 /// aborts early if the threshold has been exceeded or an impossible to inline
    808 /// construct has been detected. It returns false if inlining is no longer
    809 /// viable, and true if inlining remains viable.
    810 bool CallAnalyzer::analyzeBlock(BasicBlock *BB) {
    811   for (BasicBlock::iterator I = BB->begin(), E = llvm::prior(BB->end());
    812        I != E; ++I) {
    813     ++NumInstructions;
    814     if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy())
    815       ++NumVectorInstructions;
    816 
    817     // If the instruction simplified to a constant, there is no cost to this
    818     // instruction. Visit the instructions using our InstVisitor to account for
    819     // all of the per-instruction logic. The visit tree returns true if we
    820     // consumed the instruction in any way, and false if the instruction's base
    821     // cost should count against inlining.
    822     if (Base::visit(I))
    823       ++NumInstructionsSimplified;
    824     else
    825       Cost += InlineConstants::InstrCost;
    826 
    827     // If the visit this instruction detected an uninlinable pattern, abort.
    828     if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
    829       return false;
    830 
    831     // If the caller is a recursive function then we don't want to inline
    832     // functions which allocate a lot of stack space because it would increase
    833     // the caller stack usage dramatically.
    834     if (IsCallerRecursive &&
    835         AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
    836       return false;
    837 
    838     if (NumVectorInstructions > NumInstructions/2)
    839       VectorBonus = FiftyPercentVectorBonus;
    840     else if (NumVectorInstructions > NumInstructions/10)
    841       VectorBonus = TenPercentVectorBonus;
    842     else
    843       VectorBonus = 0;
    844 
    845     // Check if we've past the threshold so we don't spin in huge basic
    846     // blocks that will never inline.
    847     if (Cost > (Threshold + VectorBonus))
    848       return false;
    849   }
    850 
    851   return true;
    852 }
    853 
    854 /// \brief Compute the base pointer and cumulative constant offsets for V.
    855 ///
    856 /// This strips all constant offsets off of V, leaving it the base pointer, and
    857 /// accumulates the total constant offset applied in the returned constant. It
    858 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
    859 /// no constant offsets applied.
    860 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
    861   if (!TD || !V->getType()->isPointerTy())
    862     return 0;
    863 
    864   unsigned IntPtrWidth = TD->getPointerSizeInBits();
    865   APInt Offset = APInt::getNullValue(IntPtrWidth);
    866 
    867   // Even though we don't look through PHI nodes, we could be called on an
    868   // instruction in an unreachable block, which may be on a cycle.
    869   SmallPtrSet<Value *, 4> Visited;
    870   Visited.insert(V);
    871   do {
    872     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    873       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
    874         return 0;
    875       V = GEP->getPointerOperand();
    876     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    877       V = cast<Operator>(V)->getOperand(0);
    878     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    879       if (GA->mayBeOverridden())
    880         break;
    881       V = GA->getAliasee();
    882     } else {
    883       break;
    884     }
    885     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    886   } while (Visited.insert(V));
    887 
    888   Type *IntPtrTy = TD->getIntPtrType(V->getContext());
    889   return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset));
    890 }
    891 
    892 /// \brief Analyze a call site for potential inlining.
    893 ///
    894 /// Returns true if inlining this call is viable, and false if it is not
    895 /// viable. It computes the cost and adjusts the threshold based on numerous
    896 /// factors and heuristics. If this method returns false but the computed cost
    897 /// is below the computed threshold, then inlining was forcibly disabled by
    898 /// some artifact of the routine.
    899 bool CallAnalyzer::analyzeCall(CallSite CS) {
    900   ++NumCallsAnalyzed;
    901 
    902   // Track whether the post-inlining function would have more than one basic
    903   // block. A single basic block is often intended for inlining. Balloon the
    904   // threshold by 50% until we pass the single-BB phase.
    905   bool SingleBB = true;
    906   int SingleBBBonus = Threshold / 2;
    907   Threshold += SingleBBBonus;
    908 
    909   // Perform some tweaks to the cost and threshold based on the direct
    910   // callsite information.
    911 
    912   // We want to more aggressively inline vector-dense kernels, so up the
    913   // threshold, and we'll lower it if the % of vector instructions gets too
    914   // low.
    915   assert(NumInstructions == 0);
    916   assert(NumVectorInstructions == 0);
    917   FiftyPercentVectorBonus = Threshold;
    918   TenPercentVectorBonus = Threshold / 2;
    919 
    920   // Give out bonuses per argument, as the instructions setting them up will
    921   // be gone after inlining.
    922   for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) {
    923     if (TD && CS.isByValArgument(I)) {
    924       // We approximate the number of loads and stores needed by dividing the
    925       // size of the byval type by the target's pointer size.
    926       PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType());
    927       unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType());
    928       unsigned PointerSize = TD->getPointerSizeInBits();
    929       // Ceiling division.
    930       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
    931 
    932       // If it generates more than 8 stores it is likely to be expanded as an
    933       // inline memcpy so we take that as an upper bound. Otherwise we assume
    934       // one load and one store per word copied.
    935       // FIXME: The maxStoresPerMemcpy setting from the target should be used
    936       // here instead of a magic number of 8, but it's not available via
    937       // DataLayout.
    938       NumStores = std::min(NumStores, 8U);
    939 
    940       Cost -= 2 * NumStores * InlineConstants::InstrCost;
    941     } else {
    942       // For non-byval arguments subtract off one instruction per call
    943       // argument.
    944       Cost -= InlineConstants::InstrCost;
    945     }
    946   }
    947 
    948   // If there is only one call of the function, and it has internal linkage,
    949   // the cost of inlining it drops dramatically.
    950   bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
    951     &F == CS.getCalledFunction();
    952   if (OnlyOneCallAndLocalLinkage)
    953     Cost += InlineConstants::LastCallToStaticBonus;
    954 
    955   // If the instruction after the call, or if the normal destination of the
    956   // invoke is an unreachable instruction, the function is noreturn. As such,
    957   // there is little point in inlining this unless there is literally zero
    958   // cost.
    959   Instruction *Instr = CS.getInstruction();
    960   if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) {
    961     if (isa<UnreachableInst>(II->getNormalDest()->begin()))
    962       Threshold = 1;
    963   } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr)))
    964     Threshold = 1;
    965 
    966   // If this function uses the coldcc calling convention, prefer not to inline
    967   // it.
    968   if (F.getCallingConv() == CallingConv::Cold)
    969     Cost += InlineConstants::ColdccPenalty;
    970 
    971   // Check if we're done. This can happen due to bonuses and penalties.
    972   if (Cost > Threshold)
    973     return false;
    974 
    975   if (F.empty())
    976     return true;
    977 
    978   Function *Caller = CS.getInstruction()->getParent()->getParent();
    979   // Check if the caller function is recursive itself.
    980   for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end();
    981        U != E; ++U) {
    982     CallSite Site(cast<Value>(*U));
    983     if (!Site)
    984       continue;
    985     Instruction *I = Site.getInstruction();
    986     if (I->getParent()->getParent() == Caller) {
    987       IsCallerRecursive = true;
    988       break;
    989     }
    990   }
    991 
    992   // Track whether we've seen a return instruction. The first return
    993   // instruction is free, as at least one will usually disappear in inlining.
    994   bool HasReturn = false;
    995 
    996   // Populate our simplified values by mapping from function arguments to call
    997   // arguments with known important simplifications.
    998   CallSite::arg_iterator CAI = CS.arg_begin();
    999   for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end();
   1000        FAI != FAE; ++FAI, ++CAI) {
   1001     assert(CAI != CS.arg_end());
   1002     if (Constant *C = dyn_cast<Constant>(CAI))
   1003       SimplifiedValues[FAI] = C;
   1004 
   1005     Value *PtrArg = *CAI;
   1006     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
   1007       ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue());
   1008 
   1009       // We can SROA any pointer arguments derived from alloca instructions.
   1010       if (isa<AllocaInst>(PtrArg)) {
   1011         SROAArgValues[FAI] = PtrArg;
   1012         SROAArgCosts[PtrArg] = 0;
   1013       }
   1014     }
   1015   }
   1016   NumConstantArgs = SimplifiedValues.size();
   1017   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
   1018   NumAllocaArgs = SROAArgValues.size();
   1019 
   1020   // The worklist of live basic blocks in the callee *after* inlining. We avoid
   1021   // adding basic blocks of the callee which can be proven to be dead for this
   1022   // particular call site in order to get more accurate cost estimates. This
   1023   // requires a somewhat heavyweight iteration pattern: we need to walk the
   1024   // basic blocks in a breadth-first order as we insert live successors. To
   1025   // accomplish this, prioritizing for small iterations because we exit after
   1026   // crossing our threshold, we use a small-size optimized SetVector.
   1027   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
   1028                                   SmallPtrSet<BasicBlock *, 16> > BBSetVector;
   1029   BBSetVector BBWorklist;
   1030   BBWorklist.insert(&F.getEntryBlock());
   1031   // Note that we *must not* cache the size, this loop grows the worklist.
   1032   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
   1033     // Bail out the moment we cross the threshold. This means we'll under-count
   1034     // the cost, but only when undercounting doesn't matter.
   1035     if (Cost > (Threshold + VectorBonus))
   1036       break;
   1037 
   1038     BasicBlock *BB = BBWorklist[Idx];
   1039     if (BB->empty())
   1040       continue;
   1041 
   1042     // Handle the terminator cost here where we can track returns and other
   1043     // function-wide constructs.
   1044     TerminatorInst *TI = BB->getTerminator();
   1045 
   1046     // We never want to inline functions that contain an indirectbr.  This is
   1047     // incorrect because all the blockaddress's (in static global initializers
   1048     // for example) would be referring to the original function, and this
   1049     // indirect jump would jump from the inlined copy of the function into the
   1050     // original function which is extremely undefined behavior.
   1051     // FIXME: This logic isn't really right; we can safely inline functions
   1052     // with indirectbr's as long as no other function or global references the
   1053     // blockaddress of a block within the current function.  And as a QOI issue,
   1054     // if someone is using a blockaddress without an indirectbr, and that
   1055     // reference somehow ends up in another function or global, we probably
   1056     // don't want to inline this function.
   1057     if (isa<IndirectBrInst>(TI))
   1058       return false;
   1059 
   1060     if (!HasReturn && isa<ReturnInst>(TI))
   1061       HasReturn = true;
   1062     else
   1063       Cost += InlineConstants::InstrCost;
   1064 
   1065     // Analyze the cost of this block. If we blow through the threshold, this
   1066     // returns false, and we can bail on out.
   1067     if (!analyzeBlock(BB)) {
   1068       if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca)
   1069         return false;
   1070 
   1071       // If the caller is a recursive function then we don't want to inline
   1072       // functions which allocate a lot of stack space because it would increase
   1073       // the caller stack usage dramatically.
   1074       if (IsCallerRecursive &&
   1075           AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller)
   1076         return false;
   1077 
   1078       break;
   1079     }
   1080 
   1081     // Add in the live successors by first checking whether we have terminator
   1082     // that may be simplified based on the values simplified by this call.
   1083     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   1084       if (BI->isConditional()) {
   1085         Value *Cond = BI->getCondition();
   1086         if (ConstantInt *SimpleCond
   1087               = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
   1088           BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0));
   1089           continue;
   1090         }
   1091       }
   1092     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   1093       Value *Cond = SI->getCondition();
   1094       if (ConstantInt *SimpleCond
   1095             = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
   1096         BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor());
   1097         continue;
   1098       }
   1099     }
   1100 
   1101     // If we're unable to select a particular successor, just count all of
   1102     // them.
   1103     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
   1104          ++TIdx)
   1105       BBWorklist.insert(TI->getSuccessor(TIdx));
   1106 
   1107     // If we had any successors at this point, than post-inlining is likely to
   1108     // have them as well. Note that we assume any basic blocks which existed
   1109     // due to branches or switches which folded above will also fold after
   1110     // inlining.
   1111     if (SingleBB && TI->getNumSuccessors() > 1) {
   1112       // Take off the bonus we applied to the threshold.
   1113       Threshold -= SingleBBBonus;
   1114       SingleBB = false;
   1115     }
   1116   }
   1117 
   1118   // If this is a noduplicate call, we can still inline as long as
   1119   // inlining this would cause the removal of the caller (so the instruction
   1120   // is not actually duplicated, just moved).
   1121   if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
   1122     return false;
   1123 
   1124   Threshold += VectorBonus;
   1125 
   1126   return Cost < Threshold;
   1127 }
   1128 
   1129 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1130 /// \brief Dump stats about this call's analysis.
   1131 void CallAnalyzer::dump() {
   1132 #define DEBUG_PRINT_STAT(x) llvm::dbgs() << "      " #x ": " << x << "\n"
   1133   DEBUG_PRINT_STAT(NumConstantArgs);
   1134   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
   1135   DEBUG_PRINT_STAT(NumAllocaArgs);
   1136   DEBUG_PRINT_STAT(NumConstantPtrCmps);
   1137   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
   1138   DEBUG_PRINT_STAT(NumInstructionsSimplified);
   1139   DEBUG_PRINT_STAT(SROACostSavings);
   1140   DEBUG_PRINT_STAT(SROACostSavingsLost);
   1141   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
   1142 #undef DEBUG_PRINT_STAT
   1143 }
   1144 #endif
   1145 
   1146 INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
   1147                       true, true)
   1148 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
   1149 INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis",
   1150                     true, true)
   1151 
   1152 char InlineCostAnalysis::ID = 0;
   1153 
   1154 InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {}
   1155 
   1156 InlineCostAnalysis::~InlineCostAnalysis() {}
   1157 
   1158 void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
   1159   AU.setPreservesAll();
   1160   AU.addRequired<TargetTransformInfo>();
   1161   CallGraphSCCPass::getAnalysisUsage(AU);
   1162 }
   1163 
   1164 bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) {
   1165   TD = getAnalysisIfAvailable<DataLayout>();
   1166   TTI = &getAnalysis<TargetTransformInfo>();
   1167   return false;
   1168 }
   1169 
   1170 InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) {
   1171   return getInlineCost(CS, CS.getCalledFunction(), Threshold);
   1172 }
   1173 
   1174 InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee,
   1175                                              int Threshold) {
   1176   // Cannot inline indirect calls.
   1177   if (!Callee)
   1178     return llvm::InlineCost::getNever();
   1179 
   1180   // Calls to functions with always-inline attributes should be inlined
   1181   // whenever possible.
   1182   if (Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   1183                                            Attribute::AlwaysInline)) {
   1184     if (isInlineViable(*Callee))
   1185       return llvm::InlineCost::getAlways();
   1186     return llvm::InlineCost::getNever();
   1187   }
   1188 
   1189   // Don't inline functions which can be redefined at link-time to mean
   1190   // something else.  Don't inline functions marked noinline or call sites
   1191   // marked noinline.
   1192   if (Callee->mayBeOverridden() ||
   1193       Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   1194                                            Attribute::NoInline) ||
   1195       CS.isNoInline())
   1196     return llvm::InlineCost::getNever();
   1197 
   1198   DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
   1199         << "...\n");
   1200 
   1201   CallAnalyzer CA(TD, *TTI, *Callee, Threshold);
   1202   bool ShouldInline = CA.analyzeCall(CS);
   1203 
   1204   DEBUG(CA.dump());
   1205 
   1206   // Check if there was a reason to force inlining or no inlining.
   1207   if (!ShouldInline && CA.getCost() < CA.getThreshold())
   1208     return InlineCost::getNever();
   1209   if (ShouldInline && CA.getCost() >= CA.getThreshold())
   1210     return InlineCost::getAlways();
   1211 
   1212   return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
   1213 }
   1214 
   1215 bool InlineCostAnalysis::isInlineViable(Function &F) {
   1216   bool ReturnsTwice =
   1217     F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   1218                                    Attribute::ReturnsTwice);
   1219   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
   1220     // Disallow inlining of functions which contain an indirect branch.
   1221     if (isa<IndirectBrInst>(BI->getTerminator()))
   1222       return false;
   1223 
   1224     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;
   1225          ++II) {
   1226       CallSite CS(II);
   1227       if (!CS)
   1228         continue;
   1229 
   1230       // Disallow recursive calls.
   1231       if (&F == CS.getCalledFunction())
   1232         return false;
   1233 
   1234       // Disallow calls which expose returns-twice to a function not previously
   1235       // attributed as such.
   1236       if (!ReturnsTwice && CS.isCall() &&
   1237           cast<CallInst>(CS.getInstruction())->canReturnTwice())
   1238         return false;
   1239     }
   1240   }
   1241 
   1242   return true;
   1243 }
   1244